

Electronic Submission

Mr. Joshua Cook, P.E. Regional Air Pollution Control Engineer Region 6, Division of Air Resources New York State Department of Environmental Conservation 317 Washington Street Watertown, NY 13601

RE: Revere Copper Products, Inc. – Revised Air State Facility Permit Renewal and Modification Application, DEC ID 6-3013-00091

FILE: 1087689/1940103004

Dear Mr. Cook:

On behalf of Revere Copper Products, Inc. (Revere), Ramboll Americas Engineering Solutions, Inc. (Ramboll) has enclosed two copies of a revised application to renew and modify the Air State Facility (ASF) Permit for Revere's facility located in Rome, New York. The current ASF Permit has an expiration date of October 31, 2023. A renewal application was submitted to New York State Department of Environmental Conservation (NYSDEC) on February 8, 2023, thereby meeting the requirement to submit a renewal application no less than 180 days (May 4, 2023) and no more than 18 months prior to the expiration date. The proposed modification involves the replacement of an existing cast furnace with a new furnace.

NYSDEC provided comments regarding the February 2023 application on April 20, 2023 (letter dated March 28), and representatives of Revere and NYSDEC met virtually to discuss the application on May 15. On June 8, NYSDEC representatives inspected the Revere facility and by letter dated June 23, an order on consent was issued based on installation (but not operation) of the new furnace. The schedule of compliance attached to the order required Revere to submit a complete ASF Permit renewal application containing the requested information identified in the Department's Notice of Incomplete Application no later than July 10, 2023; an extension to July 21, 2023 was requested by Revere and granted by NYSDEC.

Also, in accordance with the Schedule of Compliance, should Revere propose to commission or otherwise initiate the new furnace prior to receipt of the Permit Modification, Revere is to include for Department review and approval a temporary commissioning and/or operation plan, which includes sufficient detail to confirm the facility will be in compliance with applicable regulations during operation of the furnace.

Ramboll 94 New Karner Road Suite 106 Albany, NY 12203

USA

Date: July 21, 2023

T 518-724-7272 F 315-463-7554 https://Ramboll.com

This revised Permit application is submitted following receipt of comments from New York State Department of Environmental Conservation (NYSDEC) on April 20, 2023 and consists of the following:

- Attachment A Pre-populated ASF Permit application forms provided by NYSDEC with edits to update information to reflect current and anticipated future operations and additional permit application forms for new emission points, emission sources, and processes
- Attachment B Matrix of Processes, Emission Sources, Points, and Controls
- Attachment C Emission Inventory (Tables 1 16)
- Attachment D Regulatory Discussion (including an evaluation of Part 212 air toxics requirements)
- Attachment E Air Dispersion Modeling Report
- Attachment F Toxic Best Available Control Technology (T-BACT) Analysis
- Attachment G Full Environmental Assessment Form (FEAF)
- Attachment H Commissioning Plan (including a description of commissioning activities and schedule, estimated 2023 equipment operating hours including commissioning, emission inventory reflecting the Plan operating hours, and modeling report)
- Exhibit 1 Climate Leadership and Community Protection Act (CLCPA) Analysis
- Exhibit 2 Public Participation Plan
- Exhibit 3 Alliance Source Testing Program and Results
- Exhibit 4 Emergency Generator Certification
- Exhibit 5 Degreaser SDS Excerpts
- Exhibit 6 Annealer Fluids SDS Excerpts.

Background

Revere operates boilers, furnaces, and metal working equipment that are authorized by an ASF Permit (Permit Number 6-3013-00091/00039), which was last modified effective March 24, 2015. Condition 1-1 in the ASF Permit establishes emission caps for nitrogen oxides (NO_X), sulfur dioxide (SO_2), total particulate matter (PM), and PM with diameters of less than or equal to 10 and 2.5 microns (PM_{10} and $PM_{2.5}$, respectively). In accordance with the ASF Permit, Revere maintains records of fuel use, baghouse pressure drop readings, operating hours, scrubber water flow rate, and monthly and rolling 12-month emissions of capped contaminants.

Facility Modifications

Revere has removed casting furnace 2057 (Emission Unit U-CAST1, Emission Source 01257) and began the installation of a similar induction furnace (Emission Source 02728) that will provide an estimated 23.3% increase in output casting. The new furnace will vent to an existing cyclone and baghouse (00C40/00B40) and Emission Point (00040). Estimated emissions increases resulting from the furnace replacement project have been calculated, including emissions from the increased furnace capacity as well as emissions from downstream operations as a result of increased furnace throughput. The increases in annual operating hours for downstream operations will vary depending on the manufacturing process flow and will range from 0 to 36% in comparison to 2021 operating hours and 0 to 23.3% in comparison to 2022 operating hours.

The following additional facility changes that have been made were identified in the February 2023 application:

The facility no longer produces or uses brass

- The facility has switched from residual (No. 6) to distillate (No. 2) fuel oil for the backup fuel combusted by the main boilers (Emission Unit U-COMB1)
- Machine #1187 has been removed from the facility
- Emission unit U-GRANC and Emission Point 00180 have been removed from the facility
- U-PTNRM, BH500, and Emission Point 00500 are no longer in use
- A non-exempt solvent cleaning bath has been identified (New Emission Unit U-SOLV1, Process SOL, Emission Source 02600) that is subject to Subpart 226-1 (Solvent Cleaning Processes)
- Estimated facility-wide potential emissions of SO₂ dropped below 100 tons per year (tpy) due to the shift from No. 6 to No. 2 fuel oil. Revere requested that the facility-wide cap on SO₂ emissions and the fuel oil usage cap be removed from the permit.

Note that since the facility no longer produces or uses brass, it is no longer subject to Title 40 of the Code of Federal Regulations (40 CFR) Part 63, Subpart TTTTTT (6T) – National Emission Standards for Hazardous Air Pollutants (NESHAP) for Secondary Nonferrous Metals Processing Area Sources. Secondary nonferrous metals processing facility is defined in Section 63.11472 as "a brass and bronze ingot making, secondary magnesium processing, or secondary zinc processing plant that uses furnace melting operations to melt post-consumer nonferrous metal scrap to make products including bars, ingots, blocks, or metal powders." Subpart 6T does not apply to secondary copper processing. Therefore, we are requesting that permit conditions associated with Subpart 6T be removed from the Permit.

In addition, the three main boilers will be operated as gas-fired boilers as defined in 40 CFR Part 63, Subpart JJJJJJ (6J). As such, the facility is not subject to Subpart 6J requirements, and we are requesting that permit conditions associated with Subpart 6J be removed from the Permit.

Differences Between the Revised Application and the February 8, 2023 Application

The enclosed revised application incorporates the following key differences from the February 8, 2023 application:

- Some of Revere's process emission rates in the February 2023 application were based on source testing conducted in 2001 and 2008 that did not include particle size distribution (PSD) analysis.
 Accordingly, Revere initiated source testing (for engineering purposes only) in May 2023 to develop updated emission rates for five emission sources:
 - o 1723 Reversing Mill (U-ROLL1, Emission Point (EP) 00026, Source 01723)
 - o 1721 First Run Down Mill (U-ROLL1, EP 00029, Source 01721, Control 00C29)
 - o Cast Shop 1799 Holding Furnace and 2443 Melting Furnace (U-CAST1, EP 00039, Source 01799 and 02443, Cyclone 00C39, and Baghouse 00C39)
 - Cast Shop 2056 Melting Furnace (U-CAST1, EP 00040, Source 02056, Cyclone 00C40, and Baghouse 00B40)
 - o 1715 Overhauler (U-OVER1, EP 00031, Source 01715, Control 00C31).

For each of these emission sources, samples were collected by Alliance Technical Group, LLC (Alliance) on May 30 through June 2, 2023 to establish updated emission rates for total filterable particulate matter (PM), particulate matter less than 10 microns (PM_{10}), particulate matter less than 2.5 microns ($PM_{2.5}$), and condensable PM. In addition, a sample collected from the 1715 Overhauler exhaust was analyzed for copper. A summary of the test program and results is provided in Exhibit

- 3. The updated emission and exhaust flow rates have been incorporated into the emission inventory, Part 212 evaluation, dispersion modeling, and modeling report that are included in this revised application.
- Based on the updated emission rates, the estimated facility-wide potential emissions of total PM, PM₁₀, and PM_{2.5} are below 100 tons per year (tpy) each. Revere is requesting that the facility emission caps for these contaminants be removed from the permit.
- Testing was not able to be performed on the Central Vacuum System (U-CAST1, EP 00602, Source CSVAC, Cyclone CSC01, and Baghouse CSB01) during the May 2023 test program. Revere previously assumed the PM concentration in the Central Vacuum System exhaust was equivalent to the grain standard, *i.e.*, 0.05 grains/dry standard cubic foot (gr/dscf), which is overly conservative given the air pollution control devices in use (*i.e.*, cyclone and baghouse). For our calculations, we have assumed that the performance of the vacuum exhaust cyclone and filter housing system would perform similarly to the exhaust of the cyclone and filter housing operating on the cast furnace exhausts. To be conservative, we used the higher of two available cast furnace exhaust outlet concentrations from the May 2023 test program and applied it to the vacuum system exhaust. The performance of the vacuum cyclone and filter housing is reasonably expected to be similar since the design features of the two systems are also similar.
- NYSDEC provided updated meteorological data on July 3, 2023 and these data have been used in the updated modeling included with this revised application.
- Using the updated emission rates, exhaust flow rates, and meteorological data, Ramboll updated the dispersion model for PM₁₀ and PM_{2.5}. The modeling results, which are presented in the modeling report in Attachment E, show that predicted impacts from the current facility configuration as well as proposed future operations (following operation of the new cast furnace) meet the PM₁₀ and PM_{2.5} National Ambient Air Quality Standards (NAAQS).
- Revere has clarified the EPs associated with the 464 Tray Style Coil Annealing Furnace (U-ANNE1, Source 00464) and 1154 Annealing Furnace (U-ANNE1, Source 01154). In each of these processes, a natural gas-fired DX boiler provides DX gas consisting of natural gas combustion byproducts and heat to the annealing furnace; the DX gas becomes the atmosphere in the furnace during the annealing process. A separate small natural gas-fired combustion unit provides heat to the furnace during the annealing process. Copper from a rolling mill moves through the annealing furnace. Both the furnace entrance and exit have a chamber that captures fugitive emissions and vents them to the outside. There also is an emergency relief vent that engages if the DX gas pressure builds up in the annealing chamber; this rarely occurs.

Each of these annealing furnaces has four EPs: one exempt EP for venting combustion gases from a small, exempt tube furnace that provides heat to the furnace; one EP for the furnace entry chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when entering the annealing furnace; one EP for the furnace exit chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when exiting the annealing furnace; and the exempt emergency relief vent. The DX furnace vent is directed to the annealing chamber and does not directly vent outside. The entrance and exit chamber EPs are understood to be the EPs venting process emissions from these

operations. Therefore, the following process EPs for these two annealing furnaces should be included:

- Emission Source 00464 Tray Style/Coil Anneal: EPs 00189 (entrance chamber exhaust) and 00190 (exit chamber exhaust); both of these EPs are in the current ASF Permit as well as the revised application.
- Emission Source 01154 1154 Annealing Furnace: EPs 00367 (entry chamber exhaust) and
 00362 (exit chamber exhaust). EP 00367 is in the current ASF Permit but EP 00362 is a new EP.

These stacks and their parameters have been added to the revised ASF Permit application.

- Emissions from the combustion of natural gas by the DX boilers were double counted in the February 8, 2008 application with the DX combustion gas that becomes the annealing furnace atmosphere. This double counting has been corrected.
- The coolants and additives used in the rolling mills (U-ROLL1) were updated based on additional bath composition information provided by Revere. In addition, Revere rolling mill process engineers have indicated that the Kathon 886, an antimicrobial agent, is added to the 1723 Reversing Mill (U-ROLL1, EP 00026, Source 01723) and 1176 Bliss Mill (U-ROLL1, EP 00036, Source 01723) is completely consumed within 24 to 48 hours of its addition to the recirculating coolant. As a result, emissions associated with constituents in Kathon 886 have been removed from the updated emission inventory.

When excessive biological growth (bacteria) is present in the water-soluble coolant systems, the pH of the solution is lowered from the acidic excretions of the bacteria. This biological growth is controlled by additions of antimicrobial agents to the coolant systems. Revere currently uses two different antimicrobials to stop the biological growth in the coolant systems: Grotan and Kathon. The Kathon additive is used as an initial dose at the start of a new coolant change. While the system residual of the Kathon additive is not testable, it is known to be consumed based on the rapid increase in pH (less excretion from bacteria). Revere relies on the biological results reported by the in-house laboratory to gauge the need for additional antimicrobials.

- Estimated actual annual operating hours have been updated based on information provided by Revere; some of the future projected annual operating hours in the revised application are higher and some are lower in comparison to those used in the February 2023 application.
- The distance to property line has been added for non-exempt emission points (see Tables 2 and 3 in Attachment E).
- The Part 212 air toxics evaluation (Attachment D) and modeling report (Attachment E) have been
 updated to incorporate the changes in emission rates, cooling water composition, and stack flow
 rates discussed above. Note that emission rates of constituents associated with particulate
 emissions, such as those from the casting and rolling mills, have been updated based on the May
 2023 source testing results.

As discussed in Attachment D, there are three constituents with predicted impacts that exceed the conservative interim annual guideline concentrations (AGCs) provided by the Air Toxics Section.

Actual annual emissions are estimated to be 668 pounds for the three constituents combined. Refer to the T-BACT analysis in Attachment F.

Two additional constituents, copper and 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol, have modeled impacts that exceed their respective AGCs. Copper has been identified as a constituent potentially emitted from the Overhauler (U-OVER1, Source 01715, Wet Scrubber 00C31). 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol has been identified as a constituent potentially emitted from three rolling mills: Bliss Mill, Hot Mill, and Reversing Mill. These modeled exceedances occur in the future anticipated operating scenario but do not occur in the commissioning operating scenario.

Revere is proposing annual operating hour limits that will reduce the modeled impacts of these two constituents to 95% of their respective AGCs. Based on emission rates from the May 2023 testing and the resulting predicted impacts, the proposed operating hour limits would be 6,658 hours per year for the Overhauler and 7,858 hours per year for the Reversing Mill. However, we are proposing that the actual limits be based on the most recent Department-approved post-control hourly emission rates and resulting modeled impacts that are 95% of their respective AGCs.

- Additional compliance certifications are being proposed based on the results of the Part 212 evaluation and are included with the renewal application forms in Attachment A.
- Revere has developed a plan for commissioning the new cast furnace. A discussion of the
 commissioning activities and schedule, estimated 2023 equipment operating hours that include the
 new furnace operating hours during commissioning and additional operating hours for downstream
 emission sources, emission inventory reflecting the Plan operating hours, and modeling report are
 provided in Attachment H.

Additional Questions Included in NYSDEC's April 20, 2023 Letter

Supporting Documentation

In Table 7, did the facility assume that the emission factor for the new furnace was the same as the old furnace even though it is larger. If so, please provide justification to this assumption.

Response – It was assumed that the particulate matter emission factors established for the old furnace would also apply to the new furnace. The new furnace is smaller than the old furnace, with a capacity of 65,000 pounds (lb) of molten metal compared to the old furnace capacity of 110,000 lb. The primary difference is that the old furnace was a channel-type furnace that needed to maintain a volume of liquid metal at all times and took longer to heat the copper to the required temperatures, while the new furnace is an induction furnace that does not need to maintain a volume of liquid metal and can heat the copper to required temperatures more quickly than the older channel furnace. This potentially increases the actual production of the rest of the plant because the copper slabs can be poured at an increased frequency.

The updated hourly emission rates for the casting furnaces in Table 7 of the Emission Inventory (Attachment C) are based on May 2023 testing during the melting of copper. The new furnace was not in operation and was not tested; however, the 2056 Melting Furnace was tested, and these emission rates have been used to estimate emissions from the new furnace. Since the new furnace is significantly smaller, it is reasonable to assume that the hourly emissions would be lower; however, a conservative

approach was taken to assume the same particulate matter mass emission rates as the 2056 Melting Furnace.

In Table 8, why was the emission rate potential used in calculating the PAE when in other tables the post control emission factor was used for PAE?

Response – This was an error in the calculations and the post-control emission factor should have been used. Table 8 in the Emission Inventory (Attachment C) has been updated.

In regulation section of Appendix D, the facility should go through a minor discussion concerning NSR with respect to the modification.

Response – The requested discussion has been added to the regulatory discussion in Attachment D.

Please provide the certification for the new emergency generator if it is certified.

The certification for the new emergency generator is provided in Exhibit 4.

Please provide the chemical composition page of the SDS for the degreasers.

Response – The chemical composition page of the SDS for the degreasers is provided in Exhibit 5. Additionally, the State Regulation page of the SDS is included in which the manufacturer confirms compliance with Subpart 226-1.

Please provide the chemical composition page of the SDS and information on how small a percentage of material for the lubricating/metal working fluids in the annealers.

Response – The chemical composition pages of the SDSs for Navi-Guard Roll Oil, Bonderite 860, Bonderite 870, and Wallover 40 are provided in Exhibit 6. Revere estimates approximately 0.25% of the annealing fluid is expected to remain on the metal and has the potential to be emitted. The remainder of the annealing fluid remains as a liquid and is drained out of the machine.

Additional Comment from NYSDEC Air Toxics Section (ATS) on July 20, 2023

In a July 20, 2023 email communication, the ATS provided the following additional comment regarding the modeling of impacts of copper and copper oxide:

CAS#s 7440-50-8 & 1317-38-0: Due to the CAS# 1317-38-0 AC having its GCs based upon CAS# 7440-50-8 (because of CAS# 7440-50-8 being a component of CAS# 1317-38-0), the emissions for these two ACs need to be combined for comparison to the CAS# 7440-50-8 Guideline Concentrations (GCs). The summed model-predicted impacts for these two ACs combined equates to a total conc. representing 101% of the CAS# 7440-50-8 AGC with the reduced Commissioning Plan emissions.

Ramboll performed additional modeling for the Commissioning Plan operating scenario to evaluate the combined impacts of copper (CAS# 7440-50-8) and copper oxide (CAS# 1317-38-0). As discussed in the Commissioning Plan modeling report (Attachment H), the model-predicted impacts for copper and copper oxide combined are 0.468 μ g/m³, which is 98% of the copper AGC (0.48 μ g/m³).

Ramboll also performed additional modeling for the Permit Application operating scenario to evaluate the combined impacts of copper and copper oxide. As discussed in the Permit Application modeling report (Attachment E), the model-predicted impacts for copper and copper oxide combined are less than the AGC, provided public access to a small portion of the Revere parking lot is restricted. Revere will restrict public access to the portion of the parking lot as needed to demonstrate acceptable combined impacts of copper and copper oxide. Additional details demonstrating the methods and extents of the restrictions will be provided to NYSDEC during the week of July 24.

After the NYSDEC has an opportunity to review these application materials, Revere would like to have a meeting at Region 6 offices to discuss the application. Receipt of NYSDEC approval to proceed with the Commissioning Plan is an urgent priority for Revere. Should you have questions about the information in this application, please contact Dave Ozog of Revere at (315) 338-2160 or at DOzog@reverecopper.com, or Cris Hine of Ramboll at (518) 424-8768 or at Cris.Hine@Ramboll.com.

Yours sincerely,

Ramboll Americas Engineering Solutions, Inc.

Project Manager

D 518-724-7259 M 518-424-8768 Cris.Hine@Ramboll.com

Cristian L. Hine

Matthew Traister, P.E.

Vice President D 513-697-2021 M 315-569-7882

matt.traister@ramboll.com

Attachment: Revised Air State Facility Permit Renewal/Modification Application and Commissioning Plan

cc: Craig Weill (NYSDEC)

Dave Ozog (Revere) Steven Miraglia (Ramboll)

ATTACHMENT A UPDATED ASF PERMIT RENEWAL/MODIFICATION APPLICATION FORMS

DEC ID: 6301300091

Application ID: 630130009100039

Renewal Number: 2

Facility: REVERE COPPER PRODUCTS INC

Oct 24, 2022 11:55 am

Section I - Certification Permit Application Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

submitted. Based on my inquiry of the person or persons directly responsible for gathering the information I believe the information is true, accurate and complete. I am aware that there are significant penalties forsubmitting false information, including the possibility of fines and imprisonment for knowing violations.

Responsible Official

David Ozog

Title Lead Environmental Operations & Facilities Engineer

Date July 21, 2023

Professional Engineer Certification

I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments as they pertain to the practice of engineering.

I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

Professional Engineer Matthew Traister NYS License No. 068979

Signature Date July 21, 2023

Renewal Number: 2 DEC ID: 6301300091 Application ID: 630130009100039

Oct 24, 2022 11:55 am Facility: REVERE COPPER PRODUCTS INC

	Section II - Identificat	ion imormation								
Permit Type	Air State Facility (ASF)									
	RENEWAL									
General Per	rmit Title:									
Applic	cation involves construction of new facility	plication involves construction of new emission unit(s)								
	Owner / Firm									
Name RE	VERE COPPER PRODUCTS INC									
Street 1 R	EVERE PARK									
City ROI	ME	State NY Country USA Zip 13440 5581								
Owner Cla	Owner Classification Corporation/Partnership Taxpayer Id 161146203									
Facility										
	Fac	lity								
Name	REVERE COPPER PRODUCTS INC	ility								
l r		ility								
Address	REVERE COPPER PRODUCTS INC	Zip 13440								
Address	REVERE COPPER PRODUCTS INC ONE REVERE PARK	Zip 13440								
Address City	REVERE COPPER PRODUCTS INC ONE REVERE PARK ROME	Zip 13440								
Address City	REVERE COPPER PRODUCTS INC ONE REVERE PARK ROME Facility Contact I	zip 13440								
Address City Name	REVERE COPPER PRODUCTS INC ONE REVERE PARK ROME Facility Contact I David Ozog	Zip 13440								
Address City Name Affiliation	REVERE COPPER PRODUCTS INC ONE REVERE PARK ROME Facility Contact I David Ozog Revere Copper Products, Inc. Lead Environmental Operations & Facilities Engineer Revere Copper Products Inc	Zip 13440								
Address City Name Affiliation Title	REVERE COPPER PRODUCTS INC ONE REVERE PARK ROME Facility Contact I David Ozog Revere Copper Products, Inc. Lead Environmental Operations & Facilities Engineer	Zip 13440								

Project Description

Application for renewal of Air State Facility (ASF) Permit.

dozog@reverecopper.com

E-mail

In addition, Revere is seeking to modify the Air State Facility Permit as follows:

- Replace existing casting furnace 2057 (emission source 02057) with a new similar induction furnace (emission source 02728) that will provide an estimated 23.3% increase in output casting. Both the existing and new furnace are electrically heated. The replacement of the casting furnace also will result in a production increase by other upstream and downstream emission sources including the following: 1154 Bright Anneal, 1729-1734 Lee Wilson Anneal, 2383-2386 Ebner Anneal, 1715 Overhauler, 1176 Bliss Mill, 1706 Hot Mill, 1721 First Run Down Mill, 1723 Reversing Mill, 1724 Z-Mill, 1738 & 1739 Strand Anneal, 1740 Heavy Gauge, 2587 Galvanizing Furnace. Natural gas use for process heating will increase for the 1701 Cake Furnace, 1738 Strand Anneal, 1729-1734 Lee Wilson Anneal, 2383-2386 Ebner Anneal, 1154 Bright Anneal, 2587 Galvanizing Furnace.
- Replace No. 6 residual fuel oil with No. 2 distillate fuel oil as the backup fuel fired by the 3 main boilers.
- The facility no longer produces or uses brass. Therefore, it is no longer subject to Title 40 of the Code of Federal Regulations (40 CFR) Part 63, Subpart TTTTTT (6T) - National Emission Standards for Hazardous Air Pollutants for Secondary Nonferrous Metals Processing Area Sources.
- The facility operates the 3 boilers in Emission Unit U-COMB1 as gas-fired boilers as defined in 40 CFR Part 63, Subpart JJJJJJ. As a result, the facility is not subject to Subpart JJJJJJ requirements.

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information

	Classification					
X INDUSTRIAL						
	SIC Codes					
3351						
	NAICS Codes as backup fuel					
galvanizing line that coats copper strip with zinc/tin.	as the primary fuel and					
Facility Description Revere Copper products is a secondary melter of copper and copper alleys. The facility operates three dual-fuel (natural gas er no. 6 fuel oil) boilers, several electric induction furnaces for the melting of copper and allew scrap, several rolling mills, slitters, pick ling and cleaning lines, annealing furnaces, and a metal coating line that coats sheets with lead, tin or other materials. The facility also operates several exempt combustion units. the facility is also installing a galvanizing line for copper, copper alleys, and stainless steel sheeting. Compliance Statements (Title V Only) Revere has switched the						
I certify that as of the date of this application the lf one or more emission units at the facility are application (the 'NO' box must be checked), the	dual-fuel boilers to firing No. 2 dual-fuel boilers to firing No. 2 not in compliance with all applicable requirements at the time of signing this e noncomplying units must be identified in the "Compliance Plan" block of					
operating in compliance with all applicable requ	ce plan information required. For all emission units at this facility that are uirements complete the following:					
	d and maintained in such manner as to assure compliance for the duration of the n the compliance plan portion of Section IV of this application.					
For all emission units, subject to any a facility will meet all such requirements	pplicable requirements that will become effective during the term of the permit, this on a timely basis.					
Compliance certification reports will be respect to each requirement, and the m	e submitted at least once a year. Each report will certify compliance status with nethod used to determine status.					

Facility Applicable Federal Requirements

	, , , ,											
Title	Туре	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	Item		
40	CFR	63	JJJJJJ	11196	a	4						
40	CFR	63	JJJJJJ	11196	a	3						
40	CFR	63	JJJJJJ	11201	b							
40	CFR	63	JJJJJJ	11205	a							
40	CFR	63	JJJJJJ	11210	е							
40	CFR	63	JJJJJJ	11214	е							
40	CFR	63	JJJJJJ	11223	a							
40	CFR	63	JJJJJJ	11225	a							
40	CFR	63	JJJJJJ	11225	b							
40	CFR	63	JJJJJJ	11225	е							
40	CFR	63	JJJJJJ	11225	d							
40	CFR	63	JJJJJJ	11225	g							
40	CFR	63	JJJJJJ	11235								
40	CFR	63	TTTTT	11465	a							
40	CFR	63	TTTTT	11466								
40	CFR	63	TTTTT	11467	a							

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information Facility Applicable Federal Requirements

Title	Туре	Part	Sub Part		Sub Division		Sub Parag	Clause	Sub Clause	Item
		ir				3	-			
40	CFR	63	TTTTT	11467	е					
40	CFR	63	TTTTT	11467	е					
40	CFR	63		11467	9					
40	CFR	63	TTTTT	11468	a					
40	CFR	63	TTTTT	11469	a					
40	CFR	63	TTTTT	11469	b					
40	CFR	63	TTTTT	11469	е					
40	CFR	63	TTTTT	11470						
40	CFR	63	TTTTT	11471						
40	CFR	63	ZZZZ	6595	а	1				
40	CFR	63	ZZZZ	6603	а					
40	CFR	63	ZZZZ	6605	а					
40	CFR	63	ZZZZ	6605	b					
40	CFR	63	ZZZZ	6625	е					
40	CFR	63	ZZZZ	6625	f					
40	CFR	63	ZZZZ	6625	h					
40	CFR	63	ZZZZ	6625	i					
40	CFR	63	ZZZZ	6625	j					
40	CFR	63	ZZZZ	6640	f					
40	CFR	63	ZZZZ	6655	а	-				
40	CFR	63	ZZZZ	6655	е					
40	CFR	63	ZZZZ	6655	f					
40	CFR	63	ZZZZ	6660						
40	CFR	63	ZZZZ	6665						
6	NYCRR	211		2						
6	NYCRR	226								

Facility State Only Requirements

Title	Туре	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	Item
6	NYCRR	201	5	2	С					
6	NYCRR	201	5	3	С					
6	NYCRR	211		1						
6	NYCRR	201	5							
	ECL	19	0301							

Add:

40 CFR Part 60, Subpart JJJJ (for the new natural gas-fired emergency generator

40 CFR Part 82, Subpart F

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information Facility Compliance Certification

	Rule Citation									
Title	Type	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	ltem
40	CFR	63	TTTTT	11465	a					
X Applicable Federal Requirement										

Description

The owner or operator of an affected source that commenced construction on or before September 20, 2007 must comply with either a control efficiency limit or an outlet concentration limit for PM by routing emissions from each affected source through appropriate control. The control must achieve an outlet PM concentration limit of 0.015 gr/dscf. Each performance test must be performed according to the test methods and requirements listed in 40 CFR 11466(c). The owner or operator shall conduct a performance test within 90 days of the issuance of this permit.

If the results of the test indicate that the facility cannot meet the emission limits of this condition they will modify this process and permit, in order to meet the limit.

Monitoring Performed For								
Emission Unit	UCAST1	Emission Point	Process	BP1	Emission Source			

Contaminants

Capping	CAS No.	Contaminant Name
	0NY075-00-0	PARTICULATES

	Monitoring Information								
X INTERMITT	X INTERMITTENT EMISSION TESTING								
Work Practice			Proce	ss Material		Ref Test Method			
Type	Code			Descriptio	n				
				Method 5					
			Manufacturer Name/Model No.						
Code	Code			Descriptio	n				
	Lin	nit			Lim	it Units			
Upper	•		Lower	Code		Description			
.015				12	grains per dscf				
Averaging N	lethod	Code	63	Desc	AVERAGING METHOD - SE	E MONITORING DESCRIPTION			
Monitoring	Monitoring Freq Code 13		Desc	SINGLE OCCURRENCE					
Reporting	Reporting Reqs Code 01				ONCE / BATCH OR MONITORING OCCURRENCE				

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information Facility Compliance Certification

	Rule Citation									
Title	Type	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	ltem
40	CFR	63	TTTTT	11465	a					
X Applicable Federal Requirement										

Description

The owner or operator shall maintain emission from this process to not exceed .015 grains per dsef limit if it was verified during the stack test.

Records will be kept indicating the operation of the furnaces during this process, in a format acceptable to the department. These records will be submitted to the department at the frequently listed below, and document the furnaces operation that is occurring during this process.

Any noncompliance with the furnace operation monitored in this condition must be reported by sending a copy of such record to the NYSDEC, Region 6, within 30 days of the occurrence, including the amount of excess emissions that occurred, during noncompliance.

Monitoring Performed For								
Emission Unit	UCAST1	Emission Point	Process	BP1	Emission Source			
				1				

Contaminants

Capping	CAS No.	Contaminant Name	
	0NY075-00-0	PARTICULATES	

	Monitoring Information									
X RECORD KEEPING/MAINTENANCE PROCEDURES										
Work Practice		Process Material				Ref Test Method				
Type	Code			Descriptio	P					
Parameter Parameter					Manufacturer Name/Model No.					
Code	Code			Description	n e					
				1						
	Lii	mit			Lim	nit Units				
Upper	<u> </u>		Lower	Code		Description				
Averaging N	lethod	Code		Desc						
Monitoring	Freq	Code	14	Desc	AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION					
Reporting	Reqs	Code	14	Desc	SEMI-ANNUALLY (CALENDAR)					

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information Facility Compliance Certification

	Rule Citation											
Title	Type	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	ltem		
40	CFR	63	TTTTT	11468	b							
X App												

Description

If the results of the visual inspection or VE test conducted under 40 CFR 63.11468(a) indicate a problem with the operation of the baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions, the owner or operator must take immediate corrective action to return the baghouse to normal operation according to the equipment manufacturer's specifications or instructions and record the corrective action taken.

Corrective actions may include, but are not limited to the following:

- (i) Sealing off defective bags or filter media;
- (ii) Replacing defective bags or filter media or otherwise repairing the control device;
- (iii) Sealing off a defective fabric filter compartment;

(iv) shutdown the pouring of brass (i.e. furnaces idled) producing the PM emissions within 3 hours of the problem discovery, unless the malfunction can be corrected within this time frame.

Monitoring Performed For									
Emission Unit	Emission Unit UCAST1 Emission Point 00040 Process BH2 Emission Source								
		M	onitoring	Performed	For				
Emission Unit	UCAST1	M Emission Point	onitoring	Performed Process	For BP2	Emission Source			

Contaminants

Capping	CAS-No.	Contaminant Name
	0NY075-00-0	PARTICULATES

	Monitoring Information										
X RECORD I	X RECORD KEEPING/MAINTENANCE PROCEDURES										
Work Practice		Process Material				Ref Test Method					
Type	Code		Description								
			Parameter	:		Manufacturer Name/Model No.					
Code	Code		Descriptio	ж.							
				71							
	Lit	mit			Lim	nit Units					
Uppe)r		Lower	Code		Description					
Averaging	Method	Code	76	Desc	MAXIMUM NOT TO BE EXC	CEEDED PER OCCURRENCE					
Monitorin	g Freq	Code	14	Desc	AS REQUIRED - SEE PERMIT MONITORING DESCRIPTION						
Reporting Reqs Code 14 Desc SEMI ANNUALLY (CALENDAR)				AR)							

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information Facility Compliance Certification

	Rule Citation											
Title	Type	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	ltem		
40	CFR	63	TTTTT	11468	b							
Х Арр												

Description

If the results of the visual inspection or VE test conducted under 40 CFR 63.11468(a) indicate a problem with the operation of the baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions, the owner or operator must take appropriate corrective action to return the baghouse to normal operation according to the equipment manufacturer's specifications or instructions and record the corrective action taken, including operating in bypass mode (Process BP1).

Monitoring Performed For								
Emission Unit	UCAST1	Emission Point	00039	Process	BH1	Emission Source		

Contaminants

Capping	CAS No.	Contaminant Name
	0NY075-00-0	PARTICULATES

	Monitoring Information									
X RECORD I	X RECORD KEEPING/MAINTENANCE PROCEDURES									
Work Practice	Ork Practice Process Material					Ref Test Method				
Type	Code Description									
			Parameter	:		Manufacturer Name/Model No.				
Code	Code			Descriptio	n					
	Lin	nit			Lim	it Units				
Uppe	¥.		Lower	Code		Description				
Averaging	Method	Code		Desc						
Monitoring	g Freq	Code	14	Desc	AS REQUIRED SEE PERMIT MONITORING DESCRIPTION					
Reporting	Reqs	Code	14	Desc	SEMI-ANNUALLY (CALENDAR)					

Facility Emissions Summary

Cas No.	Contaminant Name	PTE		Actual	
		(lbs/yr)	(tons/yr)	(lbs/yr)	(tons/yr)

Refer to the updated emissions inventory provided in Attachment C.

007440-36-0	ANTIMONY		
007440-38-2	ARSENIC		
000071-43-2	BENZENE		
000095-47-6	BENZENE,1,2-DIMETHYL		
007440-41-7	BERYLLIUM		
007440-43-9	CADMIUM		

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section III - Facility Information

Facility Emissions Summary

Cas No.	Contaminant Name	P	TE	Ac	tual
		(lbs/yr)	(tons/yr)	(lbs/yr)	(tons/yr)
000124-38-9	CARBON DIOXIDE				
0NY750-00-0	CARBON DIOXIDE EQUIVALENTS				
0NY750-00-0	CARBON DIOXIDE EQUIVALENTS				
000630-08-0	CARBON MONOXIDE		_		
007440-47-3	CHROMIUM				
007440-48-4	COBALT				
000071-55-6	ETHANE, 1,1,1-TRICHLORO				
000111-76-2	ETHANOL, 2-BUTOXY-				
000100-41-4	ETHYLBENZENE				
000050-00-0	FORMALDEHYDE				
007647-01-0	HYDROGEN CHLORIDE			L	
007439-92-1	LEAD	1			
007439-96-5	MANGANESE				
007439-97-6	MERCURY				
000091-20-3	NAPHTHALENE				
007440-02-0	NICKEL METAL AND INSOLUBLE COMPOUNDS				
0NY210-00-0	OXIDES OF NITROGEN	190000			
0NY075-00-0	PARTICULATES	180000			
0NY075-02-5	PM 2.5	180000			
0NY075-00-5	PM-10	180000			
130498-29-2	POLYCYCLIC AROMATIC HYDROCARBONS				
007782-49-2	SELENIUM				
007446-09-5	SULFUR DIOXIDE	190000		_	
000108-88-3	TOLUENE				
0NY100-00-0	TOTAL HAP				
0NY998-00-0	VOC				
007440-66-6	ZINC				
007646-85-7	ZINC CHLORIDE				
001314-13-2	ZINC OXIDE (FUME)				

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

Emission Unit UANNE1 00362,

This EU encompasses thirteen annealing units (Lee Wilson machine nos. 1729 to 1734, Ebner machine nos. 2383 to 2386, bright anneal machine no. 1154, strand anneal machine no. 1738, and tray style/coil anneal machine no. 464 entry and exit) used to anneal copper and copper alloy sheets from the volling mills. All annealing units except for the tray style/coil anneal are located in the volling mill. The Lee Wilson, Ebner, bright, strand, tray style/coil entry and tray style/coil exit exhaust through EPs 00369, 00440, 00367, 00027, 00189, and 00190 respectively. This emissions unit also encompasses two sulfuric acid pickling lines (machines 1738 and 1740) used to clean copper and copper allow sheets. Machine nos. 1738 exhaust through EP 00027, machine no. 1740 exhausts through EP 00028. The particulate emissions (acid mists) are controlled by wet scrubbers.

Building

Building	Building Name	Length	Width	Orient.
1	BAR MILL			
51	ROLLING MILL			

Emission Point

Emission Unit	UANNE1	Emission Pt.	00027			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	82 100	5 19	36	80		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
56.6	24,000	464.714 464.723	4783.837 4783.831	51	142	

Emission	UANNE1	Emission Pt.	00028				
Ground E	lev Height	Height Above	Inside Diameter	Exit Temp	Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
453	88 9	2 10	19	80			
Exit Veloc (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
58.0	7,000	464.718 464.722	4 783.855 4 783.853	51	191		

Emission Unit	UANNE1	Emission Pt.	00189				
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
453	25 35	7	9	100			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
19	500	464.452 464.468	47 84.00 7	1	531		

Emission Unit	UANNE1	Emission Pt.	00190			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	25 42	8	9	100		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
19	500	464.438 464.452	4784.036 4784.028	1	591	

Add EP 00362:

NYTM (E) - 464.694 NYTM (N) - 4783.850

Gound Elevation - 453 ft Height - 45 ft Ht.

Height Above Structure - -5 ft

Inside Diameter - 9 in.

Exit Temperature - 100 F Exit Velocity - 19 fps

Exit Flow - 500 cfm

Distance to Property Line - 253 ft

Page 10 of 41

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Point

Emission Unit	UANNE1	Emission Pt.	00367			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	30 45	15 5	9 12	150 100		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
10.6 19	500	464.702 464.674	4 783.872 4 783.82 7	51	180	

Emission Unit	UANNE1	Emission Pt.	00369				
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
453	55 30	12 15	7	100			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
0.001	0.016	464.424 464.709	4784.052 4783.863	51	244		

Emission Unit	UANNE1	Emission Pt.	00440			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	55 ³⁰	25 15	3	150 100		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
59 .1	174	464.691 464.687	4 783.845 4 783.88 0	51	440	

Emission Unit	UANNE1	Emission So	urce	urce 0046		
Source Type	Date of Construction	Date of Operation	Date of Removal			Manufacturer's Name/Model No.
1	01/01/2037	12/31/2037				464 TRAY STYLE/COIL ANNEAL
Design Capacity	/	Units Code			Desc	sc
Control Type	Code 19	51	Desc			*
Waste Feed	Code		Desc			
Waste Type	Code		Desc			·

Emission Unit	UANNE1	Emission So	urce	e 00S38			
Source Type	Date of Construction	Date of Operation	Date of Removal		Manufacturer's Name		Manufacturer's Name/Model No.
K	01/01/1967	12/31/1967					S&C FUME SCRUBBER/SC 12.5V
Design Capacity		Units Code			Desc		
Control Type	Code	001	Desc				WET SCRUBBER
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit	UANNE1	Emission So	urce	00S4	40		
Source Type	Date of Construction	Date of Operation	Date of Removal			Manufacturer's Name/Model No.	
K	01/01/1968	12/31/1968				S&C AIR WASHER/S621	
Design Capacity		Units Code			Desc		
Control Type	Code	001	Desc			WET SCRUBBER	
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UANNE1	E	mission So	urce	011	54		
Source	Date of		Date of	Date of		Manufacturer's Name/Model No.		
Туре	Construction	0 ا	peration	Removal				
1	01/01/2049	12	2/31/2049				1154 BRIGHT ANNEAL	
Design Capacity		Ur	nits Code			Desc		
Control Type	Code	1949		Desc				
Waste Feed	Code			Desc				
Waste Type	Code			Desc				

Emission Unit	UANNE1	Emission So	urce	0172	9	
Source Type	Date of Construction	Date of Operation	Date of Removal		·	Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				1729 LEE WILSON ANNEAL
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			-
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	UANNE1	Emission So	urce	017	30	
Source Type	Date of Construction	Date of Operation		Date of Removal		Manufacturer's Name/Model No.
1	01/01/1967	12/31/1967				1730 LEE WILSON ANNEAL
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	UANNE1	Emission So	urce 01		'31	
Source Type	Date of Construction	Date of Operation	Date of Removal			Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				1731 LEE WILSON ANNEAL
Design Capacity		Units Code			Desc	·
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit	UANNE1	Emission So	urce 017		32	
Source Type	Date of Construction	Date of Operation	Date of Removal		•	Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				1732 LEE WILSON ANNEAL
Design Capacity		Units Code			Desc	С
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	UANNE1	Emission So	urce	017	33	
Source Type	Date of Construction	Date of Operation		Date of Removal		Manufacturer's Name/Model No.
1	01/01/1967	12/31/1967				1733 LEE WILSON ANNEAL
Design Capacity		Units Code				
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc	İ		

Emission Unit	UANNE1	Emission So	urce	017	34		
Source Type	Date of Construction	Date of Operation		Date of Removal			Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				1734 LEE WILSON ANNEAL	
Design Capacity		Units Code					
Control Type	Code		Desc			Ů	
Waste Feed	Code		Desc				
Waste Type	Code	·	Desc				

Emission Unit	UANNE1	Emission So	urce	01	738	
Source Type	Date of Construction	Date of Operation		Date of Removal		Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				ANNEAL(combination of DXG source , FLD source, and PCK
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	t UANNE1	Emission So	urce	017	'40	
Source Type	Date of Construction	Date of Operation		Date of Removal		Manufacturer's Name/Model No.
1	01/01/1967	12/31/1967				1740 HEAVY GAUGE CLEANING
Design Capacit	ty	Units Code			Desc	
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Source / Control

Emission Unit	UANNE1	Emission So	urce 023		33	
Source Type	Date of Construction	Date of Operation	Date of Removal			Manufacturer's Name/Model No.
I	01/01/1978	12/31/1978				2383 EBNER ANNEAL
Design Capacity		Units Code			Desc	oc
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	UANNE1	Emission So	urce	023	84		
Source Type	Date of Construction	Date of Operation	Date of Removal				Manufacturer's Name/Model No.
1	01/01/1978	12/31/1978					2384 EBNER ANNEAL
Design Capacity		Units Code			Desc		
Control Type	Code		Desc			- !	
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UANNE1	Emission So	urce	023	85		
Source Type	Date of Construction	Date of Operation	Date of Removal		Manufacturer's Name/I		Manufacturer's Name/Model No.
I	01/01/1978	12/31/1978					2385 EBNER ANNEAL
Design Capacity		Units Code					
Control Type	Code		Desc				
Waste Feed	Code	•	Desc				
Waste Type	Code		Desc				

Emission Unit	UANNE1	Emission So	urce	023	86		
Source Type	Date of Construction	Date of Operation		Date of Removal			Manufacturer's Name/Model No.
I	01/01/1978	12/31/1978			2386 EBNER ANNEAL		
Design Capacity		Units Code					
Control Type	Code		Desc				
Waste Feed	Code	•	Desc				
Waste Type	Code	·	Desc				

531

Renewal Number: 2 DEC ID: 6301300091 **Application ID:** 630130009100039

Oct 24, 2022 11:55 am Facility: REVERE COPPER PRODUCTS INC

Section IV - Emission Unit Information

Process Information

			110	CC33 IIII	Ullialio	11			
Emission U	nit U/	ANNE1 Proc	cess DXG						
Source Class		Total 1	hruput			Thrup	ıt Quantity Ur	nits	
Code (S		Quantity / Hr	Quantity / Y	r Code			Descriptio	n	
304900	004					1			
Confiden	tial		Operating S		Buildi	ng	FI	oor / Locatio	n
Operating	At Maxim	um Capacity	Hrs / Day	Days / Yr	51				
		V					and the section of	_	
	D			Descri	otion	by-products of	compustion		
The annealin	g atmosphe	ere of dx gas emit	s burned natura	I l gas.	L				
			Е	mission Po	int Identifier(s)			
00190 00027 00367 00189 00369 00362									
Emission Source / Control Identifier(s)									
00464	01154	01729	01730	01731	01732	01733	01738		
									1
Emission U	nit U/	ANNE1 Prod	cess FLD						
Source Class			hruput			Thrup	ıt Quantity Ur		
Code (S		Quantity / Hr	Quantity / Y	'r Code	1		Descriptio	n	
304022			0	0 - 1 1 - 1 -	Buildi			oor / Locatio	
Confiden	tial		Operating S	Days / Yr	Bullul	iig	r.	OOI / LOCALIO	•
Operating	At Maxim	um Capacity	III37 Day	Day 37 11	51				
		volatilz	he'	D	1				
The course				Descri		and also as #1000 at			
i he annealin	g process o	emits a small amo	unt of burned re	esiduai lubric	ating/metalwo	orking fluid.			
			E	mission Po	int Identifier(s)	_		
00027	00369	00440	00367						
			Emissi	on Source /	Control Ider	ntifier(s)			
01154	01729	01730	01731	01732	01733	01734	01738	02383	02384
02385	02386								

531

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Process Information

Emission Unit	UANNE1 Pr	ocess PCK							
Source Classificati	on Tota	Thruput		Thruput Quantity Units					
Code (SCC)	Quantity / Hr	Quantity / \	r Code	Code Description					
3999999									
Confidential		Operating	Schedule	Building	Floor / Location				
		Hrs / Day	Days / Yr						
Operating At Ma	ximum Capacity			51					
The emissions of ac	and cleaning id mists from the pic		Descripe ducted to an	nd controlled by the wet	scrubbers.				
		E	mission Po	int Identifier(s)					
00028 00027									
		Emissi	on Source /	Control Identifier(s)					
			,		<u> </u>				

Emission Unit Applicable Federal Requirements

Emission	unit U-Al	NNE1	Emissio	n Point		Proc	ess	PCK	Em	ission So	urce	(00S38
Title	Туре	Part	Sub Part	Section	Sub Div	vision	Parag	Sub Pa	rag	Clause	Sub C	Clause	Item
6	NYCRR	201	7										
			Emission Point										
Emission	Unit U-Al	NNE1	Emissio	n Point		Proc	ess	PCK	Em	ission So	urce	(00S40
Emission Title	Type	NNE1 Part	Emissio Sub Part	n Point Section	Sub Div	l	ess Parag	PCK Sub Pa			urce Sub C		00S40

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

. four	1104074	
	UCAST1	
	 	2728

This Emission Unit encompasses the emissions from five induction furnaces (machine nos. 1187, 1799, 2443, 2056, and 2057). All of the furnaces are used to recycle(ie melt and pour) post consumer copper and copper alloy materials, including brass. The billet induction furnace(1187) forms cylindrical billets. The remaining-furnaces produce ingots and rectangular cakes. Furnaces 1187, 1799, and 2443 exhaust through ep 00039 and furnaces 2056 and 2057 exhaust through ep-00040. A central vacuum system is used for housekeeping purposes. The particulate emissions are controlled by cyclones and baghouses. In addition, federally enforceable special permit conditions exist for these emission points to limit the particulate emissions.

EP Building

Building	Building Name	Length	Width	Orient.
21	CAST SHOP			

Emission Point

Emission Unit	UCAST1	Emission Pt.	00039			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
455	50	-5	48	200		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
⁶⁰ 48	36,499	464.32 464.315	4784.058 4784.074	21	³⁰⁰ 384	

Emission Unit	UCAST1	Emission Pt.	00040			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross Section	
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
455	50	-5	48	200		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
48 60	37,621000	464.28 464.282	4 784.023 4784.024	21	³⁸⁰ 313	

Emission Unit	UCAST1	Emission Pt.	00602				
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection	
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
455	18	-37	6	175 80			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
119	1400	464.337 464.338	4784.08 4784.083	21	⁴¹⁵ 420		

Emission Unit	UCAST1	Emission So	urce	00E	339	
Source Type	Date of Construction	Date of Operation		Date of Removal		Manufacturer's Name/Model No.
K	03/01/1995	09/30/1995				GRIFFIN ENVIRONMENTAL CO/JA630CG
Design Capacity		Units Code			Desc	
Control Type	Code	016	Desc			FABRIC FILTER
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit	UCAST1	Emission So	urce	00B4	40	
Source Type	Date of Construction	Date of Operation	Date Rem	e of loval	·	Manufacturer's Name/Model No.
K	03/01/1995	09/30/1995				GRIFFIN ENVIRONMENTAL CO/JA 630-CG
Design Capacity		Units Code			Desc	
Control Type	Code	016	Desc			FABRIC FILTER
Waste Feed	Code		Desc			
Waste Type	Code		Desc	Ì		

Emission Unit	UCAST1	Emission So	urce	000	39	
Source Type	Date of Construction	Date of Operation	Date Rem			Manufacturer's Name/Model No.
K	03/01/1995	09/30/1995				HOSOKAWA MIKROPUL ENV. SYSTEMS TYPE HE
Design Capacity		Units Code			Desc	
Control Type	Code	075	Desc			SINGLE CYCLONE
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	UCAST1	Emission So	urce	00C4	C40			
Source Type	Date of Construction	Date of Operation		e of noval	Manufacturer's Name/Model No.			
K	03/01/1995	09/30/1995				HOSOKAWA MIKROPUL ENV. SYSTEMS	TYPE HE	
Design Capacity		Units Code			Desc			
Control Type	Code	075	Desc			SINGLE CYCLONE		
Waste Feed	Code		Desc					
Waste Type	Code		Desc		F	Removed from service Feb. 2016.		
			•	•	F	Removed from facility 2022		

Emission Unit	UCAST1	Emission So	ource	01187	
Source Type	Date of Construction	Date of Operation	Date of Removal		Manufacturer's Name/Model No.
I					1187 MELTING FURNACE (BILLET)
Design Capacity		Units Code		Desc	
Control Type	Code		Desc		
Waste Feed	Code		Desc		
Waste Type	Code		Desc		

Emission Unit	UCAST1	Emission So	ource	01799	9	
Source Type	Date of Construction	Date of Operation		te of noval	·	Manufacturer's Name/Model No.
I						1799 HOLDING FURNACE
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			-
Waste Feed	Code		Desc			591
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Source	UCAST1 Date of	Emission So	Date	02056	Manufacturer's Name/Model No.
Туре	Construction	Operation	Remo	-	
1					2056 MELTING FURNACE
esign Capacity		Units Code		Des	
Control Type	Code		Desc		
Waste Feed	Code		Desc		
Waste Type	Code		Desc		
					May 2023
Emission Unit	UCAST1	Emission So	urce	02057	
Source Type	Date of Construction	Date of Operation	Date Remo	11/2	Manufacturer's Name/Model No.
					2057 MELTING FURNACE
I	molting furna	ce:			
d new electric	menny ruma				
	_				
I d new electric 28 Melting Fur tallation Start May	nace				

Emission Unit	UCAST1	Emission So	urce	024	43		
Source Type	Date of Construction	Date of Operation		te of noval			Manufacturer's Name/Model No.
I							2443 MELTING FURNACE
Design Capacity		Units Code			Desc		
Control Type	Code		Desc			·	
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UCAST1	Emission So	urce	urce CSB				
Source Type	Date of Construction	Date of Operation	Date of Removal				Manufacturer's Name/Model No.	
K	12/01/2014					JT Systems, Inc. Model JTS-TD-573-TI		
Design Capacity	1400	Units Code	3	39			cubic feet per minute	
Control Type	Code	016	Desc	<u> </u>			FABRIC FILTER	
Waste Feed	Code		Desc	<u> </u>				
Waste Type	Code		Desc					

Emission Unit	UCAST1	Emission So	urce	urce CSC			
Source Type	Date of Construction	Date of Operation	Date of Removal				Manufacturer's Name/Model No.
K	12/01/2014				JT Systems, Inc. Model JTS-030HE-cs		
Design Capacity	1400	Units Code	3	39	Desc		cubic feet per minute
Control Type	Code	075	Desc				SINGLE CYCLONE
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Source / Control

Emission Unit	UCAST1	Emission So	ource CSV		/AC	
Source Type	Date of Construction	Date of Operation	Date of Removal			Manufacturer's Name/Model No.
I	12/01/2014					Cast Shop Central Vacuum System
Design Capacity	1400	Units Code	3	39	Desc	cubic feet per minute
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Process Information

Emission Unit	UCAST1	Process	BH1						
Source Classification Total 1			ut		Thruput Quantity Units				
Code (SCC)	Code (SCC) Quantity / Hr		Quantity / Yr			Description			
30400224									
Confidential	Hrs	perating Sch	edule rys / Yr	Building	Floor / Location				
Operating At Max	ity			21					

Description

This process encompasses the emissions from the induction furnaces used to melt and pour copper and copper alloy cakes including brass (machine nos. 4187, 1799, and 2443). Emission point EP00039 is associated with this process. Emissions are controlled by cyclones and baghouses. Each furnace has a hood that is ducted to the cyclone/baghouse unit associated with EP00039.

Emission Point Identifier(s)											
00039]										
	Emission Source / Control Identifier(s)										
00B39	00C39	01187	01799	02443							

Emission Unit	UCAST1	Process	BH2							
Source Classificati	on	Total Thruput			Thruput Quantity Units					
Code (SCC)	Quantity	/Hr Qu	Quantity / Yr Cod		Description					
30400224										
Confidential	Operating At Maximum Capacity			Schedule	Building	Floor / Location				
On a realizer At Ma				Days / Yr						
					21					
	2728		•			·				

Description

This process encompasses the emissions from the induction furnaces used to melt and pour copper and copper alloy cakes including brass (machine nos. 2056 and 2057). Emission points EP00040 is associated with this process. Emissions are controlled by cyclones and baghouses. Each furnace has a hood that is ducted to the cyclone/baghouse unit associated with EP00040.

	Emission Point Identifier(s)
00040	

 00040									
Emission Source / Control Identifier(s)									
00B40	00C40	02056	02057 02728						

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Process Information

	Emission U	nit U	CAST1	Proc	cess	BP1						
	Source Class				hruput			Th	nruput Quantity Units			
	Code (S	,	Quantity	/ Hr	Qua	ntity / Yr	Code	1	Description			
	304002	224						D. H.E.	Floor (Location			
	Confiden	tial				rating S	chedule Days / Yr	Building	Floor / Location			
	Operating	g At Maxim	um Capac	ity	Hrs / Day Days /		Days / Tr	21				
L												
1							Descri	<u>'</u>				
$/ \mid$						En	nission Po	int Identifier(s)				
_	00039											
	Emission Source / Control Identifier(s)											
_	00C39	01187	017	99	0244	3						
Th ba	Process Description Missing: This process encompasses the emissions from the induction furnaces used to melt and pour copper (machine nos. 1799 and 2443) when the aghouse is bypassed. EP 00039 is associated with this process. Emissions are controlled by cyclones. Each furnace has a hood that is ducted to											
the	e cyclone unit a	ssociated v	vith EP 000	39.								
	Emission U		CAST1	Proc	cess	BP2						
	Source Class Code (S				hruput			Thruput Quantity Units				
	304002		Quantity	/ Hr	Qua	ntity / Yr	Code	1	Description			
					Ono	rating S	chodulo	Building	Floor / Location			
	Confiden	tial			Hrs /		Days / Yr	Bullullig	Floor / Education			
	Operating	g At Maxim	um Capac	ity			- ujo /	21				
∧							Descri	ption				
71						En	nission Po	int Identifier(s)				
/	00040	1										
[/] г	000.0	1				Emissis	n Cauraa	(Control Idontificato)				
L	_			1_		E11115510	ii Source	Control Identifier(s)				
	00C40	02056	020	57)2728							

Process Description Missing:

This process encompasses the emissions from the induction furnaces used to melt and pour copper (machine nos. 2056 and 2728). EP 00040 is associated with this process. Emissions are controlled by cyclones. Each furnace has a hood that is ducted to the cyclone unit associated with EP 00040.

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Process Information

Emission Unit U	CAST1 Proc	ess VAC							
Source Classification	Total T	hruput		Thruput Quantity Units					
Code (SCC)	Quantity / Hr	Quantity / `	Yr Code		Description				
Confidential		Operating	Schedule	Building	Floor / Location				
Operating At Maxin	num Capacity			21					
				-1					

The

Description

Central vacuum system to provide exhaust at multiple locations within the Cast Shop. Approximately 17 drop points will be installed and the collected particulates are controlled through a cyclone and cartridge filter. The cartridge filter is located outside at ground level with discharge to the atmosphere.

	Emission Point Identifier(s)										
00602]										
	Emission Source / Control Identifier(s)										
CSB01	CSC01	CSVAC									

Emission Unit Applicable Federal Requirements

Emission	Unit	U-C	AST1	Emission Point		00039	Proc	Process		Emission Source				
Title	Ту	ре	Part	Sub Part	Section	Sub Div	/ision	Parag	3	Sub Parag	Clause	Sub Clause	Item	
6	NYO	CRR	201	7										
							Proce	ess BP1	an	nd BP2				

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

Emission Unit UCOMB1

This emission unit (EU) encompasses boilers 1,2 & 3 located at the boiler house. Boilers 1 and 2 (42.0 mmbtu/hr boilers) exhaust through emission point (EP) 00004. Boiler 3 (57.2 mmbtu/hr boiler) exhausts through EP00003. Each boiler is dual-fueled (natural gas as the primary fuel and no. 6 fuel oil as the back-up fuel). Sulfur dioxide emissions are capped by restricting no. 6 fuel oil usage from all three boilers.

No. 2 distillate

Building

Building	Building Name	Length	Width	Orient.
15	BOILER ROOM			

Emission Point

Emission Unit	Emission Unit UCOMB1		00003				
Ground Elev Height		Height Above	Inside Diameter	Exit Temp	Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
453	453 60 Exit Velocity (FPS) (ACFM)		50	390			
,			NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
¹⁰ 9.4	7700	464.495 464.490	4784.075 4784.069	15	505		

Emission Unit	UCOMB1	Emission Pt.	00004				
Ground Elev	3		Inside Diameter Exit Temp		Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
453	150	¹³⁰ 112	84	200			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
⁷ 7.3	16800	464.492	47 84.091 4784.078	15	482		

Emission Unit	UCOMB1	Emission Source		00BR1	
Source Type	Date of Construction	Date of Operation	Date of Remova		Manufacturer's Name/Model No.
С	01/01/1950	12/31/1950			BABCOCK-WILCOX FJ-18
Design Capacity	42	Units Code	25	Desc	million Btu per hour
Control Type	Code		Desc		
Waste Feed	Code		Desc		
Waste Type	Code		Desc		

Emission Unit	UCOMB1	Е	Emission Sou		urce 00B			
Source Type	Type Construction Operat		Date of peration	Date of Removal		Manufacturer's Name/Model No.		
С			2/31/2047					KEELER TYPE CP (BUILT UP BOILER)
Design Capacity	42	Ur	Units Code		25			million Btu per hour
Control Type	Code 19	950		Desc				
Waste Feed	Code			Desc		·		
Waste Type	Code			Desc				

Application ID: 630130009100039 **Renewal Number: 2 DEC ID:** 6301300091

Oct 24, 2022 11:55 am Facility: REVERE COPPER PRODUCTS INC

Section IV - Emission Unit Information

Emission Source / Control

Emission Unit	UCOMB1	Emission So	urce	00BR3	
Source Type	Date of Construction	Date of Operation	Date Reme	-	Manufacturer's Name/Model No.
С	01/01/2047	12/31/2047			KEELER TYPE CP (BUILT UP BOILER)
Design Capacity	57.2	Units Code	25	5 Desc	million Btu per hour
Control Type	Code 195	1	Desc		
Waste Feed	Code		Desc		
Waste Type	Code		Desc		

waste reed Code Des			SC							
Waste Type	Code	De	sc							
		Proce	ess Inf	ormation						
Emission Unit U	COMB1 Pro	cess F01								
Source Classification	Total	Thruput		Thruput Quantity Units						
Code (SCC)	Quantity / Hr	Quantity / Yr	Code	Code Description						
10200402										
Confidential		Operating Sc		Building	Floor / Location					
Operating At Maxir	num Canacity	Hrs / Day D	ays / Yr							
	папт Сараспу			15						
tillate fuel oil (No. 2)			Descrip	otion						
00003 0000	4	Emi	ssion Poi	nt Identifier(s)						
L.		Emission	Source /	Control Identifier(s)						
00BR1 00BR2	2 00BR3									
Emission Unit U	COMB1 Pro	cess G01	1							
Source Classification		Thruput		Т	hruput Quantity Units					
Code (SCC)	Quantity / Hr	Quantity / Yr	Code		Description					
10200602					·					
Confidential		Operating Sc	hedule	Building	Floor / Location					

Emission Uni	t U	COMB1	Process	G01							
Source Classi			Total Thrup	ut		Thruput Quantity Units					
Code (SCC)		Quantity	Hr Qu	antity / Y	'r Code		Description				
1020060)2										
Confidentia	Confidential			perating :	Schedule	Building	Floor / Location				
				/ Day	Days / Yr						
Operating	Operating At Maximum Capacity					15					

Description

Three boilers firing natural gas to produce steam for process heating and general heating.

Type text here

	Emission Point Identifier(s)

00003 00004

Emission Source / Control Identifier(s)

00BR1 00BR2 00BR3

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Applicable Federal Requirements

Emission Unit U-COMB1 Emission Point		00003	Prod	ess			Emission Source		00BR3					
Title	Ту	ре	Part	Sub Part	Section	Sub Di	vision	Parag	Sub Pa	rag	Clause	Sub C	lause	Item
6	NYC	CRR	227	1	1 2	a b	•	2 4						

ADD:

Emission Unit: U-COMB1 Emission Point: 00004 Process Emission Source: 00BR1, 00BR2 6 NYCRR 227 1 1 a 2

Emission Unit Emissions Summary

Emission Unit	U-COMB1								
CAS No. Contaminant Name									
000630-08-0		CARBON MONOXIDE							
ERP (lb/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)				
367	92	1.899	16640		2905.5				

Emission Unit	U-COMB1							
CAS	No.		Contamin	ant Name				
0NY210	0-00-0		OXIDES OF NITROGEN					
ERP (lb/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)			
4047	712	10.99	96300		17076			

Emission Unit U-COMB1				
CAS No.		Contamin	ant Name	
0NY075-00-0		PARTIC	ULATES	
ERP (lb/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)
125129.6	2.15	18840		13774

Emission Unit	U-COMB1										
CAS	No.		Contaminant Name								
007446	6-09-5		SULFUR DIOXIDE								
ERP (lb/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)						
1803	543	21.7	190000		102						

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

Emission Unit UFURN1

This EU encompasses the walking beam furnace (machine no. 1701) used to preheat copper and copper alloy cake prior to hot rolling. The furnace is fired by natural gas and has a maximum heat input rating of 51.8 mmbtu/hr. The emissions exhaust through ep.00041.

Building

Building	Building Name	Length	Width	Orient.
51	ROLLING MILL			

Emission Point

Emission Unit	UFURN1	Emission Pt.	00041			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	ture (ft) (in) (`F) Length (in)		Width (in)	
453	60	21 20	51	510		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Date of Property Line (ft) Removal	
44	37000	464.726	4783.782	51	9.8	

464.737 4783.786 Emission Source / Control

Emission Unit	UFURN1	Emission So	urce	017	701	
Source Type	Date of Construction	Date of Operation		ate of moval		Manufacturer's Name/Model No.
1	01/01/1967	12/31/1967				SALEM WALKING BEAM FURNACE
Design Capacity	51.8	Units Code	2	5	Desc	million Btu per hour
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Process Information

Emission Unit	UFURN1	Process	G02						
		Total Thrup	hruput			Thruput Quantity Units			
Code (SCC)	Quantity	/ Hr Qu	ıantity / `	Yr	Code	Description			
10200602									
Confidential	Confidential		Operating Sch		edule	Building	Floor / Location		
Operating At Maximum Capacity			/ Day	Day	ys / Yr				
		ty				51			

Description

Natural gas is fired in the furnace, used to reheat metal.

-	Emission Reint Identificate
- 1	Emission Point Identifier(s)
-	\','

00041

Emission Source / Control Identifier(s)

01701

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Emissions Summary

Emission Unit U-FURN1				
CAS No.		Contan	ninant Name	
0NY210-00-0				
ERP (lb/yr)	PTE (lb/hr)		Actual (lb/hr)	Actual (lb/yr)
48000	5.48	48000		16736

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

Emission Unit UGALV1

This emission unit consists of a Zinc-Tin coating line to galvanize Copper, Copper Alloy and Stainless Steel-sheeting. The process consists of five sources for cleaning, surface prepartion, sheet pre-heating and galvanizing. The sources include an acid pickling tank, a pre-flux tank, a dryer(exempt) and a Galvanizing pot that includes a top-flux kettle.

Building

Building	Building Name	Length	Width	Orient.
51	ROLLING MILL			

Emission Point

Emission Unit	UGALV1	Emission Pt.	00600			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	46 45	5 4	24	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
74	14000	464.621 464.624	4 783.933 4783.941	51	⁵⁵⁰ 73.5	

Emission Unit	UGALV1	Emission Pt.	00601			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	26 44	5	22	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
63	10000	464.645 464.631	4783.949 4783.954	51	550 25.4	

Emission Source / Control

Emission Unit	UGALV1	Emission So	urce	0258	37		
Source Type	Date of Construction	Date of Operation		te of noval			Manufacturer's Name/Model No.
I		08/30/2013					2587 Zinc-Tin Coating
Design Capacity		Units Code			Desc		
Control Type	Code		Desc			·	
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UGALV1	Emission So	urce	rce S6001		
Source Type	Date of Construction	Date of Operation	Date of Removal		Manufacturer's Name/Model No.	
K		08/30/2013				Fabric Filter-baghouse
Design Capacity		Units Code			Desc	
Control Type	Code	016	Desc			FABRIC FILTER
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

02587

S6000

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Process Information

		FIOCE	322 IIII	ormation	
	GALV1 Prod	ess GAL			
Source Classification		hruput		Th	ruput Quantity Units
Code (SCC)	Quantity / Hr	Quantity / Yr	Code		Description
30400805					
Confidential		Operating Sch	nedule	Building	Floor / Location
Operating At Maximum Capacity			ays / Yr		
Operating At Maxim	ішіі Сарасіту			51	Main Floor
			Descrip	otion	
	source 02587. Em se emission source	issions from galva S6001.	nizing ket	tle will be ducted to en	anizing kettle containing molten Tin(50%) and nission point 00601. Particulate emission are n metal
		Emi	ssion Poi	int Identifier(s)	
00601					
<u> </u>		Emission	Source /	Control Identifier(s)	
02587 S6001					
02307 30001					
Emission Unit U	GALV1 Prod	cess PIC			
Source Classification	Total T	hruput		Th	ruput Quantity Units
Code (SCC)	Quantity / Hr	Quantity / Yr	Code		Description
3999999					
Confidential		Operating Sch	nedule ays / Yr	Building	Floor / Location
Operating At Maxim	num Capacity	Till 37 Day	ay3711	51	Main Floor
			Descrip	otion	Zinc-Ammonia-Bai
	ource 02587. Èmis	← pickling /cleanin	g tank at	180 degree F, and follo	owed by a preflux solution tank (Zine Ammonia e ducted to and controlled by a wet scrubber
		Emi	ssion Poi	int Identifier(s)	
00600					
		Emission	Source /	Control Identifier(s)	

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

EU U-GRANC and its emission

Section IV - Emission Unit Information

sources have been removed from the facility as of 2021

Emission Unit Description

Emission Unit UGRANC

Building

Building	Building Name	Length	Width	Orient.
4	BAR MILL			

Emission Point

Emission Unit	UGRANC	Emission Pt.	00180			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	45	10	36			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
		464.344	4783.98	4	450	

Emission Source / Control

Emission Unit	UGRANC	Emission So	urce	GRANC	
Source Type	Date of Construction	Date of Operation	Date of Remova		Manufacturer's Name/Model No.
С	06/01/1983	202	21 ===		Granco furnace
Design Capacity	16	Units Code	25	Desc	million Btu per hour
Control Type	Code		Desc		
Waste Feed	Code		Desc		
Waste Type	Code		Desc		

Process Information

Emission Unit	UC	SRANC	Process	GAS	S						
	Source Classification Tota			ut			Thruput Quantity Units				
Code (SCC)		Quantity	/Hr Q	uantity /	Yr	Code Description					
39999999											
Confidential	Confidential		0	Operating Sched		edule	Building	Floor / Location			
			1111	Hrs / Day Days / Yr							
Operating At Maximum Capacity		t y				4	main				

Description

The Grance furnace heats billets to approximately 1750 deg. F for a metal extrusion process. The furnace fires natural gas exclusively.

				'					
Emission Point Identificate									
Emission Point Identifier(s)									

00180

Emission Source / Control Identifier(s)

GRANC

This emission unit consists of a 16 MMBtu/hr natural gas-fired furnace, for heating billets before metal extrusion process. The furnace was installed in 1983, therefore, it was previously exempt from permitting under 6 NYCRR 201-3.2(c)(2).

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Emissions Summary

Emission Unit	U-GRANC								
CAS	No.	Contaminant Name							
000630	0-88-0	CARBON MONOXIDE							
ERP (lb/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)				
11774		1.344	11774		3460				

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

Emission Unit UOVER1

This EU encompasses the overhauler (machine no. 1715) used to shave the outside surface of copper alloy materials with cutter blades. This process produces chips and shavings, which are collected inside the exhaust system and sent back to the cast shop for remelting. The emissions exhaust through ep 00031. The particulate emissions are controlled by a wet scrubber/reteclone.

Building

EP EP

rotocone

Building	Building Name	Length	Width	Orient.
51	ROLLING MILL			

Emission Point

Emission Unit	UOVER1	Emission Pt.	00031				
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)	
453	⁴⁴ 35	⁶ 5	48	70			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
40	30000	464. 77 464.	775 ^{4783.876} 478	33.875 ⁵¹	80.4		

51 38827

Emission Source / Control

Emission Unit	UOVER1	Emission So	urce 0	0C31	
Source Type	Date of Construction	Date of Operation	Date of Removal		Manufacturer's Name/Model No.
K	01/01/1968	12/31/1968			STEINHORST SCRUBBER
Design Capacity	30000	Units Code	39	Desc	cubic feet per minute
Control Type	Code	001	Desc		WET SCRUBBER
Waste Feed	Code		Desc	·	
Waste Type	Code		Desc		

Emission Unit	UOVER1	Emission So	urce	017	'15	
Source Type	Date of Construction	Date of Operation		e of noval		Manufacturer's Name/Model No.
Ţ	01/01/1968	12/31/1968				1715 OVERHAULER
Design Capacity		Units Code			Desc	С
Control Type	Code		Desc			•
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Process Information

Emission Unit U	OVER1 Proc	ess OVR	2						
Source Classification	Total T	hruput		Thruput Quantity Units					
Code (SCC)	Quantity / Hr	Quantity / Yr		Code		Description			
3999999									
Confidential		Operating	Sched	lule	Building	Floor / Location			
	Operating At Maximum Capacity			/Yr					
Operating At Maxim					51				

Description

The emissions from the cutting and shaving of the overhauler process are ducted to and controlled by the wet scrubber/rotoclone.

	Emission Point Identifier(s)									
00031										
	Emission Source / Control Identifier(s)									
00C31	01715									

Emission Unit Applicable Federal Requirements

Emission	Unit U-O	VER1	Emissio	n Point		Proc	ess	OVR	Em	ission So	urce	(00C31
Title	Туре	Part	Sub Part	Section	Sub Div	vision	Parag	Sub Pa	ırag	Clause	Sub C	lause	Item
6	NYCRR	201	7										

Emission Unit Emissions Summary

Emission Unit	U-OVER1									
CAS	No.		Contaminant Name							
0NY07	5-00-0	PARTICULATES								
ERP (ERP (lb/yr)		PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)					
4205		0.48	4205		1716					

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

EU U-PTNRM and its emission sources have been shut down since 2011. The equipment remains on site but is not usable.

Section IV - Emission Unit Information

Emission Unit Description

Emission Unit UPTNRM

The EU encompasses the emissions from the sanding and coating processes in the patina room.

Building

Building	Building-Name	Length	Width	Orient.
4	BAR MILL			

Emission Point

Emission Unit	UPTNRM	Emission Pt.	00500			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Exit Temp Cross Sec	
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
455	10	-20		68	68 21	
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
		464.485	4784.014	4		

Emission Source / Control

Emission Unit	UPTNRM	Emission So	urce Bl		BH500		
Source Type	Date of Construction	Date of Operation		Date of Removal			Manufacturer's Name/Model No.
K			20	2011		DUST COLLECTOR	
Design Capacity		Units Code			Desc		
Control Type	Code	016	Desc				FABRIC FILTER
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UPTNRM	Emission So	urce	PTN	IR1		
Source Type	Date of Construction	Date of Operation	Date of Removal		Manufacturer's Name/Model No.		Manufacturer's Name/Model No.
I	-		2011			SANDER	
Design Capacity		Units Code			Desc		
Control Type	Code		Desc				·
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UPTNRM	Emission So	urce	PTN	IR2	
Source Type	Date of Construction	Date of Operation	Date of Removal			Manufacturer's Name/Model No.
I			20	2011		SURFACE COATER
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit	PTNRM Proc	cess P01	1					
Source Classification	Total T	[hruput			Thrupt	ıt Quantity Units		
Code (SCC)	Quantity / Hr	Quantity /	Yr Co	ode		Description		
30400224								
Confidential		Operating Schedule			Building	Floor / Location		
Operating At Maxir	num Canacity	Hrs / Day	Days /	Yr				
	nam oapaony				4			
his process encompa ollector and then to El		from the sand		s cripti pper/co		sions are exhausted through a dust		
			Emissio	n Point	Identifier(s)			
00500								
		Emis	sion Sou	rce / Co	ontrol Identifier(s)			
BH500 PTNR:	L							
	PTNRM Proc	cess P02	2					
mission Unit	Total T	Thruput			Thrupi	t Quantity Units		
				ode	Description			
	Quantity / Hr	Quantity /	11 00			2000p		
ource Classification	Quantity / Hr							
ource Classification Code (SCC)	Quantity / Hr	Operating	g Schedu	le	Building	Floor / Location		
ource Classification Code (SCC) 30400224 Confidential				le				
ource Classification Code (SCC) 30400224		Operating	g Schedu	le	Building 1			
ource Classification Code (SCC) 30400224 Confidential		Operating	g Schedu Days /	le	1			

	Emission-Point Identifier(s)
	Emission Source / Control Identifier(s)
DTNDO	

PTNR2

Emission Unit Emissions Summary

Emission Unit	U PTNRM							
CAS	No.	Contaminant Name						
0NY075-00-0		PARTICULATES PARTICULATES						
ERP (l b/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)			
2.	6	3.0E-6	0.026		0.013			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Unit Description

please remove space (should be 00029)

Emission Unit UROLL1

This EU encompasses five rolling mills (machine nos. 1176, 1706, 1721, 1723, and 1724), which use lubricating/metalworking fluid in the rolling of copper and copper alloy sheets. Machine nos. 1176, 1706, 1721, 1723, and 1724 exhaust through eps 00036, 00 029, 00026, and 00025 respectively. Each mill emits a small amoaunt of lubricating/metalworking fluid. The emissions from eps 00029, 00030, and 00036 are controlled by two mist eliminators and a baffle chamber respectively.

Building

Building	Building Name	Length	Width	Orient.
51	ROLLING MILL			

Emission Point

Emission Unit	UROLL1	Emission Pt.	00025			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	44	¹⁴ 4	42	150		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
53	30600	464.687 464.655	4 783.893 4 783.842	51	226	

Emission Unit	UROLL1	Emission Pt.	00026			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross Section	
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	30 57	5 6	36	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
56 ⁵³	22500 23554	464,666 464,707	4783,913 4783,903	51	102	

Emission Unit	UROLL1	Emission Pt.	00029			
Ground Elev Height		Height Above Inside Diameter		Exit Temp	Cross Section	
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	60	30 22	72	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
36 ³¹ 7.7	6133 ¹³⁰⁰⁰	464.655 464.761	4783.869 4783.889	51	76.8	

Emission Unit	UROLL1	Emission Pt.	00030			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	80	30 29	30	115		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
68	20000	464.636 464.770	4783.878 4783.822	51	4.5	

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Point

Emission Unit	UROLL1	Emission Pt.	00036			
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(`F)	Length (in)	Width (in)
453	45	6 5	18	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
6	620	464.617 464.634	4783.894 4783.899	51	161	

Emission Source / Control

Emission Unit	UROLL1	Emission So	urce	000	00C29		
Source Type	Date of Construction	Date of Operation		te of noval	-		Manufacturer's Name/Model No.
K	01/01/1967	12/31/1967					STEINHORST MIST ELIMINATOR
Design Capacity		Units Code			Desc		
Control Type	Code	014	Desc				MIST ELIMINATOR
Waste Feed	Code		Desc				
Waste Type	Code		Desc				

Emission Unit	UROLL1	Emission So	urce	000	30	
Source Type	Date of Construction	Date of Operation		te of noval		Manufacturer's Name/Model No.
K	01/01/1967	12/31/1967				STEINHORST MIST ELIMINATOR
Design Capacity		Units Code			Desc	
Control Type	Code	014	Desc			 MIST ELIMINATOR
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Emission Unit	UROLL1	Emission So	urce	00C	36	
Source Type	Date of Construction	Date of Operation	Date Rem			Manufacturer's Name/Model No.
К	01/01/1953	12/31/1953				REVERE COPPER PRODUCTS, INC.
Design Capacity		Units Code			Desc	
Control Type	Code	078	Desc			BAFFLE
Waste Feed	Code	·	Desc	1		
Waste Type	Code	·	Desc	1		

Emission Unit	UROLL1	Emission So	urce	0117	76	
Source Type	Date of Construction	Date of Operation	Date Remo	-		Manufacturer's Name/Model No.
I	01/01/1953	12/31/1953				1176 BLISS MILL
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Emission Source / Control

Emission Unit	UROLL1	Emission So	urce	01706	6	
Source Type	Date of Construction	Date of Operation		te of noval		Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				1706 HOT MILL
Design Capacity		Units Code			Desc	С
Control Type	Code		Desc			 -
Waste Feed	Code		Desc			
Waste Type	Code		Desc	İ		

Emission Unit	UROLL1	Emission So	urce	01721				
Source Type	Date of Construction	Date of Operation	Date Remo		Manufacturer's Name/Model No.			
1	01/01/1968	12/31/1968					1721 FIRST RUN DOWN MILL	
Design Capacity		Units Code		De	sc			
Control Type	Code		Desc					
Waste Feed	Code		Desc					
Waste Type	Code		Desc					

Emission Unit	UROLL1	Emission So	urce	017	23		
Source Type	Date of Construction	Date of Operation		te of noval		Manufacturer's Name/Model No.	
I	01/01/1967	12/31/1967					1723 REVERSING MILL
Design Capacity		Units Code			Desc		
Control Type	Code		Desc				
Waste Feed	Code		Desc				·
Waste Type	Code		Desc				

Emission Unit	UROLL1	Emission So	urce	017	24	
Source Type	Date of Construction	Date of Operation	Date Rem			Manufacturer's Name/Model No.
I	01/01/1967	12/31/1967				1724 SENDZIMER (Z) MILL
Design Capacity		Units Code			Desc	
Control Type	Code		Desc			
Waste Feed	Code		Desc			
Waste Type	Code		Desc			

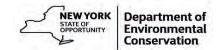
Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Section IV - Emission Unit Information

Process Information

Emission Unit U	ROLL1 Proc	ess ROL								
Source Classification	Total T	hruput		Thruput Quantity Units						
Code (SCC)	Code (SCC) Quantity / Hr					Description				
30499999										
Confidential		Operating	Sched	lule	Building	Floor / Location				
				/Yr						
Operating At Maxim	num Capacity				51					

Description


The rolling process in each mill emits a small amount of lubricating/metalworking fluid.

	Emission Point Identifier(s)												
00030	00030 00025 00036 00026 00029												
	Emission Source / Control Identifier(s)												
00C29	00C29 00C30 00C36 01176 01706 01721 01723 01724												

Emission Unit Emissions Summary

Emission Unit U-ROLL1												
CAS No. Contaminant Name												
0NY075-00-0	0NY075-00-0 PARTICULATES											
ERP (lb/yr)	PTE (lb/hr)	PTE (lb/yr)	Actual (lb/hr)	Actual (lb/yr)								
47173		47173										

1	See separate form	n for U-SULV1	

	DEC ID													
6	-	3	0	1	3	-	0	0	0	9	1			

Section IV - Emission Unit Information

						Emis	sion Uni	t Des	cription				ontinu	uation Sheet(s)	
Emission Uni	t U	-	s o	L V 1											
This EU encom	passe	es or	ne nor	n-exempt so	lvent d	degrease	r located	in the	Rolling N	/lill G	rinding Room. T	he degre	easer e	exhausts	
fugitively to th	e roo	m aı	nd use	es a Subpart	226-1	complia	nt solven	it.							
	Building Information ☐ Continuation Sheet(s)														
Building ID															
51	-	Rolling Mill													
	Emission Point Information ☐ Continuation Sheet(s)														
Emission Poir	nt														
Ground	Ц	Height (ft) Height Above Inside Diameter Exit Temp. (°F) Cross Section													
Elevation (ft)) '''	Height (It) Structure (ft) (in) Exit Temp. (F) Length (in) V											W	idth (in)	
Exit Velocity	I NY IN (F) (KM) I NY IM (N) (KM) I BUILDING I I Date of Removal												of Removal		
(FPS)		(ACFM) (ATTIVITED (ACFM) (ACFM											or Kemovar		
Emission Poir	nt														
Ground	ш	oigh	t (ft)	Height Ab	ove	Inside D	iameter	Fvi+	Tomp (0F	,	(Cross Sec	tion		
Elevation (ft)) '''	eigii	(11)	Structure	(ft)	(iı	n)	Exit Temp. (°F)			Length (in)		W	idth (in)	
Exit Velocity	E	xit F	low	NYTM (E) (KI/I)	NVTN/ (N) (KM)	Р	Building	D	istance to Prop	erty	Date of Removal		
(FPS)		(ACF	M)	14111VI (L) (KIVI)	1411111	iv) (Kivi)		, anamg		Line (ft)	Line (ft)			
					Emi	ission S	ource/C	ontro	l Inform	ation	1		ontinu	uation Sheet(s)	
Emission So				Date of	Dat	te of	Date				ol Type			cturer's	
ID	Тур	е	Con	struction	Ope	ration	Remo	val	Code		Description	Nam	e/Mod	del Number	
0 2 6 0 0				1993								So	lvent [Degreaser	
Design				Design Ca	· · · · ·						e Feed			е Туре	
Capacity	Cod	le			Descri	ption			Code		Description	Code	D	escription	
550	004	15			gallo										
Emission So				Date of		te of	Date				ol Type			cturer's	
ID	Тур	e	Con	struction	Ope	ration	Remo	val	Code		Description	Nam	e/Mod	del Number	
Design				Design Ca							e Feed			е Туре	
Capacity	Cod	le			Descri	ption			Code		Description	Code	D	escription	

6 - 3 0 1 3 -		9 1											
				Pro	cess Info	rmatio	n			□ C	ontinuation	She	eet(s)
Emission Unit U	- S O L	V 1								F	Process	s	O L
	1 1 1 1			Pro	cess Desc	cription	า						
Solvent emissions fr	om the 550	-gallon	degreaser.										
Source Classificat	ion Code		Total Th	roughpu	ut			Throug	shput Quar	ntity U	nits		
(SCC)		Qu	antity/Hr	Qua	ntity/Yr	Cod	le		Des	criptio	n		
24150000	0												
☐ Confidential					ng Schedul		4	Building		Floo	or/Location		
☐ Operating at Max	imum Capa	city	Hour	rs/Day	Days	/Year							
				Fmissia	on Point I	dentifi	erls	51					
				Lillissic	on i onic i		CI	·,					
			Emis	sion So	urce/Con	trol Ide	enti	ifier(s)					
02600													
Emission Unit	-									F	Process		
				Pro	cess Desc	cription	า						
Source Classificat	ion Code		Total Th	roughpu	ut			Throug	shput Quar	ntity U	nits		
(SCC)		Qu	antity/Hr		ntity/Yr	Cod	e		-	criptio			
☐ Confidential		-			ng Schedul			Building		Floo	or/Location		
☐ Operating at Max	imum Capa	acity	Hour	rs/Day	Days	/Year	+				,		
-		•		Emissis	on Point I	dontifi	orle	-1					
				LIIISSIC	יוונים דיוונים		er (S						
			Emis	sion So	urce/Con	trol Ide	enti	ifier(s)					
						\dashv							

				[DEC	C 10)				
6	-	3	0	1	3	-	0	0	0	9	1

Emission II	lni+	Emission	Drassa	Emission	ı Eı	missio	n Unit	: Applicat	ole F	ederal F	Requirer	nents	Continuation Sheet(s					
Emission U	nit	Point	Proces	Source	Title	Туре	Part	Subpar	t !	Section	Subdiv.	Parag.	Sı	ubparag.	Cl.	Subcl.		
U-SOLV1	L		SOL	02600	6	NYCRR	226	1		3								
U-SOLV1	L		SOL	02600	6	NYCRR	226	1		4	а							
U-SOLV1	L		SOL	02600	6	NYCRR	226	1		5	а		Τ					
		Emission		Emission		Emi	ission	Unit Stat	e Oı	nly Requ	uiremen	ts		☐ Continu	ation	Sheet(s)		
Emission U	nit	Point	Proces	Source	Title			Subpar	T	Section		Parag.	1	ubparag.	Cl.	Subcl.		
	_								Т				Т					
				+					\dashv				+					
	+		1		+				+				╁					
	+		-		-	_			+				┾					
				Er	mission			oliance C	erti	ificatio	n			☐ Continu	ation	Sheet(s)		
Title	Туре	e Pa	rt	Subpart	Sec	tion		itation division	Pá	aragrapł	n Sub	paragra	nh	Clause	Sub	clause		
1100	.,,,,			- Сигран			00.0			a. a0. ap.		Pa. 99. 9	.	0.0.00				
☐ Applicab	ole Fe	deral Red	<u> </u>	t	□ Sta	te Onl	y Reqi	uirement						Capping				
Emission	Unit	Emis		Process	Emiss		C	AS Numb	er			Contan	minant Name					
	•	Po	nt	1100000	Sour	ce	0.		<u>. </u>				taminant Name					
						1:+		lus fa was a	! :									
☐ Continue	ous F	mission N	/onitorii	ıσ				Informa a Process			Device P	aramete	rs a	s a Surrog	ate			
☐ Intermit				'b			_	Involving				aramete	15 u.	3 4 341102	acc			
☐ Ambient	t Air N	Monitorir	ıg					g/Mainte			edures							
					Com	pliand	e Act	ivity Des	crip	otion								
Work Pra	ctico			Droce	ess Mat	orial												
Type		Cod	<u> </u>	PIOCE		criptio	n			\dashv	F	Referenc	e Te	est Metho	d			
71																		
				Parameter										/a a l l				
Code				De	escriptic	n					Manufa	cturer's	Nam	ne/Model	Num	ber		
		Limit								Limit								
Upp	er		Lowe		Code						Descri	otion						
							•											
Code	Ave	eraging M	ethod scription		Code		nitorir	ng Freque Descrip			C	Repo	rtin	g Require Descr				
Code		De	Scription		Code			Descrip	reiOII			Jue		Desci	ιρασπ			
																_		

DEC ID6 _ 3 0 1 3 _ 0 0 0 9 1

Section III - Facility Information

 ✓ State Only Requirement ✓ Capping ✓ Cadmium Compounds ✓ Monitoring Information ☐ Continuous Emission Monitoring ☐ Monitoring of Process or Control Device Parameters as a Surrogate
6 NYCRR 212 2 1 a CAS No. Contaminant Name State Only Requirement Cadmium Compounds Monitoring Information □ Continuous Emission Monitoring □ Monitoring of Process or Control Device Parameters as a Surrogate
□ Applicable Federal Requirement □ State Only Requirement □ State Only Requirement □ Capping □ Cab No. □ Cadmium Compounds ■ Cadmium Compounds ■ Continuous Emission Monitoring □ Monitoring of Process or Control Device Parameters as a Surrogate
 ✓ State Only Requirement ✓ Capping ✓ Cadmium Compounds ✓ Monitoring Information ☐ Continuous Emission Monitoring ☐ Monitoring of Process or Control Device Parameters as a Surrogate
Monitoring Information ☐ Continuous Emission Monitoring ☐ Monitoring of Process or Control Device Parameters as a Surrogate
☐ Continuous Emission Monitoring ☐ Monitoring of Process or Control Device Parameters as a Surrogate
☐ Intermittent Emission Testing ☐ Work Practice Involving Specific Operations
☐ Ambient Air Monitoring
Description
Cadmium compounds are classified as a High Toxicity Air Contaminant (HTAC). The facility owner or operator
shall either limit the actual annual cadmium compound emissions from all process operations at the facility
so as to not exceed the MEL listed for the individual HTAC of 1 pound/year; or demonstrate compliance with
·
the air cleaning requirements for the HTAC as specified in subdivision 212-2.3(b), table 4 – degree of air
cleaning required for non-criteria air contaminants for the environmental rating assigned to the contaminant
by the department.
The facility maintains operating hours of the casting furnaces (emission unit U-CAST1) to demonstrate actual
annual cadmium compound emissions are less than 1 pound/year.
Work Practice Process Material
Reference Lest Method
Type Code Description
Doramator
Parameter Manufacturer Name/Model No. Description
Code Description
Limit Limit Units
Upper Lower Code Description
Opper Lower Code Description
Averaging Method Monitoring Frequency Reporting Requirements
Code Description Code Description Code Description
17 Annual Max. Rolled Monthly 05 Monthly 15 Annually (Calendar)

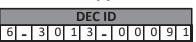
Continuation Sheet _1___ of _11___

DEC ID6 _ 3 0 1 3 _ 0 0 0 9 1

Section III - Facility Information

			Facility	/ Com		ertification	(conti	nuation	າ)		
						Citation					
Title	Type	Part	Subpa	art	Section	Subdivision	Para	agraph	Subparagraph	Clause	Subclause
6	NYCRR	212	2		1	а					
		equirement		apping	C.A	AS No.			Contaminant Nar		
■ State On	y Requirem	ent						Cł	romium Compo	unds	
						ng Informat					
		Monitoring				_			ce Parameters as a	a Surroga	te
☐ Intermitt		_				actice Involvii					
☐ Ambient	Air Monitoi	ring				Keeping/Main	tenance	Procedu	ıres		
01 .						scription		. /	o) =1		
	-				_	•		•	C). The facility o		
operators	shall eithe	r limit the	actual a	nnua	l chromiu	ım compou	nd emi	ssions f	rom all process	operat	ions at
the facility	so as to	not exceed	the Mi	EL liste	ed for the	individual	HTAC o	of 250 p	ounds/year; or	demor	strate
									bdivision 212-2		
•			•				•				
				II-CIIU	eria air cc	Jiitaiiiiiaiit	S IOI LI	ie envii	onmental ratin	g assign	ed to the
	-	departme									
The facilit	y maintaiı	ns operatir	ng hours	of th	e casting	furnaces (e	missio	n unit l	J-CAST1) to der	nonstra	te actual
annual ch	romium c	ompound o	emissio	ns are	less than	n 250 pound	ds/year	•			
		•				•	.,				
Work Prac			Pro		/laterial				Reference Test	t Method	
Туре	Со	ode		[Description						
			Dawawaat								
Cada			Paramet					N	//anufacturer Nam	ne/Model	No.
Code			De	scriptic	on						
		Limit							Limit Units		
	Upper	LIIIII		Lowe	r	Code	_		Description		
	oppei			LOWE		Code			Description		
	Averaging	Method			Monitor	ring Frequenc	·V		Reporting Rec	nuiremen	ts
Code		Description		Cod		Description		Co		escriptio	
17		ax. Rolled N	/onthly	05		Monthly				ally (Cale	
- <i>'</i>									inuation Sheet		11

Version 1.2 - 11/20/2020



Section III - Facility Information

			Facility	/ Comp		Certification	(continu	ation			
					Rule	e Citation					
Title	Type	Part	Subpa	art	Section	Subdivision	Paragr	aph	Subparagraph	Clause	Subclause
6	NYCRR	212	2		1	a					
☐ Applicab		-	nt \square c	Capping	CA	AS No.			Contaminant Nar		
■ State On	ly Requiren	nent						M	lercury Compou	ınds	
						ng Informat					
Continuo			ng			_			e Parameters as a	Surroga	te
☐ Intermitt		_				actice Involvir		•			
☐ Ambient	Air Monito	ring		<u> </u>		Keeping/Main	tenance Pr	ocedur	res		
						scription					
Mercury of	compound	ds are cla	ssified as	a High	Toxicity	Air Contan	ninant (H	TAC).	The facility ow	ner or o	perator
shall eithe	er limit th	e actual a	innual me	ercury	compou	nd emissior	s from al	l proc	ess operations	at the	facility so
									emonstrate co		
						•			(b), table 4 – d	•	
	_	-			-					_	
			iteria air	contan	ninants f	or the envii	ronmenta	al ratır	ng assigned to	the con	tamınant
by the de	partment										
The facilit	y maintai	ns operat	ting hours	of the	casting	furnaces (e	mission u	unit U	-CAST1) to der	nonstra	te actual
annual m	ercury co	mpound (-missions	are le	ss than ^c	pounds/ye	ar.				
	J. Co., 7 Co.					, , , ,					
Work Prac	ctice		Pro	ocess M	aterial				Reference Test	· Mothod	
Туре	Co	ode		D	escription				Reference resi	. ivietilou	
			Paramet					M	anufacturer Nam	e/Model	No
Code			De	scriptio	n			101	andiacturer Nam	ic/iviouci	NO.
		Lim	it						Limit Units		
	Upper			Lower		Code			Description		
	Averaging					ring Frequenc			Reporting Rec		
Code		Description		Cod		Description		Coc		escriptio	
17	Annual N	lax. Rollec	Monthly	05		Monthly	/	15	S Annua	ally (Cale	endar)

Continuation Sheet _3___ of _11___

Section III - Facility Information

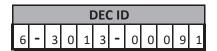
			Facility	<u>/ Compli</u>		<u>ertification</u>	(continu	ation			
					Rule	Citation					
Title	Type	Part	Subpa	art Se	ection	Subdivision	Paragr	aph	Subparagraph	Clause	Subclause
6	NYCRR	212	2		1	a					
☐ Applicab	le Federal F	Requiremer	nt 🗆 c	Capping	CA	AS No.			Contaminant Nai		
■ State On	ly Requiren	nent							Lead Compoun	ds	
						ng Informat					
☐ Continuo	us Emissio	n Monitorii	ng						Parameters as a	a Surroga	te
□ Intermitt	ent Emissio	on Testing				actice Involvir					
☐ Ambient	Air Monito	ring		× F		(eeping/Main	tenance Pr	ocedur	es		
						scription					
Lead com	pounds a	re classifi	ed as a H	igh Toxic	ity Air	Contamina	nt (HTAC). The	facility owner	or oper	ator shall
either lim	it the acti	ual annua	ıl lead cor	npound	emissi	ons from al	process	opera	tions at the fa	cility so	as to not
				•			•	•	te compliance	•	
									•		
_	-			-					e 4 – degree d		
required 1	for non-cr	iteria air	contamin	ants for	the en	vironmenta	al rating a	essigne	ed to the conta	aminant	: by the
departme	nt.										
The facilit	v maintai	ns operat	ting hours	of the c	asting	furnaces (e	mission (unit U-	-CAST1) to der	monstra	te actual
	-	-	_		_	unds/year.			,		
aiiiidai ici	ad compo	una cims	310113 61 6	icss triai	13 pot	arius, year.					
Work Prac	ctice		Pro	ocess Mat	erial				Defendance Tool	h	
Туре	Co	ode		Des	cription				Reference Test	t ivietnou	
			Paramet	er				N/I	anufacturer Nam	no/Model	No
Code			De	scription				IVI	anulacturer Nam	ie/iviouei	NO.
		Lim	it					L	Limit Units		
	Upper			Lower		Code			Description		
	Averaging				Monito	ring Frequenc			Reporting Rec		
Code		Description		Code		Description		Cod		escriptio	
17	Annual N	lax. Rollec	I Monthly	05		Monthly	1	15	5 Annu	ally (Cale	endar)

Continuation Sheet _4__ of _11___

Section III - Facility Information

			Facility	/ Complia	ance C	ertification	(continu	iation)					
						Citation							
Title	Туре	Part	Subpa	art Se	ection	Subdivision	Paragr	aph	Subparagraph	Clause	Subclause		
6	NYCRR	212	2		1	а							
☐ Applicab		-	^{ent} □ c	apping	C/	AS No.			Contaminant Nar				
■ State On	ly Require	ment							Nickel Compour	ıds			
						ng Informati							
Continuo			•			_			Parameters as a	Surroga	te		
☐ Intermitt		_				actice Involvin		•					
☐ Ambient	Air Monite	oring		ı⊠ K		Keeping/Maint	enance Pr	oceaur	es				
l l !	1		- · · · ·			scription	C .1			1 11 **	1 1 1		
		_	•			•	-		r or operator				
the actua	l annual i	nickel cor	mpound er	nissions	from a	all process o	peration	s at th	e facility so as	to not	exceed		
the MEL I	isted for	the indiv	idual HTAC	of 10 pc	ounds/	year; or der	monstrat	e com	pliance with t	he air c	leaning		
						•			ree of air clea		_		
•			•					_	taminant by th	_			
									•	•			
	-	-	_		_			unit U-	-CAST1) to der	nonstra	te actual		
annual ni	ckel com	pound er	missions ar	e less tha	an 10 _l	pounds/yea	r.						
Work Prac			Pro	ocess Mate					Reference Test	Method			
Туре	C	Code		Desc	cription								
0 1			Paramet					M	anufacturer Nam	ie/Model	No.		
Code			De	scription									
		1:-	:4						lineit I Inite				
	Unnor	LII	mit I	Lower		Code	1	Limit Units					
	Upper			Lower		Code			Description				
	Averagin	g Method			Monitor	ring Frequency	,		Reporting Rec	nuiremen	ts		
Code	Averagin	Descriptio	n	Code	VIOIIILOI	Description		Cod		escriptio			
17	Annual N		d Monthly	05		Monthly		15		ally (Cale			
±/	, till luur I	ax. None	. G. IVIOIILIIIY	33		14101111111		1.5	, , , , , , , , , , , , , , , , , , ,	,,, Cuic	,,,,,,,,		

Continuation Sheet _5___ of _11___



				[DEC	2 10)				
6	-	3	0	1	3	-	0	0	0	9	1

Section IV - Emission Unit Information

		E	mission	Unit Co	ompliand	e Certification	on	(continua	tion)			
					Rule	Citation						
Title	Туре	Part	Subpa	art	Section	Subdivision	Р	aragraph	Subparagra	ph	Clause	Subclause
6	NYCRR	212	2		3	a						
■ Applicable	e Federal R	equiremer	nt	☐ St	tate Only F	Requirement						☐ Capping
Emission Un	it Emissic	n Point	Process	Emissi	on Source	CAS No.			Contamin	ant I	Name	
U-CAST1	000	040				NY075-00-5			PM	-10		
				Λ	Monitori r	ng Informatio	on					
☐ Continuo	us Emission	Monitorii	ng	2	☑ Monitori	ing of Process o	or C	ontrol Devi	ce Parameter	as a	a Surroga	te
☐ Intermitte	ent Emissio	n Testing			☐ Work Pra	actice Involving	Spe	ecific Opera	ations			
☐ Ambient	Air Monito	ring			☐ Record K	eeping/Mainte	enar	nce Procedu	ıres			
					Des	cription						
(ERP) of greefficiency of Criteria While oper during the recorded of PM-10. Uused (i.e., 2) Any noncorto the NYSI	eater than if at least 9 Air Contain ating this most rece nce per op Juntil such to 6 inche mpliance v DEC, Regio	or equal 91% is ach minants. process the nt Depart perating ditime that es of water with the peration of the	ne source of ment-appliay to dem a new per er).	owner and lesspecified by the constrate of the constrate	ess than 1 ed in Subo shall oper performar te proper nce test is ge in this occurrence	mental Rating 00 lb/hr. As so division 212-2. Tate the baghonce test. Press operation of conducted, the condition must ce. If graphite) has	ous sure the he p	e within the drop read cyclone al pressure li	ty must dem — Degree of ne pressure of dings will be nd baghouse mit in the cu d by sending	onst rop mor and rren	rate a co Cleaning range d nitored a d effectiv at permit	etermined and ve control will be
						le 4. Complia e individual B				effic	iency re	quirement
Work Pra				Process	s Material				Reference	e Te	st Metho	d
Туре	(Code			Descriptio	n						~
			Parame						Manufacture	r Na	me/Mod	el No.
Code			De	scriptio	n							
		mit .			.			Limit Ur				
Upp	er	L	ower	_	de				cription			
				1	.0			Pressu	re Change			
	Averaging					ring Frequency			Reporting			
Code		Description		Cod		Description			ode		escriptio	
				03		Daily			.5 A		ally (Cale	,

Section IV - Emission Unit Information

		Е	mission	Unit Co	mplian	ce Certification	on (con	tinuat	tion)			
					Rule	Citation						
Title	Туре	Part	Subpa	art	Section	Subdivision	Paragr	aph	Subp	aragraph	Clause	Subclause
6	NYCRR	212	2		3	а						
■ Applicab	le Federal F	Requiremen	t	☐ St	ate Only	Requirement						☐ Capping
Emission U	nit Emission	on Point	Process	Emissio	n Source	CAS No.			Cor	ntaminant	Name	
U-CAST1	00	040				NY075-02-5				PM-2.5		
				M	lonitorii	ng Informatio	on					
☐ Continuo	ous Emissio	n Monitorir	ıg	×	Monitor	ing of Process c	r Contro	l Devic	e Para	meters as a	a Surroga	ite
☐ Intermit	tent Emissic	n Testing			Work Pr	actice Involving	Specific	Operat	tions			
☐ Ambient	Air Monito	ring			Record F	Keeping/Mainte	nance Pi	rocedu	res			
					Des	scription						
The conta	minant list	ed above l	nas been g	given an	Environ	mental Rating	(ER) of	B and	has aı	n emissior	n rate po	tential
(ERP) of gr	reater than	or equal t	o 20 lb/h	r and les	ss than 1	.00 lb/hr. As si	uch, the	facility	y mus	t demonst	trate a c	ontrol
efficiency	of at least	91% is ach	ieved, as	specifie	d in Subo	division 212-2.	.3(a), Ta	ble 3 -	- Degr	ee of Air (Cleaning	Required
			•	·								•
While ope	rating this	process th	e source	owner s	hall ope	rate the bagho	ouse wit	hin the	e pres	sure drop	range d	etermined
	_					_						
_		•		•				•	_			
		•	•			•	•		_			
				irrorinar	ice test i	3 conducted, t	ine pres	Jui C III	11110 111	the curre	пс реппп	t will be
useu (i.e.,	2 10 0 111011	es or wate	ii).									
Λην ησηςς	mnlianco	with the n	raccura dr	on rang	o in thic	condition mus	st ha rar	aartad	l hy so	nding a co	any of su	ich record
	•						st be rep	Jorteu	by se	numg a cc	ру от за	cirrecord
to the ivis	DEC, Regic	on o, within	11 30 uays	or the c	ccurrent	Le.						
Other B re	tad cancti	tuants lira	n avida s	onnor o	vido an	d graphital ha	vo ostim	atad E	EDDc o	roator tha	n 10 lb/	brand are
									_			
											lency re	quirement
		y tne 90%	control re	·		ne individual E	3-rated (constit	uents			
	6 NYCRR 212 2 3 a Sapplicable Federal Requirement □ State Only Requirement □ Capping											
Тур	e	Lode		L	pescriptio	on						
			D	-+								
									Manuf	acturer Na	me/Mod	el No.
Code			De	scription								
		1					Liı					
Up	per	Lo	ower						-			
				10			P	ressur				
Code		Description			:						•	
				03		Daily		15	5	Annu	ally (Cale	endar)

Continuation Sheet __7__ of _11___

				[DEC	2 10)				
6	-	3	0	1	3	-	0	0	0	9	1

Section IV - Emission Unit Information

					Rule	Citation							
Title	Туре	Part	Subpa	art S	ection	Subdivision	Par	ragraph	Subparagrap	h Clause	Subclause		
6	NYCRR	212	2		3	а							
■ Applicab	ole Federal I	Requireme	ent	☐ Stat	e Only I	Requirement					☐ Capping		
Emission U	Init Emissi	on Point	Process	Emission	Source	CAS No.			Contamina	int Name			
U-CAST1	00	0602				NY075-00-5			PM-	Contaminant Name PM-10 Parameters as a Surrogate ons s as an emission rate potential must demonstrate a control pegree of Air Cleaning Require or swill be monitored and baghouse and effective control of the service			
				Mo	nitorii	ng Informatio	on						
☐ Continue	ous Emissio	n Monitor	ring	×	Monitor	ing of Process o	or Cor	ntrol Devic	ce Parameters	as a Surrog	ate		
☐ Intermit	tent Emissi	on Testing			Nork Pr	actice Involving	g Spec	ific Opera	tions				
☐ Ambient	t Air Monito	ring			Record k	Keeping/Mainte	enanc	e Procedu	ires				
					Des	scription							
(ERP) of good efficiency	reater than of at least	n or equa 91% is ac	I to 20 lb/hi chieved, as	r and less	than 1	.00 lb/hr. As si	uch, t	the facilit	y must demo	nstrate a d	control		
for Criteria Air Contaminants. While operating this process the source owner shall operate the baghouse within the pressure drop range determined during the most recent Department-approved performance test. Pressure drop readings will be monitored and recorded once per operating day to demonstrate proper operation of the cyclone and baghouse and effective control of PM-10. Any noncompliance with the pressure drop range in this condition must be reported by sending a copy of such record to the NYSDEC, Region 6, within 30 days of the occurrence. Other B-rated constituents (copper oxide and graphite) have estimated ERPs greater than 10 lb/hr and are subject to 90% control in accordance with 212-2.3(b) Table 4. Compliance with the 91% control efficiency requirement for PM-											and ve control		
Other B-ra 90% contr	ated consti	tuents (c	opper oxide th 212-2.3(e and gra b) Table 4	phite) հ 4. Comյ	nave estimate	ne 91	.% contro			-		
Work Pr	ractice			Process N	/laterial				Poforono	Tost Moth	od		
Тур	е	Code Description Reference Test Method		Ju									
		Parameter Manufacturer Name/Model No						del No					
Code			De	scription	otion Wandlacturer Name/Woder No.								
		imit						Limit Un					
Up	per		Lower	Code	:				cription				
				10				Pressur	re Change				
	Averaging				Monito	ring Frequency				-			
Code		Descriptio	n	Code		Description			de				
				03		Daily				nually (Cal	•		
								Cont	inuation She	ot 8 of	t 11		

Version 1.2 - 11/20/2020

				[DEC	2 10)				
6	1	3	0	1	3	1	0	0	0	9	1

Section IV - Emission Unit Information

				Emission I	Unit (Compliar	nce Certification	on (continua	tion)			
					-		le Citation	<u> </u>					
Title	Тур	oe	Part	Subpa	art	Section	Subdivision	Pa	aragraph	Subparagrap	h Clause	Subcla	use
6	NYC		212	2		3	а		<u> </u>		$\overline{}$	_	
■ Applica	ble Fede	eral Re	quireme	nt		State Only	Requirement				<u> </u>	☐ Capp	oing
Emission l			n Point	Process		sion Sourc	_			Contamina	nt Name		
U-CAST1		006	02				NY075-02-5	\neg		PM-:	2.5		_
						Monitor	ing Information	on					
☐ Continu	ıous Emi	ission	Monitori	ng			ring of Process o		ntrol Devid	ce Parameters	as a Surro	ate	
□ Intermi	ttent Em	nission	Testing			□ Work P	ractice Involving	g Spe	cific Opera	itions			
☐ Ambien	nt Air Mo	nitori	ng			☐ Record	Keeping/Mainte	enan	ce Procedu	ires			
							escription						
The conta	aminant	t liste	d above	has been s	given a		nmental Rating	(ER	of B and	has an emiss	ion rate r	otential	
				-			100 lb/hr. As s		-				
							division 212-2			•			ed
for Criter				,	-			()	,,	8		6	
		o i i ca i i											
While ope	erating	this p	rocess t	he source	ownei	r shall op	erate the bagho	ouse	within th	e pressure di	op range	determir	ned
	•	•				•	ance test. Press			•			
_			•			•	r operation of		•	_			rol
of PM-2.5		с. орч	crating c	ady to dem	011001	ис р. орс	operation of		cyclone al	14 245110430			0.
0111112.5													
Any nonc	omnliar	nce w	ith the r	ressure dr	on rai	nge in thi	s condition mu	st he	e renorted	hy sending a	conv of	uch reco	ord
-				in 30 days		_		JC 50	стеропес	by seriaing c	СОРУОТ	acii i eee	
to the ivi	JDLC, I	(CBIOI	i o, with	iii 30 days	or the	. occurrer	icc.						
Other R-r	ated co	nstitu	ients (cc	nner ovide	and	granhite)	have estimate	d EB	Ps greate	r than 10 lh/h	r and are	suhiect t	10
							npliance with th		_			-	
							vidual B-rated			in enficiency re	quirentei	it ioi r ivi	_
Z.5 WIII So	atisiy tii	ie 90%	6 COIILIO	requirem	ent 10	r tile illui	viduai b-rateu	COIIS	stituerits.				
Work P	ractice				Proce	ss Materia	ı						
		Co	ode		11000	Descripti			_	Reference	Test Meth	od	
Туј	pe	CC	Jue			Descripti	011						
		_		Parame	ater								
Code					scripti				_	Manufacturer	Name/Mo	del No.	
code				De	scripti	011							
		Lim	nit						Limit Un	itc			
111	pper	LIII		ower		ode				cription			
0	рреі		L	-0 W C I	_	10				re Change			
	Δνατα	aging N	Method				oring Frequency		riessul	Reporting	Requirem	nts	
Code	Avera		escription	1	Со		Description		Co	de	Descript		
code			Cacription		0		Description				nually (Ca		
	1				U	J	Dally			inuation She	• •	-	
									Cont	uation 31186	: ⁹ (' -++	_

Version 1.2 - 11/20/2020

				[DE	C 10)				
6	-	3	0	1	3	-	0	0	0	9	1

Section IV - Emission Unit Information

Emission Unit Emission Point Process Emission Source CAS No. Contaminant Name U-OVER1 00031 07440-50-8 Copper	Title Type Part Subpart Section Subdivision Paragraph Subparagraph Clause Subclause 6 NYCRR 212 2 3 b b					Emission (Unit C	ompliand	e Certification	n	(continua	ition)				
Applicable Federal Requirement Estate Only Requirement Capping	Applicable Federal Requirement □ State Only Requirement □ Capping							Rule	Citation							
□ Applicable Federal Requirement □ State Only Requirement □ Capping Emission Unit □ Emission Point □ Process □ Emission Source □ CAS No. □ Contaminant Name □ OVER1 □ 00031 □ 07440-50-8 □ Copper □ Monitoring □ Monitoring Information □ Continuous Emission Monitoring □ Monitoring □ Process or Control Device Parameters as a Surrogate □ Intermittent Emission Testing □ Work Practice Involving Specific Operations □ Pescription The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (em	□ Applicable Federal Requirement □ Capping Emission Unit Emission Point Process Emission Source CAS No. Contaminant Name U-OVER1 00031 07440-50-8 Copper	Title	Ту	/pe	Part	Subpa	art	Section	Subdivision	Р	aragraph	Subparagrap	Clause	Subclause		
Emission Unit Emission Point Process Emission Source CAS No. Contaminant Name U-OVER1 00031 Process Emission Source 07740-50-8 Copper	Emission Unit Emission Point Process Emission Source CAS No. Contaminant Name U-OVER1 00031 07440-50-8 Copper Continuous Emission Monitoring Monitoring Information Monitoring Monitoring of Process or Control Device Parameters as a Surrogate Intermittent Emission Testing Monitoring Monitoring Specific Operations Record Keeping/Maintenance Procedures Description Monitoring Record Keeping/Maintenance Procedures Description Monitoring Description Monitoring Record Keeping/Maintenance Procedures Description Monitoring Mo	6	NYC	CRR	212	2		3	b							
Monitoring Information Monitoring Monitoring Monitoring Process or Control Device Parameters as a Surrogate Monitoring Monitoring of Process or Control Device Parameters as a Surrogate Monitoring Monitoring Monitoring Process or Control Device Parameters as a Surrogate Monitoring Monitori	Monitoring Information Monitoring Information Monitoring of Process or Control Device Parameters as a Surrogate Monitoring of Process or Control Device Parameters as a Surrogate Intermittent Emission Testing Monitoring of Process or Control Device Parameters as a Surrogate Monitoring Record Keeping/Maintenance Procedures Description	☐ Applicab	le Fed	leral Re	equireme	nt	≭ S	State Only F	Requirement					☐ Capping		
Monitoring Information	Monitoring Information	Emission U	nit E	missio	n Point	Process	Emissi	ion Source	CAS No.			Contamina	nt Name			
□ Continuous Emission Monitoring □ Monitoring of Process or Control Device Parameters as a Surrogate □ Intermittent Emission Testing □ Work Practice Involving Specific Operations □ Ambient Air Monitoring □ Mork Practice □ Involving Specific Operations □ Description The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 − Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Description Limit Limit Units Upper Lower Code Description Limit Limit Units Upper Lower Code Description	□ Continuous Emission Monitoring □ Monitoring of Process or Control Device Parameters as a Surrogate □ Intermittent Emission Testing □ Work Practice Involving Specific Operations □ Pescription The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 − Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 0.1715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Parameter Manufacturer Name/Model No. Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	U-OVER1		000	31				07440-50-8			Copp	er			
□ Intermittent Emission Testing □ Work Practice Involving Specific Operations □ Ambient Air Monitoring □ Record Keeping/Maintenance Procedures Description	□ Intermittent Emission Testing □ Work Practice Involving Specific Operations □ Ambient Air Monitoring □ Record Keeping/Maintenance Procedures □ Description The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 − Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 b/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Parameter Code Description Manufacturer Name/Model No. Limit Units Limit Units Limit Units Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements						ſ	Monitorir	ng Informatio	n						
The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 − Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description	Description The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 − Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	☐ Continuo	ous Em	nission	Monitor	ing	[☐ Monitor	ing of Process o	r C	ontrol Devi	ce Parameters	is a Surroga	ite		
The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Description Parameter Manufacturer Name/Model No. Description Description Averaging Method Monitoring Frequency Reporting Requirements	☐ Intermit	tent Er	missior	n Testing		[☐ Work Pra	actice Involving	Spo	ecific Opera	ations				
The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Description Limit Limit Units Upper Lower Code Description	The contaminant listed above has been given an Environmental Rating (ER) of B. Non-criteria contaminants given an ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Manufacturer Name/Model No. Description Averaging Method Monitoring Frequency Reporting Requirements	☐ Ambient	Air M	lonitori	ing		[⊠ Record K	(eeping/Mainte	nar	nce Procedi	ures				
ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Description Limit Limit Units Upper Lower Code Description Limit Units	ER of B and having an emission rate potential (ERP) of less than 10 pounds per hour must demonstrate that ambient impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Description Reference Test Method Parameter Manufacturer Name/Model No. Limit Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements							Des	cription							
impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Description Limit Limit Units Upper Lower Code Description	impacts of each contaminant at the fence line of the facility are less than the annual (AGC) and short term (SGC) guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	The contai	minan	nt liste	d above	has been g	given a	n Environ	mental Rating	(EF	R) of B. No	n-criteria con	aminants	given an		
guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Parameter Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	guideline concentrations for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Description Reference Test Method Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	ER of B an	d havi	ing an	emissio	n rate pote	ential (ERP) of les	ss than 10 pou	ınd	s per hour	must demon	trate that	ambient		
Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Limit Limit Units Limit Units Upper Lower Code Description Description	Cleaning Required for Non-Criteria Air Contaminants. The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	impacts of	f each	conta	minant	for the air contaminant, as specified in Subdivision 212-2.3(b), Table 4 – Degree of Air										
The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description Description	The facility is limiting annual operating hours of the Overhauler such that modeled impacts of copper are 95% or less of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post-control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 µg/m³, which is 95% of the AGC of 0.48 µg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Parameter Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	guideline (conce	ntratio	ons for t	he air cont	aminaı	nt, as spec	ified in Subdiv	/isi	on 212-2.3	3(b), Table 4 –	Degree of	Air		
of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post- control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post- control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	Cleaning R	Requir	ed for	Non-Cr	iteria Air Co	ontami	inants.								
of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post- control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	of the copper AGC. The annual operating hour limit is to be based on the most recent Department-approved post- control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements					nnual operating hours of the Overhauler such that modeled impacts of copper are 95% or less annual operating hour limit is to be based on the most recent Department-approved post-										
control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description	control hourly emission rate. Based on the May 2023 test results, the post-control hourly emission rate of copper from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	The facility	y is lin	niting	annual d	perating h	ours o	f the Over	hauler such th	nat	modeled	impacts of cop	per are 95	% or less		
from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice	from the Overhauler is 0.37 lb/hr and the resulting predicted annual impact based on 6,132 annual operating hours is 0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	•	•									•				
0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description	0.455 μg/m³, which is 95% of the AGC of 0.48 μg/m³. The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements											•				
The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description	The allowable annual operating hours will be adjusted based on the most recent Department-approved post-control hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements		_						cted annual in	npa	act based o	on 6,132 annu	al operatir	g hours is		
hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description	hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	0.455 μg/r	m³, wł	hich is	95% of	the AGC of	0.48	μg/m³.								
hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description	hourly emission rate. The facility maintains monthly records of operating hours of the Overhauler (emission source 01715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements															
O1715) to demonstrate 12-month operating hours are less than the annual operating hour cap. Work Practice Process Material Reference Test Method Type Code Description Manufacturer Name/Model No. Code Description Limit Limit Units Upper Lower Code Description	Work Practice	The allowa	able a	nnual	operatii	ng hours w	ill be a	djusted ba	ased on the mo	ost	recent De	partment-app	roved pos	t-control		
Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	Work Practice Process Material Reference Test Method Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	•				•		•	•	_			(emission	source		
Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Reference Test Method Manufacturer Name/Model No. Description Description Description	Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	01715) to	demo	onstrat	e 12-m	onth opera	ting ho	ours are le	ss than the an	nnu	ial operati	ng hour cap.				
Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Reference Test Method Manufacturer Name/Model No. Description Description Description	Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements															
Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Reference Test Method Manufacturer Name/Model No. Description Description Description	Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements															
Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	Type Code Description Parameter Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	Work Pr	actice				Proces	s Material								
Parameter Manufacturer Name/Model No. Code Description Imit Units Upper Lower Code Description Description Description	Parameter Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	Тур	e	C	ode			Descriptio	n			Reference	Test Metho	od		
Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description	Code Description Manufacturer Name/Model No. Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements						Безаправа									
Code Description Limit Limit Units Upper Lower Code Description	Code Description Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements					Paramo	eter						,			
Limit Limit Units Upper Lower Code Description	Limit Limit Units Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements	Code						n			Manufacturer Name/Model No.					
Upper Lower Code Description	Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements						•									
Upper Lower Code Description	Upper Lower Code Description Averaging Method Monitoring Frequency Reporting Requirements			Lin	nit						Limit Ur	nits				
	Averaging Method Monitoring Frequency Reporting Requirements	Up	per													
Averaging Method Monitoring Frequency Reporting Requirements																
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			nts													
		Code														
	17 Annual Max. Rolled Monthly 05 Monthly 15 Annually (Calendar)		Annı													

Continuation Sheet _10___ of _11___

				[DEC	C 10)				
6	-	3	0	1	3	-	0	0	0	9	1

Section IV - Emission Unit Information Emission Unit Compliance Certification (continuation)

Rule Citation

Title	Туре	Part	Subpa	art	Section	Subdivision	Paragrapl	1	Subparagraph	Clause	Subclause
6	NYCRR	212	2		3	b					
☐ Applica	able Federal		nt	×	State Only F	Requirement		\perp			☐ Capping
Emission	Unit Emissi	on Point	Process	Emiss	sion Source	CAS No.			Contaminant I	Name	
U-ROLL1	00	0026				04719-04-4	2,2',2	<u>?</u> "-(F	Hexahydro-1,3,	5-triazin	e-1,3,5-
O MOLLI		.020						_	triyl)trietha	ınol	
					Monitorin	ng Informatio	n				
☐ Continu	uous Emissio	n Monitor	ng		☐ Monitori	ng of Process o	r Control De	vice	Parameters as a	a Surroga	te
☐ Intermi	ittent Emissi	on Testing			☐ Work Pra	actice Involving	Specific Op	erati	ions		
☐ Ambier	nt Air Monito	ring			■ Record K	eeping/Mainte	nance Proce	dur	es		
					Des	cription					
The conta	aminant list	ed above	has been g	given	an Environ	mental Rating	(ER) of B.	Non-	-criteria contar	ninants į	given an
ER of B a	nd having a	n emissio	n rate pote	ential	(ERP) of les	s than 10 pou	nds per ho	ur n	nust demonstra	ate that	ambient
impacts o	of each con	taminant	at the fenc	e line	of the faci	lity are less th	an the ann	ual ((AGC) and shor	t term (S	SGC)
guideline	e concentrat	ions for t	he air cont	amina	ant, as spec	ified in Subdiv	ision 212-	2.3(1	b), Table 4 – De	egree of	Air
Cleaning	Required for	or Non-Cri	teria Air Co	ontam	ninants.						
The facili	ity is limiting	g annual c	perating h	ours (of the Reve	rsing Mill such	n that mod	eled	limpacts of 2,2	2',2"-(He	xahydro-
1,3,5-tria	azine-1,3,5-1	riyl)trieth	anol are 95	5% or	less of the	AGC. The ann	ual operat	ng h	nour limit is to	be based	d on the
most rec	ent Departr	nent-appi	oved post-	-contr	ol hourly e	mission rate.	Based on t	ne N	/lay 2023 test r	esults, th	ne post-
control h	ourly emiss	ion rate c	f the above	e com	pound from	m the Reversir	ng Mill is 0.	021	lb/hr and the i	resulting	predicted
annual in	npact based	d on 7,858	annual op	eratir	ng hours is	0.057 μg/m3,	which is 9!	5% c	of the interim A	GC assig	ned hy
	of 0.06 μg/		·		Ü	10, ,					, iica by
	1 0										irea by
The allov	vable annua										inca by
		al operatir	ng hours w	ill be a	adjusted ba	ased on the m	ost recent	Dep	artment-appro	ved post	
		•	_		•				artment-appro e Reversing Mil	•	t-control
		. The faci	ity maintai	ins mo	onthly reco	rds of operati	ng hours o	f the	e Reversing Mil	•	t-control
Tv		. The faci	ity maintai	ins mo	onthly reco		ng hours o	f the	e Reversing Mil g hour cap.	l (emissi	t-control on source
,	o demonstra Practice	. The faci ate 12-m	ity maintai	ins mo	onthly reco nours are le	rds of operati ss than the ar	ng hours o	f the	e Reversing Mil	l (emissi	t-control on source
	o demonstra Practice	. The faci	ity maintai	ins mo	onthly reco nours are le	rds of operati ss than the ar	ng hours o	f the	e Reversing Mil g hour cap.	l (emissi	t-control on source
	o demonstra Practice	. The faci ate 12-m	ity maintai onth opera	ins mo	onthly reco nours are le	rds of operati ss than the ar	ng hours o	f the	e Reversing Mil g hour cap. Reference Te	I (emissi	t-control on source
Code	o demonstra Practice	. The faci ate 12-m	ity maintai onth opera Param	ting h	onthly reco nours are le ess Material Descriptio	rds of operati ss than the ar	ng hours o	f the	e Reversing Mil g hour cap.	I (emissi	t-control on source
Code	o demonstra Practice	. The faci ate 12-m	ity maintai onth opera Param	ins mo	onthly reco nours are le ess Material Descriptio	rds of operati ss than the ar	ng hours o	f the	e Reversing Mil g hour cap. Reference Te	I (emissi	t-control on source
Code	o demonstra Practice /pe	. The faci ate 12-m	ity maintai onth opera Param	ting h	onthly reco nours are le ess Material Descriptio	rds of operati ss than the ar	ng hours o	f the	e Reversing Mil g hour cap. Reference Te	I (emissi	t-control on source
	o demonstra Practice Vpe	. The faci ate 12-m	ity maintai onth opera Parame De	eter	onthly reconours are less Material Descriptio	rds of operati ss than the ar	ng hours o	f the iting	Reference Te Manufacturer Na	I (emissi	t-control on source
	o demonstra Practice /pe	. The faci ate 12-m	ity maintai onth opera Param	eter	onthly reco nours are le ess Material Descriptio	rds of operati ss than the ar	ng hours o	f the iting	e Reversing Mil g hour cap. Reference Te	I (emissi	t-control on source
	o demonstra Practice /pe	c. The faci	ity maintai onth opera Parame De	eter	onthly reconours are less Material Descriptio	rds of operati	ng hours o	f the iting	Reversing Mil g hour cap. Reference Te Manufacturer Na ss	I (emissi	t-control on source od el No.
	o demonstra Practice Vpe	Code imit Method	Parame De	eter	onthly reconours are less Material Descriptio	rds of operations than the ar	ng hours o	f the iting	Reversing Mil g hour cap. Reference Te Manufacturer Na ription Reporting Rec	st Metho	el No.
U	o demonstratice Practice /pe L Upper Averaging	c. The faci ate 12-m Code	Parame De	eter	onthly reconours are less Material Descriptio on Code Monitor	rds of operati	ng hours o	f the ting N Unit	Reference Te Manufacturer Na Reporting Rece E	I (emissi	el No.

Version 1.2 - 11/20/2020

					DEG	2 10)				
6	-	3	0	1	3	-	0	0	0	9	1

Section IV - Emission Unit Information

				500000									
				Determinat				(continuation	on)				
					Rule	Cita	tion						
Title	Ту	ре	Part	Subpart	Section	Sub	division	Paragraph	Subparagraph	Clause	Subclause		
40	CF	R	63	TTTTTT									
Emission	Unit	Emis	ssion Point	Process	Emission Sou	ırce	☐ Applic	cable Federal R	equirement				
U-CAST1							☐ State	Only Requirem	ent				
					Des	cript	ion						
The facility	AST1 Emission Point Process Emission Source Description State Only Requirement State												
Secondary	nonfe	errous	metals pro	cessing facili	ty is defined	in Se	ction 63.	11472 as "a b	rass and bronze i	ngot ma	king,		
secondary	magn	esiun	n processing	g, or seconda	ry zinc proce	ssing	plant tha	at uses furnac	e melting operat	ions to n	nelt post-		
consumer	nonfe	rrous	metal scra	p to make pro	oducts includ	ling b	ars, ingo	ts, blocks, or r	netal powders. S	ubpart 6	T does not		
apply to se	econda	ary co	pper proce	ssing.									
					Rule	Cita	tion						
Title	Rule Citation Type												
40	CF	R	63	111111									
Emission	Unit	Emis	ssion Point	Process	Emission Sou	ırce	☐ Applic	cable Federal R	equirement	1			
U-COMB1							☐ State	Only Requirem	ent				
					Des	cript	ion						
The facility	/'s boi	lers a	re operated	l as gas-fired	boilers as de	fined	in 40 CF	R Part 63, Sub	part JJJJJJ (6J). Tl	ne facility	y is		
switching f	from N	lo. 6 1	to No. 2 fue	l oil as the ba	ack up fuel. F	uel oi	l is only	fired during p	eriods of natural	gas curta	ailment or		
supply inte	errupt	ion, a	nd up to 48	hours per ye	ear for period	lic tes	ting, ma	intenance, or	operator training	g on liqui	d fuel.		
Periodic te	reriodic testing, maintenance, or operator training on liquid fuel does not exceed a combined total of 48 hours during												
any calend	lar yea	ar.											
	_									-			
Title	Ту	pe	Part	Subpart	Section	Sub	division	Paragraph	Subparagraph	Clause	Subclause		
Emission	Unit	Emis	ssion Point	Process	Emission Sou	ırce	□ Applic	cable Federal R	equirement				
							☐ State	Only Requirem	ent				
					Des	cript	ion						
					5.1	0''							
Title	Tv	ne	Part	Subpart				Paragraph	Subparagraph	Clause	Subclause		
Title	ТУ	he	Fait	Subpart	Section	Sub	uivisioii	Faragraph	Subparagrapii	Clause	Subclause		
Emission	l Init	Emi	sion Doint	Drocoss	Emission Cou	irco	نامم ا	abla Fadaral D	a muira ma a mt	<u> </u>			
EIIIISSIOII	Unit	EIIII	SSION POINT	Process	EIIIISSIOII SOL	irce			•				
								Only Requirem	ent				
					Des	cript	ion						
	Title Type Part Subpart Section Subdivision Paragraph Subparagraph Clause Subclause 40 CFR 63 JJJJJJ												
								CC		<i>,</i> 51			

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Supporting Documentation Aerial Photo (___/__/___) Air Quality Model (___/___) Air State Facility Permit (___/___/ Air Title V Facility Permit (___/___) Alternative Fuel Monitoring Schedule (___/__/___) Ambient Air Monitoring Plan (___/___) Analysis of Contemporaneous Emission Increase/Decrease (___/___) Article 11, Title 5 Permit for Interference with Fish & Wildlife (___/___/____/ Authorized Agent Letter (___ / ___ / _____) X BACT Demonstration (___/__/___) T-BACT In Attachment F Baseline Period Demonstration (___/__/___) Beneficial Use Determination (BUD) (___ / ___ / ____) Blasting Chart - Ground Vibration Limits (___/___) Building Identification Table (___/__/___) Emissions Inventory in Attachment C Calculations (___/__/___) Capping Letter/Package (___/__/___) Certificate of Capacity (Resource Recovery Facility) (___/___) CLCPA analysis (___/__/___) Exhibit 1 Compliance Assurance Monitoring Plan (CAM) (___ / ___ / ____) Confidentiality Justification (___/__/___) Construction and Demolition Debris Tracking Document (___/__/ Construction Detail Drawings (___/___) Continuous Emissions Monitoring Plans/QA/QC (___/__/___) Control Equipment Layout (___/__/___) Custom Schedule for Fuel Nitrogen and Sulfur Monitoring (___/___) Dispersion modeling (___/___) Attachment E Drawings/Blueprints (___/___) Elevations/Sections (___/___) Emission Inventory Report (___/__/___) Attachment C Emission Survey (___/___) Emission Unit Summary (___/__/ EPA Memo Re: Technical Infeasibility of Monitoring Nitrogen in Fuel (___/___) ☐ Episode Action Plan (___/__/___) Equipment Manufacturers Information (___/___) ERC Quantification (___/___) Exemption Related Document (___/__/___) Existing Certificates to Operate and/or Permits to Construct (___/___) Existing Consent Order (___/___) Existing Methane Migration & Recovery Well Plan (___/___) Existing Permit Figures (___/___) Attachment F X Facility Location Map (___/___) Facility-Wide Operating Permit Submittal Schedule (___/___) Fugitive Dust Control Plan (___/___) General Flow Diagram (___/___) Generating Plant Site & Section Sheet (___/___)

Site Plan (___/___)

SPDES Permit (___/___)

Transfer Form (___/___)

Solid Waste Annual Report Form (___/___)

 ☐ Stack Test Protocols/Reports (___/__/
 (___/__/
)

 ☐ Title IV Acid Rain Permit Application (___/__/
 (___/__/
)

 ✓ VOC RACT Compliance Plan
 (__ / __ / ____)

 ✓ Wood Waste Specifications
 (__ / __ / ____)

 ✓ WQC - Basis for Conditions
 (__ / __ / ____)

Facility: REVERE COPPER PRODUCTS INC Oct 24, 2022 11:55 am

Supporting Documentation ___ LAER Demonstration (___/___) Letter of Intent to Commence Work (___/__/___) List of Exempt Activities (form attached) (___/__/ ____) Attachment B MACT Demonstration (___/___) Methods Used To Determine Compliance (form attached) (___/___/____) Commissioning Plan, Attachment H Public Participation Plan, Exhibit 2 Miscellaneous Attachments - Not Otherwise Specified (___/___) Alliance Source Testing Program and Results, Exhibit 3 Miscellaneous Correspondence (___/__/___/ Emergency Generator Certification, Exhibit 4 ☐ Mitigation Planting Plan (___/__/___) Degreaser SDS Excerpts, Exhibit 5 MSDS Information Sheets (___/__/___) Annealer Fluids SDS Excerpts, Exhibit 6 Non-CEM: Custom Monitoring, Recordkeeping and/or Reporting Plan (___/___) Notice Covenant (___/__/___) Notice of Intent to Commence Work (___/__/___) NOx RACT Compliance Plan (___/___/ NOx RACT Operating Plan (___/___) Opacity Compliance Plan (___/___/____) Operational Flexibility:Desc of Alternative Operating Scenarios and Protocols (___/___) P.E. Certification (form attached) (___ / ___ / _____) Permit Sign (___/__/___) Pesticide Treatment Area Map (___/___/___) Photograph(s) (___/__/___) ☐ Plot Plan (___/__/___) Process Flow Diagram(s) (___/__/___) Attachment B Process Material Specification Data (___/___) Process Operation Log Sheet(s) (___/___) ☐ Project Location Map (___/___) PSD Permit Correlation Tables (___/__/___) RACT Demonstration (___/___) Regulatory Analysis Summary (___/___) Attachment D Results of SEQR Review (__/___) Attachment G Seed Mixture Recommendations (___ / ___ / ____) Short Environmental Assessment Form (___/___)

ATTACHMENT B MATRIX OF EMISSION UNITS, PROCESSES, SOURCES, AND POINTS

Matrix of Emission Units, Processes, Emission Sources, Control Devices, and Emission Points^(a) Revere Copper Products, Inc. Rome, New York

			K	ome, New	YOLK				
Emission		Process		Source				Emission	
Unit ID	Emission Unit Description	ID	Process Description	ID	Source Description	Control ID	Control Description	Point ID	Building
U-ANNE1	This EU encompasses thirteen annealing units (Lee Wilson machine nos. 1729 to	DXG	The annealing atmosphere of DX gas emits burned by-products of	00464	Tray Style/Coil Anneal (Entry and Exit)			00189/ 00190	1
	1734, Ebner machine nos. 2383 to 2386, bright anneal machine no. 1154,		combustion natural gas .	01154	Bright Anneal (Entry and Exit)			00367/ 00362	51
	strand anneal machine no. 1738, and			01729	1729 Lee Wilson Anneal			00369	51
	tray style/coil anneal machine no. 464			01730	1730 Lee Wilson Anneal			00369	51
	entry and exit) used to anneal copper			01731	1731 Lee Wilson Anneal			00369	51
	and copper alloy sheets from the rolling mills. All annealing units except for the			01732	1732 Lee Wilson Anneal			00369	51
	tray style/coil anneal are located in the			01733	1733 Lee Wilson Anneal			00369	51
	rolling mill. The Lee Wilson, Ebner,			01734	1734 Lee Wilson Anneal			00369	51
	bright, strand, tray style/coil entry and			01738	1738 Strand Anneal			00027	51
	tray style/coil exit exhaust through EPs	FLD	The annealing process emits a small	01154	Bright Anneal			00367	51
	00369, 00440, 00367, 00027, 00189,		amount of burned volatilized residual	01729	1729 Lee Wilson Anneal			00369	51
	and 00190 respectively. This EU also		lubricating/metalworking fluid.	01730	1730 Lee Wilson Anneal			00369	51
	encompasses two sulfuric acid pickling lines (machines 1738 and 1740) used to			01731	1731 Lee Wilson Anneal			00369	51
	clean copper and copper allow sheets.			01732	1732 Lee Wilson Anneal			00369	51
	Machine 1738 exhausts through EP 00027, and machine 1740 exhausts through EP 00028. The particulate eEmissions from pickling and cleaning processes (acid and cleaning material			01733	1733 Lee Wilson Anneal			00369	51
				01734	1734 Lee Wilson Anneal			00369	51
				01738	1738 Strand Anneal			00027	51
				02383	2383 Ebner Anneal			00440	51
	mists) are controlled by wet scrubbers.			02384	2384 Ebner Anneal			00440	51
	mists) are controlled by wet scrubbers.			02385	2385 Ebner Anneal			00440	51
				02386	2386 Ebner Anneal			00440	51
	Ī	PCK	The emissions of acid and cleaning	01738	1738 Strand Anneal Cleaning	00S38	Wet Scrubber	00027	51
			material mists from the pickling	01740	1740 Heavy Gauge Cleaning	00S40	Wet Scrubber	00028	51
			process are ducted to and controlled by		(Entry and Exit)				
			wet scrubbers.						
U-CAST1	This EU encompasses the emissions	BH1	This process encompasses the	01187	Billet Furnace	00B39/00C39	Single Cyclone/Fabric Filter	00039	21
	from four five induction furnaces (machine nos. 1187, 1799, 2443, 2056,		emissions from the induction furnaces used to melt and pour copper and	01799	1799 Holding Furnace	00B39/00C39	Single Cyclone/Fabric Filter	00039	21
	and 2728 2057). All of the furnaces are used to recycle (i.e., melt and pour)		copper alloy cakes including brass (machine nos. 1187, 1799, and 2443).	02443	2443 Melting Furnace	00B39/00C39	Single Cyclone/Fabric Filter	00039	21
	post consumer copper and copper alloy		EP 00039 is associated with this						
	materials, including brass. The billet induction furnace (1187) forms		process. Emissions are controlled by cyclones and baghouses. Each furnace						
	eylindrical billets. The remaining		has a hood that is ducted to the						
	furnaces produce ingots and rectangular		cyclone/baghouse unit associated with						
	cakes. Furnaces 1187, 1799 , and 2443		EP 00039.						
	exhaust through EP 00039 and furnaces	BH2	This process encompasses the	02056	2056 Melting Furnace	00B40/00C40	Single Cyclone/Fabric Filter	00040	21
	2056 and 2728 2057 exhaust through	БПZ	emissions from the induction furnaces	02030	2728 Melting Furnace	00B40/00C40	Single Cyclone/Fabric Filter	00040	21
	EP 00040. A central vacuum system is used for housekeeping purposes. The particulate emissions are controlled by cyclones and baghouses. In addition, federally enforceable special permit conditions exist for these emission		used to melt and pour copper and	02057	2057 Melting Furnace	00B40/00C40 00B40/00C40	Single Cyclone/Fabric Filter	00040	21 21
			copper alloy cakes including brass	02037	2037 Werting Furnace	00040/00040	Single Cyclone/Tabric Filter	00040	2.1
			(machine nos. 2056 and 2728 2057).						
			EP 00040 is associated with this						
			process. Emissions are controlled by						
	points to limit the particulate emissions.		cyclones and baghouses. Each furnace has a hood that is ducted to the	rnace					
			has a hood that is ducted to the cyclone/baghouse unit associated with						
			cyclone/baghouse unit associated with EP 00040.						
	· L		1	L	1	<u> </u>		1	

Matrix of Emission Units, Processes, Emission Sources, Control Devices, and Emission Points^(a) Revere Copper Products, Inc. Rome, New York

			N.	ome, New	TOTA				
Emission Unit ID	Emission Unit Description	Process ID	Process Description	Source ID	Source Description	Control ID	Control Description	Emission Point ID	Building
		BP1	This process encompasses the emissions from the induction furnaces used to melt and pour copper and copper alloy cakes (machine nos. 1187, 1799, and 2443) when the baghouse is bypassed. EP 00039 is associated with	01187 01799	Billet Furnace 1799 Holding Furnace	00C39	Single Cyclone Single Cyclone	00039 00039	21 21
			this process. Emissions are controlled by cyclones. Each furnace has a hood that is ducted to the cyclone unit associated with EP 00039.	02443	2443 Melting Furnace	00C39	Single Cyclone	00039	21
		BP2	This process encompasses the emissions from the induction furnaces used to melt and pour copper and-copper alloy cakes (machine nos. 2056 and 2057 2728). EP 00040 is	02056	2056 Melting Furnace	00C40	Single Cyclone	00040	21
			associated with this process. Emissions	02728	2728 Melting Furnace	00B40/00C40	Single Cyclone	00040	21
			are controlled by cyclones. Each furnace has a hood that is ducted to the cyclone unit associated with EP	02057	2057 Melting Furnace	00C40	Single Cyclone	00040	21
		VAC	Central vacuum system to provide exhaust at multiple locations within the Cast Shop. Approximately 17 droppoints will be installed and the The collected capture particulates are controlled through a cyclone and cartridge filter. The cartridge filter is located outside at ground level with discharge to the atmosphere.	CSVAC	Central Exhaust	CSB01/CSC01	Single Cyclone/Fabric Filter	00602	21
U-GALV1	This emission unit consists of a Zinc-Tin coating line to galvanize Copper, Copper Alloy and Stainless Steel sheeting. The process consists of five sources for cleaning, surface preparation, sheet preheating and galvanizing. The sources include an acid pickling tank, a pre-flux tank, a dryer (exempt) and a Galvanizing pot that includes a top-flux kettle.	GAL	Process consists of metal preheater, top-flux application (Zinc-Potassium Chloride) and galvanizing kettle containing molten Tin(50%) and Zinc(50%) of emission source 02587. Emissions from galvanizing kettle will-be are ducted to emission point 00601. Particulate emissions are controlled by a baghouse (S6001). A 9.7 MMBtu/hr natural gas fired furnace is used to preheat metal sheeting and melt Zinc-Tin metal.	02587	Molten Metal Tank for Zinc- Tin Coating	S6001	Fabric Filter	00601	51
		PIC	Process consists of Hydrochloric Acid (10%) pickling/cleaning tank at 180 degree F, and followed by a preflux solution tank containing Zinc-Ammonia-Barium Chloride (emission source 02587). Emissions from Hydrochloric Acid and preflux tanks are ducted to and controlled by a wet scrubber (S6000).	02587	Acid Tank	S6000	Wet Scrubber	00600	51

Matrix of Emission Units, Processes, Emission Sources, Control Devices, and Emission Points^(a) Revere Copper Products, Inc. Rome, New York

				ome, New	70/K				
Emission Unit ID	Emission Unit Description	Process	Drosses Description	Source ID	Sauraa Dagarintian	Control ID	Control Description	Emission	Duilding
	Emission Unit Description This EU encompasses Boilers 1,2 & 3	ID F01	Process Description Three boilers firing residual fuel oil (no.	00BR1	Source Description Boiler #1		Control Description	Point ID 00004	Building 15
0-COMB1	located at the boiler house. Boilers 1	FUT	6) distillate fuel oil (No. 2) to produce						
	and 2 (42.0 MMBtu/hr boilers) exhaust		steam for process heating and general	00BR2	Boiler #2			00004	15
	through EP 00004. Boiler 3 (57.2		heating.	00BR3	Boiler #3			00003	15
	MMBtu/hr boiler) exhausts through EP	G01	Three boilers firing natural gas to	00BR1	Boiler #1			00004	15
	00003. Each boiler is dual-fueled	001	produce steam for process heating and						
	(natural gas as the primary fuel and No. 6 fuel oil as the back-up fuel). Sulfur		general heating.	00BR2	Boiler #2			00004	15
	dioxide emissions are capped by			00BR3	Boiler #3			00003	15
	restricting No. 6 fuel oil usage from all								
	three boilers. The boiler burners are								
	being replaced with burners that will fire								
	No. 2 fuel oil for backup instead of No. 6								
U-FURN1	This EU encompasses the walking beam	G02	Natural gas is fired in the furnace, used	01701	1701 Walking Beam Furnace			00041	51
	furnace (machine no. 1701) used to preheat copper and copper alloy		to reheat metal.						
	prior to hot rolling. The furnace is fired								
	by natural gas and has a maximum heat								
	input rating of 51.8 MMBtu/hr. The								
	emissions exhaust through EP 00041.								
U-GRANC	This EU consists of a 16 MMBtu/hr	GAS	The Granco furnace heats billets to	GRANC	Granco Furnace			00180	4
	natural gas-fired furnace used to heat		approximately 1750 deg. F for a metal						
	billets before metal extrusion process.		extrusion process. The furnace fires						
	The furnace was installed in 1983,		natural gas exclusively.						
	therefore, it was previously exempt- from permitting under 6 NYCRR 201-								
U-OVER1	This EU encompasses the overhauler	OVR	The emissions from the cutting and	01715	1715 Overhauler	00C31	Wet Scrubber	00031	51
0-0VERT	(machine no. 1715) used to shave the	OVIC	shaving of the overhauler process are	01713	1713 Overriadiei	00031	Wet Strabber	00031	31
	outside surface of copper alloy materials		ducted to and controlled by the wet						
	with cutter blades. This process		scrubber/rotoclone.						
	produces chips and shavings, which are								
	collected inside the exhaust system and								
	sent back to the cast shop for remelting.								
	The emissions exhaust through EP								
	00031. The particulate emissions are controlled by a wet scrubber/rotoclone.								
	controlled by a wet scrubber/rotocione.								
U-PTNRM	This EU encompasses the emissions	P01	This process encompasses the	PTNR1		BH500	Fabric Filter	00500	4
	from the sanding and coating processes		emissions from the sanding of						
	in the Patina Room.		copper/copper alloy sheets. Emissions						
			are exhausted through a dust collectorand then to EP 00500T.						
		P02	This process encompasses the	PTNR2				 	1
		1 02	emissions from the surface coating of	1 114114					'
			copper/copper alloy sheet. The coating						
			operation has an enclosed hood with a						
			small centrifugal fan that vents						
			internally to the Patina Room.						
			<u>, </u>	Į.	, l	Ļ		į.	

Matrix of Emission Units, Processes, Emission Sources, Control Devices, and Emission Points^(a) Revere Copper Products, Inc.

Rome, New York

Emission Unit ID	Emission Unit Description	Process ID	Process Description	Source ID	Source Description	Control ID	Control Description	Emission Point ID	Building
	This EU encompasses five rolling mills	ROL	The rolling process in each mill emits a	01176	1176 Bliss Mill	00C36	Baffle Chamber	00036	51
	(machine Nos. 1176, 1706, 1721, 1723,		small amount of lubricating/ metalworking fluid.	01706	1706 Hot Mill	00C30	Mist Eliminator	00030	51
	and 1724), which use			01721	1721 First Run Down Mill	00C29	Mist Eliminator	00029	51
	lubricating/metalworking fluid in the rolling of copper and copper alloy			01723	1723 Reversing Mill			00026	51
	sheets. Machine Nos. 1176, 1706, 1721, 1723, and 1724 exhaust through EPs 00036, 00 029, 00026, and 00025, respectively. Each mill emits a small amount of lubricating/ metalworking fluid. The emissions from EPs 00029, 00030, and 00036 are controlled by two mist eliminators and a baffle chamber, respectively.			01724	1724 Z-Mill			00025	51
U-SOLV1	This EU encompasses one non-exempt solvent degreaser located in the Rolling Mill Grinding Room. The degreaser exhausts fugitively to the room and uses a Subpart 226-1 compliant solvent.	SOL	Solvent emissions from the 550-gallon degreaser.	02600	Grinding Room Degreaser				51

Notes:

(a) Information changes from language in the existing Air State Facility Permit are indicated in red font, with stikeout indicating language to be removed.

ATTACHMENT C EMISSION INVENTORY

Table 1 Summary of Exempt and Non-Exempt Emission Sources

Revere Copper Products, Inc Rome, NY

Emission Unit	Building / Location		Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
U-COMB1	15 Boiler Room	00004	BR1 Boiler 1	G01 Combustion - Natural gas F01 Combustion - Fuel oil (back-up)	42.0 million Btu per hour (MMBtu/hr)	Natural gas (primary fuel) No. 2 fuel oil (back-up fuel) ^(a)	6 NYCRR 225-1.2(a)(2) 6 NYCRR 227-1.3(a)
		00004	BR2 Boiler 2	G01 Combustion - Natural gas F01 Combustion - Fuel oil (back-up)	42.0 MMBtu/hr	Natural gas (primary fuel) No. 2 fuel oil (back-up fuel) ^(a)	6 NYCRR 225-1.2(a)(2) 6 NYCRR 227-1.3(a)
		00003	BR3 Boiler 3	G01 Combustion - Natural gas F01 Combustion - Fuel oil (back-up)	57.2 MMBtu/hr	Natural gas (primary fuel) No. 2 fuel oil (back-up fuel) ^(a)	6 NYCRR 225-1.2(a)(2) 6 NYCRR 227-1.3(a)
U-CAST1	21 Cast Shop	00039	1799 Holding Furnace	BH1 Process (Baghouse) BP1 Process (By-pass)		Copper	6 NYCRR 212
		00039	2443 Melting Furnace	BH1 Process (Baghouse) BP1 Process (By-pass)		Copper	6 NYCRR 212
		00040	2056 Melting Furnace	BH2 Process (Baghouse) BP2 Process (By-pass)		Copper	6 NYCRR 212
		00040	New 2728 Melting Furnace	BH2 Process (Baghouse) BP2 Process (By-pass)		Copper	6 NYCRR 212
		00040	2057 Melting Furnace	BH1 Process (Baghouse) BP2 Process (By-pass)		Copper	6 NYCRR 212
		00602	Central Vacuum System	VAC Process		Fugitive Dust	6 NYCRR 212
U-FURN1	51 Rolling Mill	00041	1701 Walking Beam Furnace	G02 Combustion	51.8 MMBtu/hr	Natural gas	6 NYCRR 227-1.3(a)
U-OVER1	51 Rolling Mill	00031	1715 Overhauler	OVR Process		Copper sheet	6 NYCRR 212
U-ROLL1	51 Rolling Mill	00036	1176 Bliss Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212
		00030	1706 Hot Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212
		00029	1721 First Run Down Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212
		00026	1723 Reversing Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212

Emission Unit	Building / Location		Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
		00025	1724 Z-Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212
J-ANNE1	51 Rolling Mill	00369	1729 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1730 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1731 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1732 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1733 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1734 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00440	2383 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen atmosphere	6 NYCRR 212
		00440	2384 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen atmosphere	6 NYCRR 212
		00440	2385 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen atmosphere	6 NYCRR 212
		00440	2386 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen atmosphere	6 NYCRR 212
		00367/ 00362	1154 Bright Anneal (Entry and Exit)	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212

Emission Unit	Building / Location		Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
		00027	1738 Strand Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00028	1740 Heavy Gauge Cleaning - Entry	PCK Process		Copper sheet and sulfuric acid	6 NYCRR 212
		00028	1740 Heavy Gauge Cleaning - Exit	PCK Process		Copper sheet and sulfuric acid	6 NYCRR 212
		00027	1738 Strand Anneal Cleaning	Cleaning		Cleaning solutions	6 NYCRR 212
		00028	1740 Heavy Gauge Cleaning - Entry	Cleaning		Cleaning solutions	6 NYCRR 212
		00028	1740 Heavy Gauge Cleaning - Exit	Cleaning		Cleaning solutions	6 NYCRR 212
	1 Bar Mill	00189/ 00190	464 Tray Style/Coil Anneal (Entry and Exit)	DXG Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
U-GALV1	51 Rolling Mill	00600	02587 - Muriatic Acid Pickling Tank	PIC Process		Copper sheet, muriatic acid, and flux	6 NYCRR 212
		00601	02587 - Galvanizing Kettle	GAL Process		Copper sheet, molten tin and zinc, and flux	6 NYCRR 212
			Galvanizing Furnace	Combustion	9.7 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)
U-SOLV1	51 Rolling Mill	Fugitive	Degreaser	SOL Process	550 Gallons	226-1 Compliant Solvent	6 NYCRR 226-1; 6 NYCRR 212
Exempt	51 Rolling Mill	00335	1727 Lee Wilson Anneal	Combustion	1.2 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
		00335	1728 Lee Wilson Anneal	Combustion	1.2 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
		00334	2381 Ebner Anneal	Combustion	1.6 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
		00334	2382 Ebner Anneal	Combustion	1.6 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
		00366	1154 Bright Anneal	Combustion	1.5 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
		00358	1738 Strand Anneal	Combustion	4.2 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	1 Bar Mill	00202	464 Tray Style/Coil Anneal	Combustion	1.5 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)

Emission Unit	Building / Location	Emission Point	Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
	Main Office Bldg.		2 Building Heaters	Combustion	2 MMBtu/hr Each	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Maint. Storage Bldg.		Building Heater	Combustion	0.074 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Operations Bldg.		Building Heater	Combustion	0.491 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Maint. Office Bldg.		Building Heater	Combustion	0.225 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Cast Shop Office Bldg.		Building Heater	Combustion	0.113 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Facility		22 Unit Heaters	Combustion	1 MMBtu/hr Each	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Facility		10 Water Heaters	Combustion	0.25 MMBtu/hr Each	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Cast Shop		Emergency Generator	Combustion	94-hp	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(6)
	Powerhouse		Emergency Generator	Combustion	168-hp	Diesel	Exempt - 6 NYCRR 201- 3.2(c)(6)
	Soap House		Emergency Generator	Combustion	2680-hp	Diesel	Exempt - 6 NYCRR 201- 3.2(c)(6)
	Main Office		Emergency Generator	Combustion	34-hp	Natural gas	Exempt - 6 NYCRR 201 3.2(c)(6)
	Cast Shop		Emergency Generator - Coreless Furnace	Combustion	335-hp	Natural gas	Exempt - 6 NYCRR 201 3.2(c)(6); 40 CFR 60 Subpart JJJJ
	1 Bar Mill Area		Sodium Hydroxide Storage Tank		6,000 gallon		Exempt - 6 NYCRR 201- 3.2(c)(25)
	1 Bar Mill Area		Grinders for Maintenance				Trivial - 6 NYCRR 201- 3.3(c)(52)
	1 Bar Mill Area		Bar Mill Tanks (Degreasing Units)			non-HAP acids / caustics	Trivial - 6 NYCRR 201- 3.3(c)(47) and 6 NYCRI 201-3.3(c)(48)
	1 Bar Mill Area		Silver Plating Line (Silver Cyanide and Potassium Cyanide)			Cyanide compounds	(b)
	Facility		Degreaser (Simple Green)			Caustics	Trivial - 6 NYCRR 201- 3.3(c)(48)

Revere Copper Products, Inc Rome, NY

Emission Unit	Building / Emission Location Point	Emission Source	Emission Process	Capacity	Fuel / Material	Key Applicable Requirements
Unit	Location Point	Emission Source	Emission Process	Capacity	Processed	Requirements

Notes:

- (a) Revere has switched the oil fired by the boilers from No. 6 to No. 2 fuel oil.
- (b) The silver plating line had internal worker exposure testing performed in the past, which showed that the only exposures to workers were particulate matter when mixing the solution. As this is not exhausted to atmosphere, this operation not considered an air emissions source and emissions were not quantified.

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ai Emissi		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
U-COMB1 Natural Gas Combustion (Table 3	3)						
Carbon Monoxide	00630-08-0	7,938	4.0	101,863	51		
Nitrogen Oxides	NY210-00-0	9,450	4.7	121,266	61		
Sulfur Dioxide	07446-09-5	57	2.8E-02	728	0.36		
Total Particulate Matter	NY075-00-0	718	0.36	9,216	4.6		
PM ₁₀	NY075-00-5	718	0.36	9,216	4.6		
PM _{2.5}	NY075-02-5	718	0.36	9,216	4.6		
Volatile Organic Compounds	NY998-00-0	520	0.26	6,670	3.3		
Carbon Dioxide	00124-38-9	11,275,324	5,638	144,689,112	72,345		
Methane	00074-82-8	213	0.11	2,727	1.4		
Nitrous Oxide	10024-97-2	21	1.1E-02	273	0.14		
Carbon Dioxide Equivalents	CO2e	11,299,507	5,650	144,999,433	72,500		
Total HAPs	NY100-00-0	178	8.9E-02	2,290	1.1		
Arsenic	07440-38-2	1.9E-02	9.5E-06	0.24	1.2E-04		
Benzene	00071-43-2	0.20	9.9E-05	2.5	1.3E-03		
Beryllium	07440-41-7	1.1E-03	5.7E-07	1.5E-02	7.3E-06		
Cadmium	07440-43-9	0.10	5.2E-05	1.3	6.7E-04		
Chromium	07440-47-3	0.13	6.6E-05	1.7	8.5E-04		
Cobalt	07440-48-4	7.9E-03	4.0E-06	0.10	5.1E-05		
Dichlorobenzene	25321-22-6	0.11	5.7E-05	1.5	7.3E-04		
Formaldehyde	00050-00-0	7.1	3.5E-03	91	4.5E-02		
Hexane	00110-54-3	170	8.5E-02	2,183	1.1		
Lead	07439-92-1	4.7E-02	2.4E-05	0.61	3.0E-04		
Manganese	07439-96-5	3.6E-02	1.8E-05	0.46	2.3E-04		
Mercury	07439-97-6	2.5E-02	1.2E-05	0.32	1.6E-04		
Naphthalene	00091-20-3	5.8E-02	2.9E-05	0.74	3.7E-04		
Nickel	07440-02-0	0.20	9.9E-05	2.5	1.3E-03		
Polycyclic Organic Matter	POM	8.3E-03	4.2E-06	0.11	5.3E-05		
Selenium	07782-49-2	2.3E-03	1.1E-06	2.9E-02	1.5E-05		
Toluene	00108-88-3	0.32	1.6E-04	4.1	2.1E-03		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ai Emissi		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Miscellaneous Facility-Wide Natural Gas C	ombustion (Table 3)						
Carbon Monoxide	00630-08-0	36,491	18	69,688	35		
Nitrogen Oxides	NY210-00-0	43,442	22	82,962	41		
Sulfur Dioxide	07446-09-5	261	0.13	498	0.25		
Total Particulate Matter	NY075-00-0	3,302	1.7	6,305	3.2		
PM ₁₀	NY075-00-5	3,302	1.7	6,305	3.2		
PM _{2.5}	NY075-02-5	3,302	1.7	6,305	3.2		
Volatile Organic Compounds	NY998-00-0	2,389	1.2	4,563	2.3		
Carbon Dioxide	00124-38-9	51,832,501	25,916	98,986,740	49,493		
Methane	00074-82-8	977	0.49	1,866	0.93		
Nitrous Oxide	10024-97-2	98	4.9E-02	187	9.3E-02		
Carbon Dioxide Equivalents	CO2e	51,943,669	25,972	99,199,041	49,600		
Total HAPs	NY100-00-0	820	0.41	1,567	0.78		
Arsenic	07440-38-2	8.7E-02	4.3E-05	0.17	8.3E-05		
Benzene	00071-43-2	0.91	4.6E-04	1.7	8.7E-04		
Beryllium	07440-41-7	5.2E-03	2.6E-06	1.0E-02	5.0E-06		
Cadmium	07440-43-9	0.48	2.4E-04	0.91	4.6E-04		
Chromium	07440-47-3	0.61	3.0E-04	1.2	5.8E-04		
Cobalt	07440-48-4	3.6E-02	1.8E-05	7.0E-02	3.5E-05		
Dichlorobenzene	25321-22-6	0.52	2.6E-04	1.00	5.0E-04		
Formaldehyde	00050-00-0	33	1.6E-02	62	3.1E-02		
Hexane	00110-54-3	782	0.39	1,493	0.75		
Lead	07439-92-1	0.22	1.1E-04	0.41	2.1E-04		
Manganese	07439-96-5	0.17	8.3E-05	0.32	1.6E-04		
Mercury	07439-97-6	0.11	5.6E-05	0.22	1.1E-04		
Naphthalene	00091-20-3	0.26	1.3E-04	0.51	2.5E-04		
Nickel	07440-02-0	0.91	4.6E-04	1.7	8.7E-04		
Polycyclic Organic Matter	POM	3.8E-02	1.9E-05	7.3E-02	3.7E-05		
Selenium	07782-49-2	1.0E-02	5.2E-06	2.0E-02	1.0E-05		
Toluene	00108-88-3	1.5	7.4E-04	2.8	1.4E-03		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ai Emissi		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
DX Gas Combustion (Table 4)							
Carbon Monoxide	00630-08-0	4,706	2.4	5,124	2.6		
Nitrogen Oxides	NY210-00-0	5,602	2.8	6,100	3.1		
Sulfur Dioxide	07446-09-5	34	1.7E-02	37	1.8E-02		
Total Particulate Matter	NY075-00-0	426	0.21	464	0.23		
PM ₁₀	NY075-00-5	426	0.21	464	0.23		
PM _{2.5}	NY075-02-5	426	0.21	464	0.23		
Volatile Organic Compounds	NY998-00-0	308	0.15	336	0.17		
Carbon Dioxide	00124-38-9	6,684,640	3,342	7,278,805	3,639		
Methane	00074-82-8	126	6.3E-02	137	6.9E-02		
Nitrous Oxide	10024-97-2	13	6.3E-03	14	6.9E-03		
Carbon Dioxide Equivalents	CO2e	6,698,977	3,349	7,294,416	3,647		
Total HAPs	NY100-00-0	106	5.3E-02	115	5.8E-02		
Arsenic	07440-38-2	1.1E-02	5.6E-06	1.2E-02	6.1E-06		
Benzene	00071-43-2	0.12	5.9E-05	0.13	6.4E-05		
Beryllium	07440-41-7	6.7E-04	3.4E-07	7.3E-04	3.7E-07		
Cadmium	07440-43-9	6.2E-02	3.1E-05	6.7E-02	3.4E-05		
Chromium	07440-47-3	7.8E-02	3.9E-05	8.5E-02	4.3E-05		
Cobalt	07440-48-4	4.7E-03	2.4E-06	5.1E-03	2.6E-06		
Dichlorobenzene	25321-22-6	6.7E-02	3.4E-05	7.3E-02	3.7E-05		
Formaldehyde	00050-00-0	4.2	2.1E-03	4.6	2.3E-03		
Hexane	00110-54-3	101	5.0E-02	110	5.5E-02		
Lead	07439-92-1	2.8E-02	1.4E-05	3.1E-02	1.5E-05		
Manganese	07439-96-5	2.1E-02	1.1E-05	2.3E-02	1.2E-05		
Mercury	07439-97-6	1.5E-02	7.3E-06	1.6E-02	7.9E-06		
Naphthalene	00091-20-3	3.4E-02	1.7E-05	3.7E-02	1.9E-05		
Nickel	07440-02-0	0.12	5.9E-05	0.13	6.4E-05		
Polycyclic Organic Matter	POM	4.9E-03	2.5E-06	5.4E-03	2.7E-06		
Selenium	07782-49-2	1.3E-03	6.7E-07	1.5E-03	7.3E-07		
Toluene	00108-88-3	0.19	9.5E-05	0.21	1.0E-04		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Fuel Oil Combustion (Table 5)							
Carbon Monoxide	00630-08-0	283	0.14	44,175	22		
Nitrogen Oxides	NY210-00-0	1,133	0.57	176,702	88		
Sulfur Dioxide	07446-09-5	12	6.0E-03	1,882	0.94		
Total Particulate Matter	NY075-00-0	187	9.3E-02	29,156	15		
PM_{10}	NY075-00-5	57	2.8E-02	8,835	4.4		
$PM_{2.5}$	NY075-02-5	14	7.1E-03	2,209	1.1		
Carbon Dioxide	00124-38-9	1,312,719	656	204,789,904	102,395		
Nitrous Oxide	10024-97-2	52	2.6E-02	8,181	4.1		
Methane	00074-82-8	10	5.2E-03	1,636	0.82		
Carbon Dioxide Equivalents	CO2e	1,320,249	660	205,964,651	102,982		
Volatile Organic Compounds	NY998-00-0	11	5.7E-03	1,767	0.88		
Total HAPs	NY100-00-0	4.0	2.0E-03	629	0.31		
Arsenic	07440-38-2	3.2E-02	1.6E-05	4.9	2.5E-03		
Beryllium	07440-41-7	2.4E-02	1.2E-05	3.7	1.9E-03		
Cadmium	07440-43-9	2.4E-02	1.2E-05	3.7	1.9E-03		
Chromium	07440-47-3	2.4E-02	1.2E-05	3.7	1.9E-03		
Formaldehyde	00050-00-0	3.5	1.7E-03	539	0.27		
Lead	07439-92-1	7.1E-02	3.6E-05	11	5.6E-03		
Manganese	07439-96-5	4.8E-02	2.4E-05	7.4	3.7E-03		
Mercury	07439-96-5	4.8E-02	2.4E-05	7.4	3.7E-03		
Nickel	07440-02-0	2.4E-02	1.2E-05	3.7	1.9E-03		
Polycyclic Organic Matter	POM	0.19	9.3E-05	29	1.5E-02		
Selenium	07782-49-2	0.12	5.9E-05	19	9.3E-03		
Emergency Generators (Table 6)							
Carbon Monoxide	00630-08-0	208	0.10	10,422	5.2		
Nitrogen Oxides	NY210-00-0	636	0.32	33,532	17		
Sulfur Dioxide	07446-09-5	8.6	4.3E-03	185	9.2E-02		
Total Particulate Matter	NY075-00-0	20	9.9E-03	848	0.42		
PM_{10}	NY075-00-5	18	8.8E-03	719	0.36		
PM _{2.5}	NY075-02-5	16	8.1E-03	631	0.32		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential <i>I</i> Emission		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Volatile Organic Compounds	NY998-00-0	32	1.6E-02	1,349	0.67		
Carbon Dioxide	00124-38-9	33,105	17	1,782,146	891		
Methane	00074-82-8	37	1.9E-02	1,565	0.78		
Nitrous Oxide	10024-97-2	0.00	0.0E + 00	0.0	0.0E + 00		
Total HAPs	NY100-00-0	2.4	1.2E-03	102	5.1E-02		
Acenaphthene	00083-32-9	7.8E-04	3.9E-07	4.6E-02	2.3E-05		
Acenaphthylene	00208-96-8	1.7E-03	8.4E-07	9.6E-02	4.8E-05		
Acetaldehyde	00075-07-0	0.27	1.4E-04	11	5.4E-03		
Acrolein	00107-02-8	0.16	8.0E-05	6.5	3.2E-03		
Anthracene	00120-12-7	2.4E-04	1.2E-07	1.3E-02	6.3E-06		
Benzene	00071-43-2	0.16	8.2E-05	8.5	4.3E-03		
Benz(a)anthracene	00056-55-3	1.4E-04	7.1E-08	6.8E-03	3.4E-06		
Benz(a)pyrene	00050-32-8	4.4E-05	2.2E-08	2.5E-03	1.3E-06		
Benzo(b)fluoranthene	00205-99-2	1.7E-04	8.7E-08	1.1E-02	5.3E-06		
Benzo(g,h,i)perylene	00191-24-2	1.1E-04	5.5E-08	6.0E-03	3.0E-06		
Benzo(e)pyrene	00192-97-2	1.2E-05	5.8E-09	4.9E-04	2.4E-07		
Benzo(b,k)fluoranthene	00207-08-9	3.7E-05	1.9E-08	2.1E-03	1.1E-06		
Biphenyl	00092-52-4	6.0E-03	3.0E-06	0.25	1.2E-04		
Carbon Tetrachloride	00056-23-5	1.1E-03	5.6E-07	4.5E-02	2.3E-05		
Chlorobenzene	00108-90-7	9.2E-04	4.6E-07	3.7E-02	1.9E-05		
Chloroethane	00075-00-3	5.3E-05	2.6E-08	2.2E-03	1.1E-06		
Chloroform	00067-66-3	8.7E-04	4.3E-07	3.5E-02	1.7E-05		
Chrysene	00218-01-9	2.6E-04	1.3E-07	1.5E-02	7.7E-06		
Dibenzo(a,h)anthracene	00053-70-3	6.9E-05	3.4E-08	3.6E-03	1.8E-06		
1,1-Dichloroethane	00075-34-3	7.2E-04	3.6E-07	2.9E-02	1.4E-05		
1,2-Dichloroethane	00107-06-2	7.2E-04	3.6E-07	2.9E-02	1.4E-05		
1,2-Dichloropropane	00078-87-5	8.2E-04	4.1E-07	3.3E-02	1.6E-05		
1,3-Dichloropropene	00542-75-6	8.0E-04	4.0E-07	3.2E-02	1.6E-05		
Ethylbenzene	00100-41-4	1.2E-03	6.2E-07	4.9E-02	2.5E-05		
Ethylene Dibromide	00106-93-4	1.3E-03	6.7E-07	5.4E-02	2.7E-05		
Ethylene Dichloride	00107-06-2	7.2E-04	3.6E-07	2.9E-02	1.4E-05		
Fluoranthene	00206-44-0	8.6E-04	4.3E-07	4.3E-02	2.2E-05		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ai Emissi		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Fluorene	00086-73-7	2.9E-03	1.5E-06	0.14	7.2E-05		
Formaldehyde	00050-00-0	1.6	8.1E-04	66	3.3E-02		
Hexane	00110-54-3	3.1E-02	1.6E-05	1.3	6.5E-04		
Indeno(1,2,3-cd)pyrene	00193-39-5	7.3E-05	3.6E-08	4.1E-03	2.0E-06		
Naphthalene	00091-20-3	2.5E-02	1.2E-05	1.4	6.8E-04		
PAH	130498-29-2	1.4E-03	7.1E-07	4.8E-02	2.4E-05		
Phenanthrene	00085-01-8	7.3E-03	3.6E-06	0.41	2.1E-04		
Pyrene	00129-00-0	7.3E-04	3.7E-07	3.9E-02	2.0E-05		
Styrene	00100-42-5	7.2E-04	3.6E-07	2.9E-02	1.5E-05		
1,1,2,2-Tetrachloroethane	00079-34-5	1.2E-03	6.2E-07	5.0E-02	2.5E-05		
Toluene	00108-88-3	6.8E-02	3.4E-05	3.4	1.7E-03		
1,1,2-Trichloroethane	00079-00-5	9.7E-04	4.8E-07	3.9E-02	2.0E-05		
2,2,4-Trimethylpentane	00540-84-1	7.0E-03	3.5E-06	0.29	1.5E-04		
Vinyl Chloride	00075-01-4	4.5E-04	2.3E-07	1.8E-02	9.1E-06		
Xylenes	01330-20-7	4.3E-02	2.2E-05	2.2	1.1E-03		
U-CAST1 Furnaces (Table 7)							
Total Particulate Matter	NY075-00-0	11,673	5.8	22,669	11		
PM ₁₀	NY075-00-5	6,202	3.1	13,226	6.6		
PM _{2.5}	NY075-02-5	2,223	1.1	4,596	2.3		
Graphite	07782-42-5	4,705	2.4	9,180	4.6		
Copper oxide	01317-38-0	3,593	1.8	7,010	3.5		
Iron oxide	01309-37-1	1,068	0.53	2,084	1.0		
Aluminum oxide	01344-28-1	32	1.6E-02	63	3.1E-02		
Zinc oxide	01314-13-2	9.9	4.9E-03	19	9.6E-03		
Magnesium oxide	01309-48-4	2.8	1.4E-03	5.4	2.7E-03		
Barium oxide	01304-28-5	0.43	2.2E-04	0.84	4.2E-04		
Silver oxide	20667-12-3	0.11	5.7E-05	0.22	1.1E-04		
Total HAPs	NY100-00-0	6.7	3.3E-03	13	6.5E-03		
Lead oxide	01314-41-6	3.9	1.9E-03	7.5	3.8E-03		
Manganese oxide	01313-13-9	2.8	1.4E-03	5.4	2.7E-03		
Nickel oxide	01313-99-1	0.25	1.2E-04	0.48	2.4E-04		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential <i>F</i> Emission		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Cadmium oxide	01306-19-0	8.0E-02	4.0E-05	0.16	7.8E-05		
Chromium oxide	01333-82-0	0.11	5.5E-05	0.21	1.1E-04		
Mercury oxide	21908-53-2	1.0E-03	5.2E-07	2.0E-03	1.0E-06		
U-CAST1 VAC Process (Table 8)							
Total Particulate Matter	NY075-00-0	12	6.2E-03	315	0.16		
PM ₁₀	NY075-00-5	12	6.2E-03	315	0.16		
PM _{2.5}	NY075-02-5	12	6.2E-03	315	0.16		
Graphite	07782-42-5	5.0	2.5E-03	126	6.3E-02		
Copper oxide	01317-38-0	3.8	1.9E-03	96	4.8E-02		
Iron oxide	01309-37-1	1.1	5.7E-04	29	1.4E-02		
Aluminum oxide	01344-28-1	3.4E-02	1.7E-05	0.86	4.3E-04		
Zinc oxide	01314-13-2	1.0E-02	5.2E-06	0.26	1.3E-04		
Magnesium oxide	01309-48-4	2.9E-03	1.5E-06	7.4E-02	3.7E-05		
Barium oxide	01304-28-5	4.6E-04	2.3E-07	1.2E-02	5.8E-06		
Silver oxide	20667-12-3	1.2E-04	6.1E-08	3.1E-03	1.5E-06		
Total HAPs	NY100-00-0	7.5E-03	3.7E-06	0.19	9.4E-05		
Lead oxide	01314-41-6	4.1E-03	2.0E-06	0.10	5.2E-05		
Manganese oxide	01313-13-9	2.9E-03	1.5E-06	7.4E-02	3.7E-05		
Nickel oxide	01313-99-1	2.6E-04	1.3E-07	6.6E-03	3.3E-06		
Cadmium oxide	01306-19-0	8.4E-05	4.2E-08	2.1E-03	1.1E-06		
Chromium oxide	01333-82-0	1.2E-04	5.8E-08	2.9E-03	1.5E-06		
Mercury oxide	21908-53-2	1.1E-06	5.5E-10	2.8E-05	1.4E-08		
U-ROLL1 (Table 9)							
Total Particulate Matter	NY075-00-0	9,282	4.6	22,232	11		
PM ₁₀	NY075-00-5	9,039	4.5	21,891	11		
PM _{2.5}	NY075-02-5	7,960	4.0	20,424	10		
Propane-1,2-diol	00057-55-6	111	5.6E-02	166	8.3E-02		
Hexylene glycol	00107-41-5	59	2.9E-02	68	3.4E-02		
2-Butoxyethanol	00111-76-2	2.2E-07	1.1E-10	1.3E-06	6.3E-10		
2-Amino-2-methyl-1-propanol	00124-68-5	3.0E-02	1.5E-05	0.18	8.8E-05		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential <i>F</i> Emission		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Alkanolamine	00141-43-5	195	9.8E-02	476	0.24		
1,2-Benzisothiazol-3(2H)-one	02634-33-5	11	5.6E-03	17	8.3E-03		
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	243	0.12	540	0.27		
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	111	5.6E-02	166	8.3E-02		
Nonylphenol, ethoxylated	09016-45-9	193	9.7E-02	473	0.24		
Fatty alcohol alkoxylate	37335-03-8	0.15	7.6E-05	0.88	4.4E-04		
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	186	9.3E-02	277	0.14		
Amines, tallow alkyl, ethoxylated	61791-26-2	111	5.6E-02	166	8.3E-02		
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	1,000	0.50	1,162	0.58		
Hydrotreated light naphthenic petroleum oil	64742-53-6	0.79	3.9E-04	4.6	2.3E-03		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	754	0.38	7,293	3.6		
Sulfonic acids, petroleum, sodium salts	68608-26-4	305	0.15	639	0.32		
Petroleum distillates	Trade Secret #1	4.3E-06	2.2E-09	2.5E-05	1.3E-08		
Petroleum distillates (mineral oil)	Trade Secret #2	(b)	(b)	(b)	(b)		
Base oil	Trade Secret #3	193	9.7E-02	473	0.24		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	3,340	1.7	4,993	2.5		
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	111	5.6E-02	166	8.3E-02		
Trade Secret	Trade Secret #8	371	0.19	555	0.28		
U-OVER1 (Table 10)							
Total Particulate Matter	NY075-00-0	17,713	8.9	19,441	10		
PM ₁₀	NY075-00-5	4,368	2.2	4,794	2.4		
PM _{2.5}	NY075-02-5	4,004	2.0	4,394	2.2		
Copper	07440-50-8	2,250	1.1	2,470	1.2		
Tin	07440-31-5	3.3E-02	1.6E-05	3.6E-02	1.8E-05		
Silver	07440-22-4	1.5E-02	7.3E-06	1.6E-02	8.0E-06		
Tellurium	13494-80-9	3.6E-03	1.8E-06	4.0E-03	2.0E-06		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential <i>F</i> Emission		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	2,208	1.1	2,424	1.2		
Proprietary emulsifier	Trade Secret #6	315	0.16	346	0.17		
HAPs	NY100-00-0	2.3E-03	1.2E-06	2.6E-03	1.3E-06		
Phosphorus	07723-14-0	2.3E-03	1.2E-06	2.6E-03	1.3E-06		
U-ANNE1 (Table 11)							
VOC	NY998-00-0	187	9.3E-02	521	0.26		
Diethylene glycol	00111-46-6	8.1	4.1E-03	13	6.4E-03		
2-Butoxyethanol	00111-76-2	10	5.1E-03	14	7.2E-03		
Petroleum distillates (mineral oil)	08042-47-5	2.4	1.2E-03	10	5.1E-03		
Polyethylene glycol	25322-68-3	11	5.3E-03	20	9.8E-03		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	156	7.8E-02	456	0.23		
Petroleum distillates	Trade Secret #1	15	7.6E-03	29	1.5E-02		
Azole derivative	Trade Secret #7	10	5.2E-03	18	9.0E-03		
U-ANNE1 - Pickling (Table 12)							
Total Particulate Matter	NY075-00-0	1,276	0.64	1,276	0.64		
PM ₁₀	NY075-00-5	1,276	0.64	1,276	0.64		
PM _{2.5}	NY075-02-5	1,276	0.64	1,276	0.64		
Sulfuric acid	07664-93-9	1,276	0.64	1,276	0.64		
U-ANNE1 - Cleaning (Table 13)							
Total Particulate Matter	NY075-00-0	152	7.6E-02	312	0.16		
PM ₁₀	NY075-00-5	152	7.6E-02	312	0.16		
PM _{2.5}	NY075-02-5	152	7.6E-02	312	0.16		
Diethylene glycol	00111-46-6	1.6E-02	8.0E-06	9.8E-02	4.9E-05		
Sodium metasilicate	06834-92-0	13	6.7E-03	26	1.3E-02		
lydrogen peroxide	07722-84-1	18	8.9E-03	49	2.4E-02		
Sodium phosphate, tribasic	10101-89-0	5.3	2.7E-03	10	5.2E-03		
Polyethylene glycol	25322-68-3	0.19	9.6E-05	1.2	5.9E-04		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential <i>F</i> Emission		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Azole derivative	Trade Secret #7	0.19	9.6E-05	1.2	5.9E-04		
U-GALV1 Molten Tank (Table 14)							
Total Particulate Matter	NY075-00-0	3.9	1.9E-03	183	9.2E-02		
PM_{10}	NY075-00-5	3.9	1.9E-03	183	9.2E-02		
PM _{2.5}	NY075-02-5	3.9	1.9E-03	183	9.2E-02		
Zinc	07440-66-6	1.9	9.6E-04	91	4.5E-02		
Tin	07440-31-5	1.9	9.6E-04	91	4.5E-02		
Zinc chloride	07646-85-7	2.7E-02	1.4E-05	1.3	6.4E-04		
Ammonium chloride	12125-02-9	1.2E-02	5.8E-06	0.55	2.7E-04		
U-GALV1 Acid Tank (Table 15)							
Total Particulate Matter	NY075-00-0	3.3	1.6E-03	155	7.8E-02		
PM_{10}	NY075-00-5	3.3	1.6E-03	155	7.8E-02		
PM _{2.5}	NY075-02-5	3.3	1.6E-03	155	7.8E-02		
Zinc chloride	07646-85-7	0.25	1.3E-04	12	6.0E-03		
Barium chloride	10361-37-2	0.25	1.3E-04	12	6.0E-03		
Ammonium chloride	12125-02-9	0.25	1.3E-04	12	6.0E-03		
HAPs	NY100-00-0	2.5	1.3E-03	119	6.0E-02		
Hydrogen chloride	07647-01-0	2.5	1.3E-03	119	6.0E-02		
Parts Washer (Table 16)							
VOC	NY998-00-0	181	9.1E-02	434	0.22		
Distillates, petroleum, hydrotreated light	64742-47-8	181	9.1E-02	434	0.22		
Process Source Emissions Subject to Part	212, Total						
Total Particulate Matter	NY075-00-0	39,980	20	66,585	33		
PM_{10}	NY075-00-5	20,831	10	42,153	21		
$PM_{2.5}$	NY075-02-5	15,496	7.7	31,657	16		
Propane-1,2-diol	00057-55-6	111	5.6E-02	166	8.3E-02		
Hexylene glycol	00107-41-5	59	2.9E-02	68	3.4E-02		
2-Amino-2-methyl-1-propanol	00124-68-5	3.0E-02	1.5E-05	0.18	8.8E-05		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ai Emissi		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Alkanolamine	00141-43-5	195	9.8E-02	476	0.24		
Barium oxide	01304-28-5	0.42	2.1E-04	0.85	4.3E-04		
Iron oxide	01309-37-1	1,049	0.52	2,112	1.1		
Magnesium oxide	01309-48-4	2.7	1.4E-03	5.4	2.7E-03		
Zinc oxide	01314-13-2	9.7	4.8E-03	19	9.7E-03		
Copper oxide	01317-38-0	3,528	1.8	7,106	3.6		
Aluminum oxide	01344-28-1	32	1.6E-02	64	3.2E-02		
1,2-Benzisothiazol-3(2H)-one	02634-33-5	11	5.6E-03	17	8.3E-03		
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	243	0.12	540	0.27		
Sodium metasilicate	06834-92-0	13	6.7E-03	26	1.3E-02		
Silver	07440-22-4	1.5E-02	7.3E-06	1.6E-02	8.0E-06		
Tin	07440-31-5	1.9	9.7E-04	91	4.5E-02		
Copper	07440-50-8	2,250	1.1	2,470	1.2		
Zinc	07440-66-6	1.9	9.6E-04	91	4.5E-02		
Zinc chloride	07646-85-7	0.28	1.4E-04	13	6.6E-03		
Hydrogen chloride	07647-01-0	2.5	1.3E-03	119	6.0E-02		
Sulfuric acid	07664-93-9	1,276	0.64	1,276	0.64		
Hydrogen peroxide	07722-84-1	18	8.9E-03	49	2.4E-02		
Graphite	07782-42-5	4,620	2.3	9,306	4.7		
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	111	5.6E-02	166	8.3E-02		
Nonylphenol, ethoxylated	09016-45-9	193	9.7E-02	473	0.24		
Sodium phosphate, tribasic	10101-89-0	5.3	2.7E-03	10	5.2E-03		
Barium chloride	10361-37-2	0.25	1.3E-04	12	6.0E-03		
Ammonium chloride	12125-02-9	0.26	1.3E-04	12	6.2E-03		
Tellurium	13494-80-9	3.6E-03	1.8E-06	4.0E-03	2.0E-06		
Silver oxide	20667-12-3	0.11	5.6E-05	0.23	1.1E-04		
Fatty alcohol alkoxylate	37335-03-8	0.15	7.6E-05	0.88	4.4E-04		
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	186	9.3E-02	277	0.14		
Amines, tallow alkyl, ethoxylated	61791-26-2	111	5.6E-02	166	8.3E-02		
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	1,000	0.50	1,162	0.58		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ar Emissi		Potential A Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Hydrotreated light naphthenic petroleum oil	64742-53-6	0.79	3.9E-04	4.6	2.3E-03		
Sulfonic acids, petroleum, sodium salts	68608-26-4	305	0.15	639	0.32		
Petroleum distillates (mineral oil)	Trade Secret #2	(b)	(b)	(b)	(b)		
Base oil	Trade Secret #3	193	9.7E-02	473	0.24		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	5,548	2.8	7,417	3.7		
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	111	5.6E-02	166	8.3E-02		
Proprietary emulsifier	Trade Secret #6	315	0.16	346	0.17		
Trade Secret	Trade Secret #8	371	0.19	555	0.28		
VOC	NY998-00-0	368	0.18	955	0.48		
Petroleum distillates (mineral oil)	08042-47-5	2.4	1.2E-03	10	5.1E-03		
Distillates, petroleum, hydrotreated light	64742-47-8	181	9.1E-02	434	0.22		
Particulate/VOC ^(c)							
Diethylene glycol	00111-46-6	8.1	4.1E-03	13	6.4E-03		
2-Butoxyethanol	00111-76-2	10	5.1E-03	14	7.2E-03		
Polyethylene glycol	25322-68-3	11	5.4E-03	21	1.0E-02		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	910	0.46	7,749	3.9		
Petroleum distillates	Trade Secret #1	15	7.6E-03	29	1.5E-02		
Azole derivative	Trade Secret #7	11	5.3E-03	19	9.6E-03		
Total HAPs	NY100-00-0	9.1	4.5E-03	133	6.6E-02		
Cadmium oxide	01306-19-0	7.8E-02	3.9E-05	0.16	7.9E-05		
Nickel oxide	01313-99-1	0.24	1.2E-04	0.49	2.4E-04		
Lead oxide	01314-41-6	3.8	1.9E-03	7.6	3.8E-03		
Chromium oxide	01333-82-0	0.11	5.4E-05	0.22	1.1E-04		
Hydrogen chloride	07647-01-0	2.5	1.3E-03	119	6.0E-02		
Phosphorus	07723-14-0	2.3E-03	1.2E-06	2.6E-03	1.3E-06		
Mercury oxide	21908-53-2	1.0E-03	5.1E-07	2.1E-03	1.0E-06		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A Emissi		Potential A Emission		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Facility Total							
Carbon Monoxide	00630-08-0	49,626	25	187,098	94		100
Nitrogen Oxides	NY210-00-0	60,262	30	299,296	150	95	100
Sulfur Dioxide	07446-09-5	372	0.19	2,601	1.3	95	100
Carbon Dioxide	00124-38-9	71,138,289	35,569	312,837,596	156,419		
Methane	00074-82-8	1,363	0.68	6,295	3.1		
Nitrous Oxide	10024-97-2	184	0.09	8,381	4.2		
Carbon Dioxide Equivalents	CO2e	71,262,402	35,631	312,458,109	156,229		
Total Particulate Matter	NY075-00-0	44,768	22	103,357	52	90	
PM ₁₀	NY075-00-5	25,576	13	58,857	29	90	100
PM _{2.5}	NY075-02-5	20,110	10	48,273	24	90	100
Propane-1,2-diol	00057-55-6	111	5.6E-02	166	8.3E-02		
Hexylene glycol	00107-41-5	59	2.9E-02	68	3.4E-02		
2-Amino-2-methyl-1-propanol	00124-68-5	3.0E-02	1.5E-05	0.18	8.8E-05		
Alkanolamine	00141-43-5	195	9.8E-02	476	0.24		
Barium oxide	01304-28-5	0.43	2.2E-04	8.5E-01	4.3E-04		
Iron oxide	01309-37-1	1,069	0.53	2,112	1.1		
Magnesium oxide	01309-48-4	2.8	1.4E-03	5.4	2.7E-03		
Zinc oxide	01314-13-2	9.9	4.9E-03	19	9.7E-03		
Copper oxide	01317-38-0	3,597	1.8	7,106	3.6		
Aluminum oxide	01344-28-1	32	1.6E-02	64	3.2E-02		
1,2-Benzisothiazol-3(2H)-one	02634-33-5	11	5.6E-03	17	8.3E-03		
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	243	0.12	540	0.27		
Sodium metasilicate	06834-92-0	13.3	6.7E-03	26	1.3E-02		
Silver	07440-22-4	1.5E-02	7.3E-06	1.6E-02	8.0E-06		
Tin	07440-31-5	1.9	9.7E-04	91	4.5E-02		
Copper	07440-50-8	2,250	1.1	2,470	1.2		
Zinc	07440-66-6	1.9	9.6E-04	91	4.5E-02		
Zinc chloride	07646-85-7	0.28	1.4E-04	13	6.6E-03		
Hydrogen chloride	07647-01-0	2.5	1.3E-03	119	6.0E-02		
Sulfuric acid	07664-93-9	1,276	0.64	1,276	0.64		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual Ai Emissi		Potential A Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Hydrogen peroxide	07722-84-1	18	8.9E-03	49	2.4E-02		_
Graphite	07782-42-5	4,710	2.4	9,306	4.7		
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	111	5.6E-02	166	8.3E-02		
Nonylphenol, ethoxylated	09016-45-9	193	9.7E-02	473	0.24		
Sodium phosphate, tribasic	10101-89-0	5.3	2.7E-03	10	5.2E-03		
Barium chloride	10361-37-2	0.25	1.3E-04	12	6.0E-03		
Ammonium chloride	12125-02-9	0.26	1.3E-04	12	6.2E-03		
Tellurium	13494-80-9	3.6E-03	1.8E-06	4.0E-03	2.0E-06		
Silver oxide	20667-12-3	0.11	5.7E-05	0.23	1.1E-04		
Fatty alcohol alkoxylate	37335-03-8	0.15	7.6E-05	0.88	4.4E-04		
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	186	9.3E-02	277	0.14		
Amines, tallow alkyl, ethoxylated	61791-26-2	111	5.6E-02	166	8.3E-02		
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	1,000	0.50	1,162	0.58		
Hydrotreated light naphthenic petroleum oil	64742-53-6	0.79	3.9E-04	4.6	2.3E-03		
Sulfonic acids, petroleum, sodium salts	68608-26-4	305	0.15	639	0.32		
Petroleum distillates (mineral oil)	Trade Secret #2	(b)	(b)	(b)	(b)		
Base oil	Trade Secret #3	193	9.7E-02	473	0.24		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	5,548	2.8	7,417	3.7		
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	111	5.6E-02	166	8.3E-02		
Proprietary emulsifier	Trade Secret #6	315	0.16	346	0.17		
Trade Secret	Trade Secret #8	371	0.19	555	0.28		
Volatile Organic Compounds	NY998-00-0	3,628	1.8	13,873	6.9		50
Petroleum distillates (mineral oil)	08042-47-5	2.4	1.2E-03	10	5.1E-03		
Distillates, petroleum, hydrotreated light	64742-47-8	181	9.1E-02	434	0.22		
Particulate/VOC ^(c)							
Diethylene glycol	00111-46-6	8.1	4.1E-03	13	6.4E-03		
2-Butoxyethanol	00111-76-2	10	5.1E-03	14	7.2E-03		
Polyethylene glycol	25322-68-3	11	5.4E-03	21	1.0E-02		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	910	0.46	7,749	3.9		

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A		Potential <i>E</i>		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Petroleum distillates	Trade Secret #1	15	7.6E-03	29	1.5E-02		
Azole derivative	Trade Secret #7	11	5.3E-03	19	9.6E-03		
Total HAPs	NY100-00-0	1,120	0.56	4,206	2.1		25
Formaldehyde	00050-00-0	49	2.4E-02	671	0.34		10
Benz(a)pyrene	00050-32-8	4.4E-05	2.2E-08	2.5E-03	1.3E-06		10
Dibenzo(a,h)anthracene	00053-70-3	6.9E-05	3.4E-08	3.6E-03	1.8E-06		10
Carbon Tetrachloride	00056-23-5	1.1E-03	5.6E-07	4.5E-02	2.3E-05		10
Benz(a)anthracene	00056-55-3	1.4E-04	7.1E-08	6.8E-03	3.4E-06		10
Chloroform	00067-66-3	8.7E-04	4.3E-07	3.5E-02	1.7E-05		10
Benzene	00071-43-2	1.4	7.0E-04	13	6.5E-03		10
Chloroethane	00075-00-3	5.3E-05	2.6E-08	2.2E-03	1.1E-06		10
Vinyl Chloride	00075-01-4	4.5E-04	2.3E-07	1.8E-02	9.1E-06		10
Acetaldehyde	00075-07-0	0.27	1.4E-04	11	5.4E-03		10
1,1-Dichloroethane	00075-34-3	7.2E-04	3.6E-07	2.9E-02	1.4E-05		10
1,2-Dichloropropane	00078-87-5	8.2E-04	4.1E-07	3.3E-02	1.6E-05		10
1,1,2-Trichloroethane	00079-00-5	9.7E-04	4.8E-07	3.9E-02	2.0E-05		10
1,1,2,2-Tetrachloroethane	00079-34-5	1.2E-03	6.2E-07	5.0E-02	2.5E-05		10
Acenaphthene	00083-32-9	7.8E-04	3.9E-07	4.6E-02	2.3E-05		10
Phenanthrene	00085-01-8	7.3E-03	3.6E-06	0.41	2.1E-04		10
Fluorene	00086-73-7	2.9E-03	1.5E-06	0.14	7.2E-05		10
Naphthalene	00091-20-3	0.38	1.9E-04	2.6	1.3E-03		10
Biphenyl	00092-52-4	6.0E-03	3.0E-06	0.25	1.2E-04		10
Ethylbenzene	00100-41-4	1.2E-03	6.2E-07	4.9E-02	2.5E-05		10
Styrene	00100-42-5	7.2E-04	3.6E-07	2.9E-02	1.5E-05		10
Ethylene Dibromide	00106-93-4	1.3E-03	6.7E-07	5.4E-02	2.7E-05		10
Acrolein	00107-02-8	0.16	8.0E-05	6.5	3.2E-03		10
Ethylene Dichloride	00107-06-2	1.4E-03	7.2E-07	5.8E-02	2.9E-05		10
Toluene	00108-88-3	2.1	1.0E-03	11	5.3E-03		10
Chlorobenzene	00108-90-7	9.2E-04	4.6E-07	3.7E-02	1.9E-05		10
Hexane	00110-54-3	1,053	0.53	3,787	1.9		10
Anthracene	00120-12-7	2.4E-04	1.2E-07	1.3E-02	6.3E-06		10
Pyrene	00129-00-0	7.3E-04	3.7E-07	3.9E-02	2.0E-05		10

Table 2
Summary of Facility Total Actual and Potential Emissions

		Actual A		Potential A Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)
Benzo(g,h,i)perylene	00191-24-2	1.1E-04	5.5E-08	6.0E-03	3.0E-06		10
Benzo(e)pyrene	00192-97-2	1.2E-05	5.8E-09	4.9E-04	2.4E-07		10
Indeno(1,2,3-cd)pyrene	00193-39-5	7.3E-05	3.6E-08	4.1E-03	2.0E-06		10
Benzo(b)fluoranthene	00205-99-2	1.7E-04	8.7E-08	1.1E-02	5.3E-06		10
Fluoranthene	00206-44-0	8.6E-04	4.3E-07	4.3E-02	2.2E-05		10
Benzo(b,k)fluoranthene	00207-08-9	3.7E-05	1.9E-08	2.1E-03	1.1E-06		10
Acenaphthylene	00208-96-8	1.7E-03	8.4E-07	9.6E-02	4.8E-05		10
Chrysene	00218-01-9	2.6E-04	1.3E-07	1.5E-02	7.7E-06		10
2,2,4-Trimethylpentane	00540-84-1	7.0E-03	3.5E-06	0.29	1.5E-04		10
1,3-Dichloropropene	00542-75-6	8.0E-04	4.0E-07	3.2E-02	1.6E-05		10
Cadmium oxide	01306-19-0	8.0E-02	4.0E-05	0.16	7.9E-05		10
Nickel oxide	01313-99-1	0.25	1.2E-04	0.49	2.4E-04		10
Lead oxide	01314-41-6	3.9	1.9E-03	7.6	3.8E-03		10
Xylenes	01330-20-7	4.3E-02	2.2E-05	2.2	1.1E-03		10
Chromium oxide	01333-82-0	1.1E-01	5.5E-05	0.22	1.1E-04		10
Lead	07439-92-1	0.36	1.8E-04	12	5.8E-03		10
Manganese	07439-96-5	0.32	1.6E-04	15	7.6E-03		10
Mercury	07439-96-5	0.32	1.6E-04	15	7.6E-03		10
Nickel	07440-02-0	1.3	6.3E-04	5.6	2.8E-03		10
Arsenic	07440-38-2	0.15	7.4E-05	5.1	2.6E-03		10
Beryllium	07440-41-7	3.1E-02	1.5E-05	3.7	1.9E-03		10
Cadmium	07440-43-9	0.67	3.3E-04	4.7	2.3E-03		10
Chromium	07440-47-3	0.8	4.2E-04	5.0	2.5E-03		10
Cobalt	07440-48-4	4.9E-02	2.5E-05	0.18	8.8E-05		10
Hydrogen chloride	07647-01-0	2.5	1.3E-03	119	6.0E-02		10
Phosphorus	07723-14-0	2.3E-03	1.2E-06	2.6E-03	1.3E-06		10
Selenium	07782-49-2	0.13	6.6E-05	19	9.3E-03		10
PAH	130498-29-2	1.4E-03	7.1E-07	4.8E-02	2.4E-05		10
Mercury oxide	21908-53-2	1.0E-03	5.2E-07	2.1E-03	1.0E-06		10
Dichlorobenzene	25321-22-6	0.70	3.5E-04	2.5	1.3E-03		10
Polycyclic Organic Matter	POM	0.24	1.2E-04	29	1.5E-02		10

Table 2 Summary of Facility Total Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

		Actual A		Potential Emiss		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(lb/yr)	(tpy)	(tpy)	(tpy)

Notes:

- (a) Emission caps are based on existing and proposed caps. The sulfur dioxide cap will no longer be required due to the change from No. 6 to No. 2 fuel oil combustion by the boilers and the current sulfur content limit of No. 2 fuel oil. Based on the updated emission estimates, the Total Particulate Matter, PM_{10} , and $PM_{2.5}$ caps will no longer be required.
- (b) This pollutant is present in a biocide applied on some of the Rolling Mills and was included in the prior permit application as being potentially emitted from the Rolling Mills. Upon further investigation, the biocide is completely consumed by the bacteria within 24 hours of application and is not expected to be released to the atmosphere. As such, this biocide has been removed from the Emission Inventory tables. This pollutant has been left in the inventory to maintain the same Trade Secret identification methodology to avoid possible confusion.
- (c) Contaminants in this section are emitted as a particulate oil mist from some processes and as gaseous VOCs from others.

Table 3

Natural Gas Combustion

Summary of Actual and Potential Emissions

Building, Sources, and		Emission	Total Heat	Future Projected	Potential	Actual A	nnual	Potential A	Annual
Pollutants	CAS Number	Factors ^(a)	Input Rating Fu	•		Emissio		Emissio	
		(lb/MMscf)	(MMBtu/hr) (M	•	_	(lb/yr)	(tpy)	(lb/yr)	(tpy)
J-COMB1			141	94.5	1,213				. , , , ,
Three boilers (two at 42 MMBtu	u/hr ea and one a	at 57.2 MMBtu/l	nr) firing natural ga	as.					
Carbon Monoxide	00630-08-0	84				7,938	4.0	101,863	51
Nitrogen Oxides	NY210-00-0	100				9,450	4.7	121,266	61
Sulfur Dioxide	07446-09-5	0.60				57	2.8E-02	728	0.36
PM (Total)	NY075-00-0	7.6				718	0.36	9,216	4.6
PM ₁₀	NY075-00-5	7.6				718	0.36	9,216	4.6
PM _{2.5}	NY075-02-5	7.6				718	0.36	9,216	4.6
Carbon Dioxide	00124-38-9	119,316				11,275,324	5,638	144,689,112	72,345
Methane	00074-82-8	2.2				213	0.11	2,727	1.4
Nitrous Oxide	10024-97-2	0.22				21	1.1E-02	273	0.14
Volatile Organic Compounds	NY998-00-0	5.5				520	0.26	6,670	3.3
Total HAPs	NY100-00-0					178	8.9E-02	2,290	1.1
Arsenic	07440-38-2	2.0E-04				1.9E-02	9.5E-06	0.24	1.2E-04
Benzene	00071-43-2	2.1E-03				0.20	9.9E-05	2.5	1.3E-03
Beryllium	07440-41-7	1.2E-05				1.1E-03	5.7E-07	1.5E-02	7.3E-06
Cadmium	07440-43-9	1.1E-03				0.10	5.2E-05	1.3	6.7E-04
Chromium	07440-47-3	1.4E-03				0.13	6.6E-05	1.7	8.5E-04
Cobalt	07440-48-4	8.4E-05				7.9E-03	4.0E-06	0.10	5.1E-05
Dichlorobenzene	25321-22-6	1.2E-03				0.11	5.7E-05	1.5	7.3E-04
Formaldehyde	00050-00-0	7.5E-02				7.1	3.5E-03	91	4.5E-02
Hexane	00110-54-3	1.8				170	8.5E-02	2,183	1.1
Lead	07439-92-1	5.0E-04				4.7E-02	2.4E-05	0.61	3.0E-04
Manganese	07439-96-5	3.8E-04				3.6E-02	1.8E-05	0.46	2.3E-04
Mercury	07439-97-6	2.6E-04				2.5E-02	1.2E-05	0.32	1.6E-04
Naphthalene	00091-20-3	6.1E-04				5.8E-02	2.9E-05	0.74	3.7E-04
Nickel	07440-02-0	2.1E-03				0.20	9.9E-05	2.5	1.3E-03
Polycyclic Organic Matter	POM	8.8E-05				8.3E-03	4.2E-06	0.11	5.3E-05
Selenium	07782-49-2	2.4E-05				2.3E-03	1.1E-06	2.9E-02	1.5E-05
Toluene	00108-88-3	3.4E-03				0.32	1.6E-04	4.1	2.1E-03

Table 3

Natural Gas Combustion

Summary of Actual and Potential Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factors ^(a)		uture ojected Usage ^(b)	Potential Fuel Usage ^(c)	Actual A Emissio		Potential <i>F</i> Emission	
		(lb/MMscf)	(MMBtu/hr) (MM	_	_	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Miscellaneous Facility-Wide			97	434	830				
Facility-Wide Natural Gas Com	bustion across all	other combust	ion units.						
Carbon Monoxide	00630-08-0	84				36,491	18	69,688	3
Nitrogen Oxides	NY210-00-0	100				43,442	22	82,962	4
Sulfur Dioxide	07446-09-5	0.60				261	0.13	498	0.2
PM (Total)	NY075-00-0	7.6				3,302	1.7	6,305	3
PM ₁₀	NY075-00-5	7.6				3,302	1.7	6,305	3
PM _{2.5}	NY075-02-5	7.6				3,302	1.7	6,305	3
Carbon Dioxide	00124-38-9	119,316				51,832,501	25,916	98,986,740	49,49
Methane	00074-82-8	2.2				977	0.49	1,866	0.9
Nitrous Oxide	10024-97-2	0.22				98	4.9E-02	187	9.3E-0
Volatile Organic Compounds	NY998-00-0	5.5				2,389	1.2	4,563	2
Total HAPs	NY100-00-0					820	0.41	1,567	0.
Arsenic	07440-38-2	2.0E-04				8.7E-02	4.3E-05	0.17	8.3E-
Benzene	00071-43-2	2.1E-03				0.91	4.6E-04	1.7	8.7E-
Beryllium	07440-41-7	1.2E-05				5.2E-03	2.6E-06	1.0E-02	5.0E-
Cadmium	07440-43-9	1.1E-03				0.48	2.4E-04	0.91	4.6E-
Chromium	07440-47-3	1.4E-03				0.61	3.0E-04	1.2	5.8E-
Cobalt	07440-48-4	8.4E-05				3.6E-02	1.8E-05	7.0E-02	3.5E-
Dichlorobenzene	25321-22-6	1.2E-03				0.52	2.6E-04	1.00	5.0E-
Formaldehyde	00050-00-0	7.5E-02				33	1.6E-02	62	3.1E-
Hexane	00110-54-3	1.8				782	0.39	1,493	0.
Lead	07439-92-1	5.0E-04				0.22	1.1E-04	0.41	2.1E-
Manganese	07439-96-5	3.8E-04				0.17	8.3E-05	0.32	1.6E-
Mercury	07439-97-6	2.6E-04				0.11	5.6E-05	0.22	1.1E-
Naphthalene	00091-20-3	6.1E-04				0.26	1.3E-04	0.51	2.5E-
Nickel	07440-02-0	2.1E-03				0.91	4.6E-04	1.7	8.7E-
Polycyclic Organic Matter	POM	8.8E-05				3.8E-02	1.9E-05	7.3E-02	3.7E-
Selenium	07782-49-2	2.4E-05				1.0E-02	5.2E-06	2.0E-02	1.0E-0
Toluene	00108-88-3	3.4E-03				1.5	7.4E-04	2.8	1.4E-0

Table 3

Natural Gas Combustion Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

				Future					
Building, Sources, and		Emission	Total Heat	Projected	Potential	Actual A	Innual	Potential	Annual
Pollutants	CAS Number	Factors (a)	Input Rating	Fuel Usage ^(b)	Fuel Usage ^(c)	Emissi	ons ^(d)	Emissi	ons ^(e)
		(lb/MMscf)	(MMBtu/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

Notes:

- (a) The emission factors were obtained from the USEPA's Compilation of Air Pollution Emission Factors (AP-42), Volume I, 5th Edition, Section 1.4 Natural Gas Combustion (July 1998). Greenhouse gas emission factors were obtained from 40 CFR Part 98 Subpart C Tables C-1 and C-2.
- (b) The Future Projected Fuel Usage for the miscellaneous units (other than the main boilers) is scaled up from 2022 to reflect increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (c) Potential Fuel Usage (MMscf/yr) = Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) ÷ 1,020 (MMBtu/MMscf).
- (d) Actual Emissions (lb/yr) = Actual Fuel Usage (MMscf/yr) x Emission Factors (lb/MMscf).

Actual Emissions (ton/yr) = Actual Emissions (lb/yr) ÷ 2000 (lb/ton).

(e) Potential Emissions (lb/yr) = Potential Fuel Usage (MMscf/yr) x Emission Factors (lb/MMscf).

Potential Emissions (ton/yr) = Potential Emissions (lb/yr) \div 2000 (lb/ton).

Table 4 DXG Combustion^(a)

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Future Projected Fuel Usage ^(c)	Potential Fuel Usage ^(d)	Actual A Emissic		Potential <i>F</i> Emission	
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
01729-01734			1.25E-03	9.2	22				
Six Lee Wilson Annealing Uni									
Carbon Monoxide	00630-08-0	84				774	0.39	1,840	0.92
Nitrogen Oxides	NY210-00-0	100				922	0.46	2,190	1.1
Sulfur Dioxide	07446-09-5	0.6				5.5	2.8E-03	13	6.6E-03
PM (Total)	NY075-00-0	7.6				70	3.5E-02	166	8.3E-02
PM ₁₀	NY075-00-5	7.6				70	3.5E-02	166	8.3E-02
PM _{2.5}	NY075-02-5	7.6				70	3.5E-02	166	8.3E-02
Carbon Dioxide	00124-38-9	119,316				1,099,840	550	2,613,012	1,307
Methane	00074-82-8	2.2				21	1.0E-02	49	2.5E-02
Nitrous Oxide	10024-97-2	0.2				2.1	1.0E-03	4.9	2.5E-03
Volatile Organic Compounds	NY998-00-0	5.5				51	2.5E-02	120	6.0E-02
Total HAPs	NY100-00-0					17	8.7E-03	41	2.1E-02
Arsenic	07440-38-2	2.0E-04				1.8E-03	9.2E-07	4.4E-03	2.2E-06
Benzene	00071-43-2	2.1E-03				1.9E-02	9.7E-06	4.6E-02	2.3E-05
Beryllium	07440-41-7	1.2E-05				1.1E-04	5.5E-08	2.6E-04	1.3E-07
Cadmium	07440-43-9	1.1E-03				1.0E-02	5.1E-06	2.4E-02	1.2E-05
Chromium	07440-47-3	1.4E-03				1.3E-02	6.5E-06	3.1E-02	1.5E-05
Cobalt	07440-48-4	8.4E-05				7.7E-04	3.9E-07	1.8E-03	9.2E-07
Dichlorobenzene	25321-22-6	1.2E-03				1.1E-02	5.5E-06	2.6E-02	1.3E-05
Formaldehyde	00050-00-0	7.5E-02				0.69	3.5E-04	1.6	8.2E-04
Hexane	00110-54-3	1.8E+00				17	8.3E-03	39	2.0E-02
Lead	07439-92-1	5.00E-04				4.6E-03	2.3E-06	1.1E-02	5.5E-06
Manganese	07439-96-5	3.8E-04				3.5E-03	1.8E-06	8.3E-03	4.2E-06
Mercury	07439-97-6	2.6E-04				2.4E-03	1.2E-06	5.7E-03	2.8E-06
Naphthalene	00091-20-3	6.1E-04				5.6E-03	2.8E-06	1.3E-02	6.7E-06
Nickel	07440-02-0	2.1E-03				1.9E-02	9.7E-06	4.6E-02	2.3E-05
Polycyclic Organic Matter	POM	8.8E-05				8.1E-04	4.1E-07	1.9E-03	9.7E-07
Selenium	07782-49-2	2.4E-05				2.2E-04	1.1E-07	5.3E-04	2.6E-07
Toluene	00108-88-3	3.4E-03				3.1E-02	1.6E-05	7.4E-02	3.7E-05

Table 4

DXG Combustion^(a)

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Future Projected Fuel Usage ^(c)	Potential Fuel Usage ^(d)	Actual A	ons ^(e)	Potential <i>F</i> Emission	
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
01154			8.07E-04	4.5	7.1				
One Bright Anneal Unit in the		0.4				070	0.10	504	0.00
Carbon Monoxide	00630-08-0	84				378	0.19	594	0.30
Nitrogen Oxides	NY210-00-0	100				451	0.23	707	0.35
Sulfur Dioxide	07446-09-5	0.60				2.7	1.4E-03	4.2	2.1E-03
PM (Total)	NY075-00-0	7.6				34	1.7E-02	54	2.7E-02
PM ₁₀	NY075-00-5	7.6				34	1.7E-02	54	2.7E-02
PM _{2.5}	NY075-02-5	7.6				34	1.7E-02	54	2.7E-02
Volatile Organic Compounds	NY998-00-0	5.5				25	1.2E-02	39	1.9E-02
Carbon Dioxide	00124-38-9	119,316				537,596	269	843,480	422
Methane	00074-82-8	2.2				10	5.1E-03	16	7.9E-03
Nitrous Oxide	10024-97-2	0.22				1.0	5.1E-04	1.6	7.9E-04
Total HAPs	NY100-00-0					8.5	4.3E-03	13	6.7E-03
Arsenic	07440-38-2	2.0E-04				9.0E-04	4.5E-07	1.4E-03	7.1E-07
Benzene	00071-43-2	2.1E-03				9.5E-03	4.7E-06	1.5E-02	7.4E-06
Beryllium	07440-41-7	1.2E-05				5.4E-05	2.7E-08	8.5E-05	4.2E-08
Cadmium	07440-43-9	1.1E-03				5.0E-03	2.5E-06	7.8E-03	3.9E-06
Chromium	07440-47-3	1.4E-03				6.3E-03	3.2E-06	9.9E-03	4.9E-06
Cobalt	07440-48-4	8.4E-05				3.8E-04	1.9E-07	5.9E-04	3.0E-07
Dichlorobenzene	25321-22-6	1.2E-03				5.4E-03	2.7E-06	8.5E-03	4.2E-06
Formaldehyde	00050-00-0	7.5E-02				0.34	1.7E-04	0.53	2.7E-04
Lead	07439-92-1	5.0E-04				2.3E-03	1.1E-06	3.5E-03	1.8E-06
Hexane	00110-54-3	1.8				8.1	4.1E-03	13	6.4E-03
Manganese	07439-96-5	3.8E-04				1.7E-03	8.6E-07	2.7E-03	1.3E-06
Mercury	07439-97-6	2.6E-04				1.2E-03	5.9E-07	1.8E-03	9.2E-07
Naphthalene	00091-20-3	6.1E-04				2.7E-03	1.4E-06	4.3E-03	2.2E-06
Nickel	07440-02-0	2.1E-03				9.5E-03	4.7E-06	1.5E-02	7.4E-06
Polycyclic Organic Matter	POM	8.8E-05				4.0E-04	2.0E-07	6.2E-04	3.1E-07
Selenium	07782-49-2	2.4E-05				1.1E-04	5.4E-08	1.7E-04	8.5E-08
Toluene	00108-88-3	3.4E-03				1.5E-02	7.7E-06	2.4E-02	1.2E-05

Table 4

DXG Combustion^(a)

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Future Projected Fuel Usage ^(c)	Potential Fuel Usage ^(d)	Actual A Emissic	ons ^(e)	Potential <i>F</i>	
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
01738	5 W 14W		1.47E-03	37	13				
One Strand Anneal Unit in the		0.4				2.002	4 -	1.070	0.54
Carbon Monoxide	00630-08-0	84				3,082	1.5	1,079	0.54
Nitrogen Oxides	NY210-00-0	100				3,669	1.8	1,285	0.64
Sulfur Dioxide	07446-09-5	0.60				22	1.1E-02	7.7	3.9E-03
PM (Total)	NY075-00-0	7.6				279	1.4E-01	98	4.9E-02
PM ₁₀	NY075-00-5	7.6				279	1.4E-01	98	4.9E-02
PM _{2.5}	NY075-02-5	7.6				279	1.4E-01	98	4.9E-02
Volatile Organic Compounds	NY998-00-0	5.5				202	1.0E-01	71	3.5E-02
Carbon Dioxide	00124-38-9	119,316				4,377,426	2,189	1,533,315	767
Methane	00074-82-8	2.2				82	4.1E-02	29	1.4E-02
Nitrous Oxide	10024-97-2	0.22				8.2	4.1E-03	2.9	1.4E-03
Total HAPs	NY100-00-0					69	3.5E-02	24	1.2E-02
Arsenic	07440-38-2	2.0E-04				7.3E-03	3.7E-06	2.6E-03	1.3E-06
Benzene	00071-43-2	2.1E-03				7.7E-02	3.9E-05	2.7E-02	1.3E-05
Beryllium	07440-41-7	1.2E-05				4.4E-04	2.2E-07	1.5E-04	7.7E-08
Cadmium	07440-43-9	1.1E-03				4.0E-02	2.0E-05	1.4E-02	7.1E-06
Chromium	07440-47-3	1.4E-03				5.1E-02	2.6E-05	1.8E-02	9.0E-06
Cobalt	07440-48-4	8.4E-05				3.1E-03	1.5E-06	1.1E-03	5.4E-07
Dichlorobenzene	25321-22-6	1.2E-03				4.4E-02	2.2E-05	1.5E-02	7.7E-06
Formaldehyde	00050-00-0	7.5E-02				2.8	1.4E-03	0.96	4.8E-04
Hexane	00110-54-3	1.8				66	3.3E-02	23	1.2E-02
Lead	07439-92-1	5.0E-04				1.8E-02	9.2E-06	6.4E-03	3.2E-06
Manganese	07439-96-5	3.8E-04				1.4E-02	7.0E-06	4.9E-03	2.4E-06
Mercury	07439-97-6	2.6E-04				9.5E-03	4.8E-06	3.3E-03	1.7E-06
Naphthalene	00091-20-3	6.1E-04				2.2E-02	1.1E-05	7.8E-03	3.9E-06
Nickel	07440-02-0	2.1E-03				7.7E-02	3.9E-05	2.7E-02	1.3E-05
Polycyclic Organic Matter	POM	8.8E-05				3.2E-03	1.6E-06	1.1E-03	5.7E-07
Selenium	07782-49-2	2.4E-05				8.8E-04	4.4E-07	3.1E-04	1.5E-07
Toluene	00108-88-3	3.4E-03				0.12	6.2E-05	4.4E-02	2.2E-05

Table 4

DXG Combustion^(a)

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Future Projected Fuel Usage ^(c)	Potential Fuel Usage ^(d)	Actual A	ons ^(e)	Potential <i>F</i>	
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
00464	: D B4:1	•	2.19E-03	5.6	19				
One Tray Style/Coil Anneal U Carbon Monoxide	00630-08-0	84				472	0.24	1,611	0.81
Nitrogen Oxides	NY210-00-0	100				561	0.24	1,011	0.81
Sulfur Dioxide	07446-09-5	0.60				3.4	1.7E-03	1,910	5.8E-03
PM (Total)	NY075-00-0	7.6				43	2.1E-02	146	7.3E-02
PM ₁₀	NY075-00-5	7.6				43	2.1E-02	146	7.3E-02
PM _{2.5}	NY075-02-5	7.6				43	2.1E-02	146	7.3E-02
Volatile Organic Compounds	NY998-00-0	5.5				31	1.5E-02	106	5.3E-02
Carbon Dioxide	00124-38-9	119,316				669,778	335	2,288,998	1,144
Methane	00074-82-8	2.2				13	6.3E-03	43	2.2E-02
Nitrous Oxide	10024-97-2	0.22				1.3	6.3E-04	4.3	2.2E-03
Total HAPs	NY100-00-0					11	5.3E-03	36	1.8E-02
Arsenic	07440-38-2	2.0E-04				1.1E-03	5.6E-07	3.8E-03	1.9E-06
Benzene	00071-43-2	2.1E-03				1.2E-02	5.9E-06	4.0E-02	2.0E-05
Beryllium	07440-41-7	1.2E-05				6.7E-05	3.4E-08	2.3E-04	1.2E-07
Cadmium	07440-43-9	1.1E-03				6.2E-03	3.1E-06	2.1E-02	1.1E-05
Chromium	07440-47-3	1.4E-03				7.9E-03	3.9E-06	2.7E-02	1.3E-05
Cobalt	07440-48-4	8.4E-05				4.7E-04	2.4E-07	1.6E-03	8.1E-07
Dichlorobenzene	25321-22-6	1.2E-03				6.7E-03	3.4E-06	2.3E-02	1.2E-05
Formaldehyde	00050-00-0	7.5E-02				0.42	2.1E-04	1.4	7.2E-04
Hexane	00110-54-3	1.8				10	5.1E-03	35	1.7E-02
Lead	07439-92-1	5.0E-04				2.8E-03	1.4E-06	9.6E-03	4.8E-06
Manganese	07439-96-5	3.8E-04				2.1E-03	1.1E-06	7.3E-03	3.6E-06
Mercury	07439-97-6	2.6E-04				1.5E-03	7.3E-07	5.0E-03	2.5E-06
Naphthalene	00091-20-3	6.1E-04				3.4E-03	1.7E-06	1.2E-02	5.9E-06
Nickel	07440-02-0	2.1E-03				1.2E-02	5.9E-06	4.0E-02	2.0E-05
Polycyclic Organic Matter	POM	8.8E-05				5.0E-04	2.5E-07	1.7E-03	8.5E-07
Selenium	07782-49-2	2.4E-05				1.3E-04	6.7E-08	4.6E-04	2.3E-07
Toluene	00108-88-3	3.4E-03				1.9E-02	9.5E-06	6.5E-02	3.3E-05

Table 4 DXG Combustion^(a)

Summary of Actual and Potential Emissions Revere Copper Products Inc.

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Future Projected Fuel Usage ^(c)	Potential Fuel Usage ^(d)	Actual A Emissic		Potential <i>E</i>	
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Total				56.0					
Carbon Monoxide	00630-08-0					4,706	2.4	5,124	2.6
Nitrogen Oxides	NY210-00-0					5,602	2.8	6,100	3.1
Sulfur Dioxide	07446-09-5					34	1.7E-02	37	1.8E-02
PM (Total)	NY075-00-0					426	0.21	464	0.23
PM ₁₀	NY075-00-5					426	0.21	464	0.23
PM _{2.5}	NY075-02-5					426	0.21	464	0.23
Volatile Organic Compounds	NY998-00-0					308	0.15	336	0.17
Carbon Dioxide	00124-38-9					6,684,640	3,342	7,278,805	3,639
Methane	00074-82-8					126	6.3E-02	137	6.9E-02
Nitrous Oxide	10024-97-2					13	6.3E-03	14	6.9E-03
Total HAPs	NY100-00-0					106	5.3E-02	115	5.8E-02
Arsenic	07440-38-2					1.1E-02	5.6E-06	1.2E-02	6.1E-0
Benzene	00071-43-2					0.12	5.9E-05	0.13	6.4E-05
Beryllium	07440-41-7					6.7E-04	3.4E-07	7.3E-04	3.7E-07
Cadmium	07440-43-9					6.2E-02	3.1E-05	6.7E-02	3.4E-05
Chromium	07440-47-3					7.8E-02	3.9E-05	8.5E-02	4.3E-05
Cobalt	07440-48-4					4.7E-03	2.4E-06	5.1E-03	2.6E-06
Dichlorobenzene	25321-22-6					6.7E-02	3.4E-05	7.3E-02	3.7E-05
Formaldehyde	00050-00-0					4.2	2.1E-03	4.6	2.3E-03
Hexane	00110-54-3					101	5.0E-02	110	5.5E-02
Lead	07439-92-1					2.8E-02	1.4E-05	3.1E-02	1.5E-05
Manganese	07439-96-5					2.1E-02	1.1E-05	2.3E-02	1.2E-05
Mercury	07439-97-6					1.5E-02	7.3E-06	1.6E-02	7.9E-0
Naphthalene	00091-20-3					3.4E-02	1.7E-05	3.7E-02	1.9E-0
Nickel	07440-02-0					0.12	5.9E-05	0.13	6.4E-0
Polycyclic Organic Matter	POM					4.9E-03	2.5E-06	5.4E-03	2.7E-0
Selenium	07782-49-2					1.3E-03	6.7E-07	1.5E-03	7.3E-0
Toluene	00108-88-3					0.19	9.5E-05	0.21	1.0E-04

Table 4 DXG Combustion^(a)

Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

				Future					
Building, Sources, and		Emission	Hourly Gas	Projected	Potential	Actual A	Innual	Potential	Annual
Pollutants	CAS Number	Factor ^(b)	Flowrate	Fuel Usage ^(c)	Fuel Usage ^(d)	Emissi	ons ^(e)	Emissio	ns ^(f)
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(MMscf/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

Notes:

- (a) DX gas is a trademarked exothermic gas used to establish the atmosphere of the annealing furnaces. The gas is similar to combusted natural gas, so emissions were estimated using natural gas emission factors.
- (b) The emission factors were obtained from the USEPA's Compilation of Air Pollution Emission Factors (AP-42), Volume I, 5th Edition, Section 1.4 Natural Gas Combustion (July 1998).
- Greenhouse gas emission factors were obtained from 40 CFR Part 98 Subpart C Tables C-1 and C-2.
- (c) The Future Projected Fuel Usage is based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (d) Potential Fuel Usage (MMscf/yr) = Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) ÷ 1,020 (MMBtu/MMscf).
- For the Lee Wilson and Ebner Annealing Units, these each have two furnaces that have the potential to run for 8,760 hours each; therefore, the Potential Fuel Usage calculation above was multiplied by two for these units.
- (e) Actual Emissions (lb/yr) = Future Projected Fuel Usage (MMscf/yr) x Emission Factors (lb/MMscf).
- Actual Emissions (ton/yr) = Actual Emissions (lb/yr) \div 2000 (lb/ton).
- (f) Potential Emissions (lb/yr) = Potential Fuel Usage (MMscf/yr) x Emission Factors (lb/MMscf).
- Potential Emissions (ton/yr) = Potential Emissions (lb/yr) ÷ 2000 (lb/ton).

Table 5
Fuel Oil Boiler Combustion
Summary of Actual and Potential Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factors ^(a)	Total Heat Input Rating	Actual Fuel Usage ^(b)	Potential Fuel Usage ^(c)	Actual An Emissior		Potential A Emissior	
		(lb/10 ³ gal)	(MMBtu/hr)		(gal/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
U-COMB1	-		141	56,634	8,835,086				
Three boilers (two at 42 MM			*	ng No. 2 fue	el oil				
Carbon Monoxide	00630-08-0	5.0				283	0.14	44,175	22
Nitrogen Oxides	NY210-00-0	20				1,133	0.57	176,702	88
Sulfur Dioxide	07446-09-5	0.21				12	6.0E-03	1,882	0.94
Particulate Matter	NY075-00-0	3.3				187	9.3E-02	29,156	15
PM10	NY075-00-5	1.0				57	2.8E-02	8,835	4.4
PM2.5	NY075-02-5	0.25				14	7.1E-03	2,209	1.1
Carbon Dioxide	00124-38-9	23,179				1,312,719	656	204,789,904	102,395
Nitrous Oxide	10024-97-2	0.93				52	2.6E-02	8,181	4.1
Methane	00074-82-8	0.19				10	5.2E-03	1,636	0.82
Volatile Organic Compounds	NY998-00-0	0.20				11	5.7E-03	1,767	0.88
Total HAPs	NY100-00-0					4.0	2.0E-03	629	0.31
Arsenic	07440-38-2	5.6E-04				3.2E-02	1.6E-05	4.9	2.5E-03
Beryllium	07440-41-7	4.2E-04				2.4E-02	1.2E-05	3.7	1.9E-03
Cadmium	07440-43-9	4.2E-04				2.4E-02	1.2E-05	3.7	1.9E-03
Chromium	07440-47-3	4.2E-04				2.4E-02	1.2E-05	3.7	1.9E-03
Formaldehyde	00050-00-0	6.1E-02				3.5	1.7E-03	539	0.27
Lead	07439-92-1	1.3E-03				7.1E-02	3.6E-05	11	5.6E-03
Manganese	07439-96-5	8.4E-04				4.8E-02	2.4E-05	7.4	3.7E-03
Mercury	07439-96-5	4.2E-04				2.4E-02	1.2E-05	3.7	1.9E-03
Nickel	07440-02-0	4.2E-04				2.4E-02	1.2E-05	3.7	1.9E-03
Polycyclic Organic Matter	POM	3.3E-03				0.19	9.3E-05	29	1.5E-02
Selenium	07782-49-2	2.1E-03				0.12	5.9E-05	19	9.3E-03

Table 5

Fuel Oil Boiler Combustion Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

				Actual	Potential				
Building, Sources, and		Emission	Total Heat	Fuel	Fuel	Actual A	nnual	Potential	Annual
Pollutants	CAS Number	Factors (a)	Input Rating	Usage ^(b)	Usage ^(c)	Emissio	ns ^(d)	Emissio	ns ^(e)
		(lb/10 ³ gal)	(MMBtu/hr)	(gal/year)	(gal/year)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

Notes:

(a) The emission factors were obtained from the USEPA's Compilation of Air Pollution Emission Factors (AP-42), Volume I, 5th Edition, Section 1.3 - Fuel Oil Combustion (September 1998).

Greenhouse Gas emission factors were obtained from 40 CFR Part 98 Subpart C Tables C-1 and C-2.

- (b) Actual Fuel Usage is the equivalent amount of #2 fuel oil that corresponds to the 2021 amount of #6 fuel oil combusted by ratioing the fuel heating values.
- (c) Potential Fuel Usage (gal/yr) = Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) x 1,000,000 (Btu/MMBtu) ÷ Fuel Heating Value (Btu/gal).
- (d) Actual Emissions (lb/yr) = Actual Fuel Usage (gal/yr) x Emission Factors (lb/ 10^3 gal) \div 1000 (gal/ 10^3 gal).

Actual Emissions (ton/yr) = Actual Emissions (lb/yr) \div 2000 (lb/ton).

(e) Potential Emissions (lb/yr) = Potential Fuel Usage (gal/yr) x Emission Factors (lb/ 10^3 gal) \div 1000 (gal/ 10^3 gal). Potential Emissions (ton/yr) = Potential Emissions (lb/yr) \div 2000 (lb/ton).

Table 6
Facility-Wide Emergency Generators
Summary of Actual and Potential Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factors ^(a)	AP-42 Emission Factors ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Actual Operating Hours ^(c)	Potential Operating Hours ^(e)	Actual Annual I	Emissions ^(f)	Potential <i>I</i> Emission	
			(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(hr/yr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Powerhouse				125	168	1.2	25	499				
Diesel Fired 1960 GM Emergen	ncy Generator											
Carbon Monoxide	00630-08-0		0.95						27	1.4E-02	556	0.2
Nitrogen Oxides	NY210-00-0		4.4						127	6.4E-02	2,580	1.
Sulfur Dioxide	07446-09-5		0.29						8.4	4.2E-03	170	8.5E-0
PM (Total)	NY075-00-0		0.31						8.9	4.5E-03	181	9.1E-0
PM ₁₀	NY075-00-5		0.31						8.9	4.5E-03	181	9.1E-0
PM _{2.5}	NY075-02-5		0.31						8.9	4.5E-03	181	9.1E-0
Volatile Organic Compounds	NY998-00-0		0.36						10	5.2E-03	211	0.1
Carbon Dioxide	00124-38-9		164						4,730	2.4	95,953	4
Total HAPs	NY100-00-0								0.11	5.5E-05	2.2	1.1E-0
Acenaphthene	00083-32-9		1.4E-06						4.1E-05	2.0E-08	8.3E-04	4.2E-07
Acenaphthylene	00208-96-8		5.1E-06						1.5E-04	7.3E-08	3.0E-03	1.5E-0
Acetaldehyde	00075-07-0		7.7E-04						2.2E-02	1.1E-05	0.45	2.2E-0
Acrolein	00107-02-8		9.3E-05						2.7E-03	1.3E-06	5.4E-02	2.7E-0!
Anthracene	00120-12-7		1.9E-06						5.4E-05	2.7E-08	1.1E-03	5.5E-0
Benzene	00071-43-2		9.3E-04						2.7E-02	1.3E-05	0.55	2.7E-0
Benz(a)anthracene	00056-55-3		1.7E-06						4.8E-05	2.4E-08	9.8E-04	4.9E-0
Benz(a)pyrene	00050-32-8		1.9E-07						5.4E-06	2.7E-09	1.1E-04	5.5E-08
Benzo(b)fluoranthene	00205-99-2		9.9E-08						2.9E-06	1.4E-09	5.8E-05	2.9E-08
Benzo(g,h,i)perylene	00191-24-2		4.9E-07						1.4E-05	7.1E-09	2.9E-04	1.4E-0
Benzo(k)fluoranthene	00207-08-9		1.6E-07						4.5E-06	2.2E-09	9.1E-05	4.5E-0
Chrysene	00218-01-9		3.5E-07						1.0E-05	5.1E-09	2.1E-04	1.0E-0
Dibenzo(a,h)anthracene	00053-70-3		5.8E-07						1.7E-05	8.4E-09	3.4E-04	1.7E-0
Fluoranthene	00206-44-0		7.6E-06						2.2E-04	1.1E-07	4.5E-03	2.2E-0
Fluorene	00086-73-7		2.9E-05						8.4E-04	4.2E-07	1.7E-02	8.5E-06
Formaldehyde	00050-00-0		1.2E-03						3.4E-02	1.7E-05	0.69	3.5E-0
Indeno(1,2,3-cd)pyrene	00193-39-5		3.8E-07						1.1E-05	5.4E-09	2.2E-04	1.1E-0
Naphthalene	00091-20-3		8.5E-05						2.4E-03	1.2E-06	5.0E-02	2.5E-0
Phenanthrene	00091-20-3		2.9E-05						8.5E-04	4.2E-07	1.7E-02	8.6E-0
Pyrene	00083-01-8		4.8E-06						1.4E-04	4.2E-07 6.9E-08	2.8E-03	1.4E-0
Toluene	00124-00-0		4.8E-06 4.1E-04						1.2E-02	5.9E-06	0.24	1.4E-0
Xylenes	01330-20-7		2.9E-04						8.2E-03	4.1E-06	0.17	8.3E-0
Ayleries	01330-20-7		2.96-04						0.2L-03	4.1L-00	0.17	0.3L-0
Soap House				2000	2680	19	8.0	499				
Diesel Fired 1999 Caterpillar Ei			0.05						100	/ 45 00	7.057	4
Carbon Monoxide	00630-08-0		0.85						128	6.4E-02	7,957	4.
Nitrogen Oxides	NY210-00-0		3.2						480	0.24	29,956	1!
Sulfur Dioxide	07446-09-5		1.5E-03						0.23	1.1E-04	14	7.1E-0
PM (Total)	NY075-00-0		7.0E-02						10	5.2E-03	652	0.3

Table 6
Facility-Wide Emergency Generators
Summary of Actual and Potential Emissions

Building, Sources, and	OAC N	NSPS Emission Factors ^(a)	AP-42 Emission	Power Output	Power Output	Maximum	Actual Operating	Potential Operating	0-4	(f)	Potential /	
Pollutants	CAS Number		Factors ^(b) (lb/MMBtu)	Rating ^(c) (kW)	Rating ^(c) (HP)	Heat Input ^(d) (MMBtu/hr)	Hours ^(c) (hr/yr)	Hours ^(e) (hr/yr)	Actual Annual I (lb/yr)	tpy)	Emission (lb/yr)	ns (tpy)
PM ₁₀	NY075-00-5		5.7E-02	(1417)	(111)	(WIIVIDEA) TII)	(, 3.)	(, 3.)	8.6	4.3E-03	536	0.27
PM _{2.5}	NY075-02-5		4.8E-02						7.2	3.6E-03	448	0.22
Volatile Organic Compounds	NY998-00-0		8.2E-02						12	6.1E-03	767	0.3
Carbon Dioxide	00124-38-9		165						24,763	12	1,544,605	77.
Methane	00074-82-8		8.1E-03						1.2	6.1E-04	76	3.8E-0
Total HAPs	NY100-00-0		02 00						0.24	1.2E-04	15	7.4E-0
Acenaphthene	00083-32-9		4.7E-06						7.0E-04	3.5E-07	4.4E-02	2.2E-0
Acenaphthylene	00208-96-8		9.2E-06						1.4E-03	6.9E-07	8.6E-02	4.3E-0
Acetaldehyde	00075-07-0		2.5E-05						3.8E-03	1.9E-06	0.24	1.2E-0
Acrolein	00107-02-8		7.9E-06						1.2E-03	5.9E-07	7.4E-02	3.7E-0
Anthracene	00120-12-7		1.2E-06						1.8E-04	9.2E-08	1.2E-02	5.8E-0
Benzene	00071-43-2		7.8E-04						0.12	5.8E-05	7.3	3.6E-0
Benz(a)anthracene	00056-55-3		6.2E-07						9.3E-05	4.7E-08	5.8E-03	2.9E-0
Benz(a)pyrene	00050-32-8		2.6E-07						3.9E-05	1.9E-08	2.4E-03	1.2E-0
Benzo(b)fluoranthene	00205-99-2		1.1E-06						1.7E-04	8.3E-08	1.0E-02	5.2E-0
Benzo(g,h,i)perylene	00191-24-2		5.6E-07						8.3E-05	4.2E-08	5.2E-03	2.6E-0
Benzo(k)fluoranthene	00207-08-9		2.2E-07						3.3E-05	1.6E-08	2.0E-03	1.0E-0
Chrysene	00218-01-9		1.5E-06						2.3E-04	1.1E-07	1.4E-02	7.2E-0
Dibenzo(a,h)anthracene	00053-70-3		3.5E-07						5.2E-05	2.6E-08	3.2E-03	1.6E-0
Fluoranthene	00206-44-0		4.0E-06						6.0E-04	3.0E-07	3.8E-02	1.9E-0
Fluorene	00086-73-7		1.3E-05						1.9E-03	9.6E-07	0.12	6.0E-0
Formaldehyde	00050-00-0		7.9E-05						1.2E-02	5.9E-06	0.74	3.7E-0
Indeno(1,2,3-cd)pyrene	00193-39-5		4.1E-07						6.2E-05	3.1E-08	3.9E-03	1.9E-0
Naphthalene	00091-20-3		1.3E-04						2.0E-02	9.8E-06	1.2	6.1E-0
Phenanthrene	00085-01-8		4.1E-05						6.1E-03	3.1E-06	0.38	1.9E-0
Pyrene	00129-00-0		3.7E-06						5.6E-04	2.8E-07	3.5E-02	1.7E-0
Toluene	00108-88-3		2.8E-04						4.2E-02	2.1E-05	2.6	1.3E-0
Xylenes	01330-20-7		1.9E-04						2.9E-02	1.4E-05	1.8	9.0E-0
Main Office				25	34	0.23	20	49	9			
Natural Gas Fired 2004 Genera		nerator										
Carbon Monoxide	00630-08-0		3.7						17	8.7E-03	435	0.2
Nitrogen Oxides	NY210-00-0		2.2						10	5.2E-03	259	0.1
Sulfur Dioxide	07446-09-5		5.9E-04						2.8E-03	1.4E-06	6.9E-02	3.4E-0
PM (Total)	NY075-00-0		1.9E-02						9.1E-02	4.6E-05	2.3	1.1E-0
PM ₁₀	NY075-00-5		9.5E-03						4.5E-02	2.2E-05	1.1	5.6E-0
PM _{2.5}	NY075-02-5		9.5E-03						4.5E-02	2.2E-05	1.1	5.6E-0
Volatile Organic Compounds	NY998-00-0		3.0E-02						0.14	6.9E-05	3.5	1.7E-0
Carbon Dioxide	00124-38-9		110						516	0.26	12,872	6.
Methane	00074-82-8		0.23						1.1	5.4E-04	27	1.3E-0
Total HAPs	NY100-00-0								0.13	6.7E-05	3.4	1.7E-03

Table 6
Facility-Wide Emergency Generators
Summary of Actual and Potential Emissions

Building, Sources, and		NSPS Emission	AP-42 Emission	Power Output	Power Output	Maximum	Actual Operating	Potential Operating		(6)	Potential A	
Pollutants	CAS Number	Factors ^(a)	Factors ^(b)	Rating ^(c)	Rating ^(c)		Hours ^(c)	Hours ^(e)	Actual Annual		Emissio	
		(g/HP-hr)		(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(hr/yr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Acetaldehyde	00075-07-0								1.3E-02	6.5E-06	0.33	1.6E-04
Acrolein	00107-02-8								1.2E-02	6.2E-06	0.31	1.5E-04
Benzene	00071-43-2								7.4E-03	3.7E-06	0.18	9.2E-05
Carbon Tetrachloride	00056-23-5								8.3E-05	4.2E-08	2.1E-03	1.0E-06
Chlorobenzene	00108-90-7								6.1E-05	3.0E-08	1.5E-03	7.5E-07
Chloroform	00067-66-3								6.4E-05	3.2E-08	1.6E-03	8.0E-07
1,1-Dichloroethane	00075-34-3								5.3E-05	2.6E-08	1.3E-03	6.6E-07
1,2-Dichloroethane	00107-06-2								5.3E-05	2.6E-08	1.3E-03	6.6E-07
1,2-Dichloropropane	00078-87-5								6.1E-05	3.0E-08	1.5E-03	7.6E-07
1,3-Dichloropropene	00542-75-6								6.0E-05	3.0E-08	1.5E-03	7.4E-07
Ethylbenzene	00100-41-4								1.2E-04	5.8E-08	2.9E-03	1.5E-06
Ethylene Dibromide	00106-93-4		2.1E-05						1.0E-04	5.0E-08	2.5E-03	1.2E-06
Formaldehyde	00050-00-0		2.1E-02						9.6E-02	4.8E-05	2.4	1.2E-03
Naphthalene	00091-20-3		9.7E-05						4.6E-04	2.3E-07	1.1E-02	5.7E-06
PAH	130498-29-2		1.4E-04						6.6E-04	3.3E-07	1.6E-02	8.2E-06
Styrene	00100-42-5		1.2E-05						5.6E-05	2.8E-08	1.4E-03	7.0E-07
1,1,2,2-Tetrachloroethane	00079-34-5		2.5E-05						1.2E-04	5.9E-08	3.0E-03	1.5E-06
Toluene	00108-88-3		5.6E-04						2.6E-03	1.3E-06	6.5E-02	3.3E-05
1,1,2-Trichloroethane	00079-00-5		1.5E-05						7.2E-05	3.6E-08	1.8E-03	9.0E-07
Vinyl Chloride	00075-01-4		7.2E-06						3.4E-05	1.7E-08	8.4E-04	4.2E-07
Xylenes	01330-20-7		2.0E-04						9.1E-04	4.6E-07	2.3E-02	1.1E-05
Coreless Furnace Generator				250	335	2.3	12	49	9			
Natural Gas Fired 2023 Genera	ac Emergency Ge	nerator										
Carbon Monoxide	00630-08-0	4.0							35	1.8E-02	1,474	0.74
Nitrogen Oxides	NY210-00-0	2.0							18	8.9E-03	737	0.37
Sulfur Dioxide	07446-09-5		5.9E-04						1.7E-02	8.3E-06	0.69	3.4E-04
PM (Total)	NY075-00-0		1.0E-02						0.28	1.4E-04	12	5.8E-03
PM ₁₀	NY075-00-5		7.7E-05						2.2E-03	1.1E-06	9.0E-02	4.5E-05
PM _{2.5}	NY075-02-5		7 75 05						2.2E-03	1.1E-06	9.0E-02	4.5E-05
Volatile Organic Compounds	NY998-00-0	1.0							8.9	4.4E-03	369	0.18
Carbon Dioxide	00124-38-9		440						3,095	1.5E+00	128,717	64
Methane	00074-82-8		4.0						35	1.8E-02	1,463	0.73
Total HAPs	NY100-00-0		1.0						2.0	9.8E-04	81	4.1E-02
Acenaphthene	00083-32-9		1.3E-06						3.5E-05	1.8E-08	1.5E-03	7.3E-07
Acenaphthylene	00208-96-8		o/						1.6E-04	7.8E-08	6.5E-03	3.2E-06
Acetaldehyde	00208-70-8		0.45.00						0.24	1.2E-04	9.8	4.9E-03
Acrolein	00073-07-0		F 4 F 00						0.24	7.2E-04 7.2E-05	6.0	3.0E-03
Benzene	00107-02-8		4 45 04						1.2E-02	6.2E-05	0.51	2.6E-03
Benzo(b)fluoranthene	00071-43-2		4 75 67						4.7E-06	2.3E-09		9.7E-08
											1.9E-04	
Benzo(g,h,i)perylene	00191-24-2		4.1E-07						1.2E-05	5.8E-09	4.8E-04	2.4E-07

Table 6
Facility-Wide Emergency Generators
Summary of Actual and Potential Emissions

Building, Sources, and		NSPS Emission	AP-42 Emission	Power Output	Power Output	Maximum	Actual Operating	Potential Operating		(6)	Potential A	
Pollutants	CAS Number	Factors (a)	Factors ^(b)	Rating ^(c)	Rating ^(c)	Heat Input ^(d)	Hours ^(c)	Hours ^(e)	Actual Annual I		Emissio	
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(hr/yr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Benzo(e)pyrene	00192-97-2		4.2E-07						1.2E-05	5.8E-09	4.9E-04	2.4E-07
Biphenyl	00092-52-4		2.1E-04						6.0E-03	3.0E-06	0.25	1.2E-04
Carbon Tetrachloride	00056-23-5		3.7E-05						1.0E-03	5.2E-07	4.3E-02	2.1E-05
Chlorobenzene	00108-90-7		3.0E-05						8.6E-04	4.3E-07	3.6E-02	1.8E-05
Chloroethane	00075-00-3		1.9E-06						5.3E-05	2.6E-08	2.2E-03	1.1E-06
Chloroform	00067-66-3		2.9E-05						8.0E-04	4.0E-07	3.3E-02	1.7E-05
Chrysene	00218-01-9		6.9E-07						2.0E-05	9.8E-09	8.1E-04	4.1E-07
1,1-Dichloroethane	00075-34-3		2.4E-05						6.6E-04	3.3E-07	2.8E-02	1.4E-05
1,2-Dichloroethane	00107-06-2		2.4E-05						6.6E-04	3.3E-07	2.8E-02	1.4E-05
1,2-Dichloropropane	00078-87-5		2.7E-05						7.6E-04	3.8E-07	3.1E-02	1.6E-05
1,3-Dichloropropene	00542-75-6		2.6E-05						7.4E-04	3.7E-07	3.1E-02	1.5E-05
Ethylbenzene	00100-41-4		4.0E-05						1.1E-03	5.6E-07	4.6E-02	2.3E-05
Ethylene Dibromide	00106-93-4		4.4E-05						1.2E-03	6.2E-07	5.2E-02	2.6E-05
Fluoranthene	00206-44-0		1.1E-06						3.1E-05	1.6E-08	1.3E-03	6.5E-07
Fluorene	00086-73-7		5.7E-06						1.6E-04	8.0E-08	6.6E-03	3.3E-06
Formaldehyde	00050-00-0		5.3E-02						1.5	7.4E-04	62	3.1E-02
Hexane	00110-54-3		1.1E-03						3.1E-02	1.6E-05	1.3	6.5E-04
Naphthalene	00091-20-3		7.4E-05						2.1E-03	1.0E-06	8.7E-02	4.4E-05
PAH	130498-29-2		2.7E-05						7.6E-04	3.8E-07	3.1E-02	1.6E-05
Phenanthrene	00085-01-8		1.0E-05						2.9E-04	1.5E-07	1.2E-02	6.1E-06
Phenol	00108-95-2		2.4E-05						6.8E-04	3.4E-07	2.8E-02	1.4E-05
Pyrene	00129-00-0		1.4E-06						3.8E-05	1.9E-08	1.6E-03	8.0E-07
Styrene	00100-42-5		2.4E-05						6.6E-04	3.3E-07	2.8E-02	1.4E-05
1,1,2,2-Tetrachloroethane	00079-34-5		4.0E-05						1.1E-03	5.6E-07	4.7E-02	2.3E-05
Toluene	00108-88-3		4.1E-04						1.1E-02	5.7E-06	0.48	2.4E-04
1,1,2-Trichloroethane	00079-00-5		3.2E-05						8.9E-04	4.5E-07	3.7E-02	1.9E-05
2,2,4-Trimethylpentane	00540-84-1		2.5E-04						7.0E-03	3.5E-06	0.29	1.5E-04
Vinyl Chloride	00075-01-4		1.5E-05						4.2E-04	2.1E-07	1.7E-02	8.7E-06
Xylenes	01330-20-7		1.8E-04						5.2E-03	2.6E-06	0.22	1.1E-04
Agiones	01000 20 7		1.02 01						0.22 00	2.02 00	0.22	
Total												
Carbon Monoxide	00630-08-0								208	0.10	10,422	5.2
Nitrogen Oxides	NY210-00-0								636	0.32	33,532	17
Sulfur Dioxide	07446-09-5								8.6	4.3E-03	185	9.2E-02
PM (Total)	NY075-00-0								20	9.9E-03	848	0.42
PM ₁₀	NY075-00-5								18	8.8E-03	719	0.36
PM _{2.5}	NY075-02-5								16	8.1E-03	631	0.32
Volatile Organic Compounds	NY998-00-0								32	1.6E-02	1,349	0.67
Carbon Dioxide	00124-38-9								33,105	17	1,782,146	891
Methane	00074-82-8								37	1.9E-02	1,565	0.78
Total HAPs	NY100-00-0								2.4	1.2E-03	102	5.1E-02

Table 6
Facility-Wide Emergency Generators
Summary of Actual and Potential Emissions

Acenaphthene (00083-32-9 00208-96-8 00075-07-0	Factors ^(a) (g/HP-hr)	Factors ^(b) (lb/MMBtu)		Rating ^(c)	Maximum Heat Input ^(d)	Operating Hours ^(c)	Operating Hours ^(e)	Actual Annual E	Emissions (f)	Emissio	Annual ns ^(g)
Acenaphthylene (00208-96-8	(9/111-111)		Rating ^(c) (kW)	(HP)	(MMBtu/hr)	(hr/yr)	(hr/yr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Acenaphthylene (00208-96-8		(ID) MINIDIA)	(KVV)	(IIF)	(WINDLATII)	(1117 yr)	(III7 yI)	7.8E-04	3.9E-07	4.6E-02	2.3E-05
									1.7E-03	8.4E-07	9.6E-02	4.8E-05
Accidiacityac									0.27	1.4E-04	11	5.4E-03
<u>-</u>	00107-02-8								0.16	8.0E-05	6.5	3.4E 03
	00120-12-7								2.4E-04	1.2E-07	1.3E-02	6.3E-06
	00071-43-2								0.16	8.2E-05	8.5	4.3E-03
	00056-55-3								1.4E-04	7.1E-08	6.8E-03	3.4E-06
	00050-32-8								4.4E-05	2.2E-08	2.5E-03	1.3E-06
	00205-99-2								1.7E-04	8.7E-08	1.1E-02	5.3E-06
• •	00191-24-2								1.1E-04	5.5E-08	6.0E-03	3.0E-06
.5 ,1 5	00191-24-2								1.2E-05	5.8E-09	4.9E-04	2.4E-07
	00207-08-9								3.7E-05	1.9E-08	2.1E-03	1.1E-06
	00092-52-4								6.0E-03	3.0E-06	0.25	1.1E-00 1.2E-04
. •	00056-23-5								1.1E-03	5.6E-07	4.5E-02	2.3E-05
	00108-90-7								9.2E-04	4.6E-07	3.7E-02	1.9E-05
	00075-00-3								5.3E-05	2.6E-08	2.2E-03	1.7L-03
	00073-00-3								8.7E-04	4.3E-07	3.5E-02	1.7E-05
	00218-01-9								2.6E-04	1.3E-07	1.5E-02	7.7E-06
3	00053-70-3								6.9E-05	3.4E-08	3.6E-03	1.8E-06
	00035-70-3								7.2E-04	3.4E-08 3.6E-07	2.9E-02	1.4E-05
	00107-06-2								7.2E-04 7.2E-04	3.6E-07	2.9E-02	1.4E-05
	00078-87-5								8.2E-04	4.1E-07	3.3E-02	1.4E-05
• •	00542-75-6								8.0E-04	4.0E-07	3.2E-02	1.6E-05
	00100-41-4								1.2E-03	6.2E-07	4.9E-02	2.5E-05
3	00106-93-4								1.2E-03 1.3E-03	6.7E-07	5.4E-02	2.5E-05 2.7E-05
3	00107-06-2								7.2E-04	3.6E-07	2.9E-02	1.4E-05
3	00206-44-0								8.6E-04	4.3E-07	4.3E-02	2.2E-05
	00086-73-7								2.9E-03	1.5E-06	0.14	7.2E-05
	00050-00-0								1.6	8.1E-04		3.3E-02
<u> </u>	00030-00-0								3.1E-02	1.6E-05	66 1.3	6.5E-04
	00110-34-3								7.3E-05	3.6E-03	4.1E-03	2.0E-06
· -	00091-20-3								2.5E-02	1.2E-05		6.8E-04
•										7.1E-07	1.4	
	130498-29-2 00085-01-8								1.4E-03 7.3E-03	7.1E-07 3.6E-06	4.8E-02	2.4E-05 2.1E-04
	00085-01-8								7.3E-03 6.8E-04	3.6E-06 3.4E-07	0.41	2.1E-04 1.4E-05
	00108-95-2								7.3E-04	3.4E-07 3.7E-07	2.8E-02	2.0E-05
3	00129-00-0								7.3E-04 7.2E-04	3.7E-07 3.6E-07	3.9E-02	
3											2.9E-02	1.5E-05
	00079-34-5								1.2E-03	6.2E-07	5.0E-02	2.5E-05
	00108-88-3								6.8E-02	3.4E-05	3.4	1.7E-03
	00079-00-5 00540-84-1								9.7E-04 7.0E-03	4.8E-07 3.5E-06	3.9E-02 0.29	2.0E-05 1.5E-04

Table 6

Facility-Wide Emergency Generators Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factors ^(a)	AP-42 Emission Factors ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Actual Operating Hours ^(c)	Potential Operating Hours ^(e)	Actual Annual Emissions ^(f)		Potential A Emissior	
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(hr/yr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Vinyl Chloride	00075-01-4								4.5E-04	2.3E-07	1.8E-02	9.1E-06
Xylenes	01330-20-7								4.3E-02	2.2E-05	2.2	1.1E-03

Notes:

- (a) The emission factors were based on the emissions standards in 40 CFR 60, Subparts IIII or JJJJ.
- (b) The emission factors were obtained from USEPA's Compiliation of Air Pollution Emission Factors, Volume I, Fifth Edition, AP-42, Chapter 3 Stationary Internal Combustion Sources.
- (c) Power Output Rating and Actual Operating Hours were provided by the client.
- (d) Maximum Heat Input (MMBtu/hr) = Power Output Rating (HP) x 7,000 (Btu/HP-hr) ÷ 1,000,000 (Btu/MMBtu).
- (e) Potential Operating Hours for the emergency generators are assumed to be 500 hr/yr consistent with 6 NYCRR 201-3.2(c)(6).
- (e) Potential Operating Hours are assumed to be 8,760.
- (f) Actual Emissions (lb/yr) = NSPS Emission Factors (g/HP-hr) x Power Output Rating (HP) x Actual Operating Hours (hr/yr) ÷ 453.59 (g/lb).

Actual Emissions (lb/yr) = AP-42 Emission Factors (lb/MMBtu) x Maximum Heat Input (MMBtu/hr) x Actual Operating Hours (hr/yr).

Actual Emissions (ton/yr) = Actual Emissions (lb/yr) \div 2000 (lb/ton).

(e) Potential Emissions (lb/yr) = NSPS Emission Factors (g/HP-hr) x Power Output Rating (HP) x Potential Operating Hours (hr/yr) \div 453.59 (g/lb).

Potential Emissions (lb/yr) = AP-42 Emission Factors (lb/MMBtu) x Maximum Heat Input (MMBtu/hr) x Potential Operating Hours (hr/yr).

Potential Emissions (ton/yr) = Potential Emissions (lb/yr) ÷ 2000 (lb/ton).

Table 7
U-CAST1 - Furnaces/Baghouses and Bypass
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual <i>I</i> Emissi		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
BH1 Process (Cyclone/Ba			4,132	8,760							
Total Particulate Matter	NY075-00-0				0.33			1,364	0.68	2,891	1.4
Total PM ₁₀	NY075-00-5				0.24		4.8	992	0.50	2,102	1.1
Total PM _{2.5}	NY075-02-5				0.15		2.9	599	0.30	1,270	0.64
Total Filterable PM	F-PM				0.20			826	0.41	1,752	0.88
Filterable PM ₁₀	F-PM10				0.11			455	0.23	964	0.48
Filterable PM _{2.5}	F-PM2.5				1.5E-02			62	3.1E-02	131	6.6E-02
Condensible PM	C-PM				0.13			537	0.27	1,139	0.57
Graphite	07782-42-5	40			0.13		2.6	545	0.27	1,156	0.58
Copper oxide	01317-38-0	31			0.10		2.0	416	0.21	883	0.44
Iron oxide	01309-37-1	9.1			3.0E-02		0.60	124	6.2E-02	262	0.13
Aluminum oxide	01344-28-1	0.27			9.0E-04	95	1.8E-02	3.7	1.9E-03	7.9	4.0E-03
Zinc oxide	01314-13-2	8.4E-02			2.8E-04	95	5.5E-03	1.1	5.7E-04	2.4	1.2E-03
Magnesium oxide	01309-48-4	2.3E-02			7.7E-05		1.5E-03	0.32	1.6E-04	0.68	3.4E-04
Barium oxide	01304-28-5	3.7E-03			1.2E-05	95	2.4E-04	5.0E-02	2.5E-05	0.11	5.3E-05
Silver oxide	20667-12-3	9.7E-04			3.2E-06	95	6.4E-05	1.3E-02	6.6E-06	2.8E-02	1.4E-05
Total HAPs	NY100-00-0							0.82	4.1E-04	1.7	8.6E-04
Lead oxide	01314-41-6	3.3E-02			1.1E-04	95	2.2E-03	0.45	2.2E-04	0.95	4.7E-04
Manganese oxide	01313-13-9	2.3E-02			7.7E-05	95	1.5E-03	0.32	1.6E-04	0.68	3.4E-04
Nickel oxide	01313-99-1	2.1E-03			6.9E-06	95	1.4E-04	2.8E-02	1.4E-05	6.0E-02	3.0E-05
Cadmium oxide	01306-19-0	6.8E-04			2.2E-06	95	4.5E-05	9.2E-03	4.6E-06	2.0E-02	9.8E-06
Chromium oxide	01333-82-0	9.3E-04			3.1E-06	95	6.2E-05	1.3E-02	6.4E-06	2.7E-02	1.3E-05
Mercury oxide	21908-53-2	8.9E-06			2.9E-08	95	5.8E-07	1.2E-04	6.0E-08	2.6E-04	1.3E-07
BP1 Process (By-pass, Cy	clone EP 00039)		43.2	240							
Total Particulate Matter	NY075-00-0				3.1	10	3.5	135	6.7E-02	749	0.37
Total PM ₁₀	NY075-00-5				5.2	10	5.8	225	0.11	1,248	0.62
Total PM _{2.5}	NY075-02-5				3.2	10	3.6	138	6.9E-02	768	0.38
Graphite	07782-42-5	40			2.1	10	2.3	90	4.5E-02	499	0.25
Copper oxide	01317-38-0	31			1.6	10	1.8	69	3.4E-02	381	0.19
Iron oxide	01309-37-1	9.1			0.47	10	0.52	20	1.0E-02	113	5.7E-02
Aluminum oxide	01344-28-1	0.27			1.4E-02	10	1.6E-02	0.62	3.1E-04	3.4	1.7E-03
Zinc oxide	01314-13-2	8.4E-02			4.4E-03	10	4.8E-03	0.19	9.4E-05	1.0	5.2E-04

Table 7
U-CAST1 - Furnaces/Baghouses and Bypass
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual <i>I</i> Emissi		Potential Emissio	
		· (%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Magnesium oxide	01309-48-4	2.3E-02			1.2E-03	10	1.4E-03	5.3E-02	2.6E-05	0.29	1.5E-04
Barium oxide	01304-28-5	3.7E-03			1.9E-04	10	2.1E-04	8.3E-03	4.1E-06	4.6E-02	2.3E-05
Silver oxide	20667-12-3	9.7E-04			5.0E-05	10	5.6E-05	2.2E-03	1.1E-06	1.2E-02	6.1E-06
Total HAPs	NY100-00-0							0.13	6.3E-05	0.70	3.5E-04
Lead oxide	01314-41-6	3.3E-02			1.7E-03	10	1.9E-03	7.4E-02	3.7E-05	0.41	2.0E-04
Manganese oxide	01313-13-9	2.3E-02			1.2E-03	10	1.4E-03	5.3E-02	2.6E-05	0.29	1.5E-04
Nickel oxide	01313-99-1	2.1E-03			1.1E-04	10	1.2E-04	4.7E-03	2.3E-06	2.6E-02	1.3E-05
Cadmium oxide	01306-19-0	6.8E-04			3.5E-05	10	3.9E-05	1.5E-03	7.6E-07	8.4E-03	4.2E-06
Chromium oxide	01333-82-0	9.3E-04			4.9E-05	10	5.4E-05	2.1E-03	1.0E-06	1.2E-02	5.8E-06
Mercury oxide	21908-53-2	8.9E-06			4.6E-07	10	5.1E-07	2.0E-05	9.9E-09	1.1E-04	5.5E-08
BH2 Process (Cyclone/Ba	ghouse EP 00040)		5,087	8,760							
Total Particulate Matter	NY075-00-0				2.0	99	200	10,174	5.1	17,520	8.8
Total PM ₁₀	NY075-00-5				0.98	99	98	4,985	2.5	8,585	4.3
Total PM _{2.5}	NY075-02-5				0.29	99	29	1,485	0.74	2,558	1.3
Total Filterable PM	F-PM				1.8			9,055	4.5	15,593	7.8
Filterable PM ₁₀	F-PM10				0.76			3,866	1.9	6,658	3.3
Filterable PM _{2.5}	F-PM2.5				7.2E-02			366	0.18	631	0.32
Condensible PM	C-PM				0.22			1,119	0.56	1,927	0.96
Graphite	07782-42-5	40			0.80	99	80	4,070	2.0	7,008	3.5
Copper oxide	01317-38-0	31			0.61	99	61	3,107	1.6	5,351	2.7
Iron oxide	01309-37-1	9.1			0.18	99	18	924	0.46	1,591	0.80
Aluminum oxide	01344-28-1	0.27			5.5E-03	99	0.55	28	1.4E-02	48	2.4E-02
Zinc oxide	01314-13-2	8.4E-02			1.7E-03	99	0.17	8.5	4.3E-03	15	7.3E-03
Magnesium oxide	01309-48-4	2.3E-02			4.7E-04	99	4.7E-02	2.4	1.2E-03	4.1	2.0E-03
Barium oxide	01304-28-5	3.7E-03			7.3E-05	99	7.3E-03	0.37	1.9E-04	0.64	3.2E-04
Silver oxide	20667-12-3	9.7E-04			1.9E-05	99	1.9E-03	9.9E-02	4.9E-05	0.17	8.5E-05
Total HAPs	NY100-00-0							5.7	2.9E-03	9.8	4.9E-03
Lead oxide	01314-41-6	3.3E-02			6.5E-04	99	6.5E-02	3.3	1.7E-03	5.7	2.9E-03
Manganese oxide	01313-13-9	2.3E-02			4.7E-04	99	4.7E-02	2.4	1.2E-03	4.1	2.0E-03
Nickel oxide	01313-99-1	2.1E-03			4.2E-05	99	4.2E-03	0.21	1.1E-04	0.37	1.8E-04
Cadmium oxide	01306-19-0	6.8E-04			1.4E-05	99	1.4E-03	6.9E-02	3.4E-05	0.12	5.9E-05
Chromium oxide	01333-82-0	9.3E-04			1.9E-05	99	1.9E-03	9.5E-02	4.8E-05	0.16	8.2E-05

Table 7
U-CAST1 - Furnaces/Baghouses and Bypass
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual <i>A</i> Emissi		Potential Emissie	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Mercury oxide	21908-53-2	8.9E-06			1.8E-07	99	1.8E-05	9.0E-04	4.5E-07	1.6E-03	7.8E-07
BP2 Process (By-pass, Cy	clone EP 00040)		0.08	240							
Total Particulate Matter	NY075-00-0				9.4	10	10	0.75	3.8E-04	2,258	1.1
Total PM ₁₀	NY075-00-5				11	10	12	0.85	4.2E-04	2,539	1.3
Total PM _{2.5}	NY075-02-5				1.9	10	2.1	0.15	7.4E-05	444	0.22
Graphite	07782-42-5	40			4.2	10	4.7	0.34	1.7E-04	1,016	0.51
Copper oxide	01317-38-0	31			3.2	10	3.6	0.26	1.3E-04	776	0.39
Iron oxide	01309-37-1	9.1			0.96	10	1.1	7.7E-02	3.8E-05	231	0.12
Aluminum oxide	01344-28-1	0.27			2.9E-02	10	0.03	2.3E-03	1.2E-06	7.0	3.5E-03
Zinc oxide	01314-13-2	8.4E-02			8.9E-03	10	0.01	7.1E-04	3.5E-07	2.1	1.1E-03
Magnesium oxide	01309-48-4	2.3E-02			2.5E-03	10	0.00	2.0E-04	9.9E-08	0.59	3.0E-04
Barium oxide	01304-28-5	3.7E-03			3.9E-04	10	4.3E-04	3.1E-05	1.6E-08	9.3E-02	4.7E-05
Silver oxide	20667-12-3	9.7E-04			1.0E-04	10	1.1E-04	8.2E-06	4.1E-09	2.5E-02	1.2E-05
Total HAPs	NY100-00-0							4.8E-04	2.4E-07	1.4	7.1E-04
Lead oxide	01314-41-6	3.3E-02			3.5E-03	10	3.8E-03	2.8E-04	1.4E-07	0.83	4.2E-04
Manganese oxide	01313-13-9	2.3E-02			2.5E-03	10	2.7E-03	2.0E-04	9.9E-08	0.59	3.0E-04
Nickel oxide	01313-99-1	2.1E-03			2.2E-04	10	2.5E-04	1.8E-05	8.8E-09	5.3E-02	2.6E-05
Cadmium oxide	01306-19-0	6.8E-04			7.2E-05	10	7.9E-05	5.7E-06	2.9E-09	1.7E-02	8.6E-06
Chromium oxide	01333-82-0	9.3E-04			9.9E-05	10	1.1E-04	7.9E-06	4.0E-09	2.4E-02	1.2E-05
Mercury oxide	21908-53-2	8.9E-06			9.4E-07	10	1.0E-06	7.5E-08	3.7E-11	2.2E-04	1.1E-07
Total											
Total Particulate Matter	NY075-00-0							11,673	5.8	22,669	11
Total PM ₁₀	NY075-00-5							6,202	3.1	13,226	6.6
Total PM _{2.5}	NY075-02-5							2,223	1.1	4,596	2.3
Graphite	07782-42-5							4,705	2.4	9,180	4.6
Copper oxide	01317-38-0							3,593	1.8	7,010	3.5
Iron oxide	01309-37-1							1,068	0.53	2,084	1.0
Aluminum oxide	01344-28-1							32	1.6E-02	63	3.1E-02
Zinc oxide	01314-13-2							9.9	4.9E-03	19	9.6E-03
Magnesium oxide	01309-48-4							2.8	1.4E-03	5.4	2.7E-03
Barium oxide	01304-28-5							0.43	2.2E-04	0.84	4.2E-04

Table 7 U-CAST1 - Furnaces/Baghouses and Bypass Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual Annual Emissions ^(f)		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Silver oxide	20667-12-3							0.11	5.7E-05	0.22	1.1E-04
Total HAPs	NY100-00-0							6.7	3.3E-03	13	6.5E-03
Lead oxide	01314-41-6							3.9	1.9E-03	7.5	3.8E-03
Manganese oxide	01313-13-9							2.8	1.4E-03	5.4	2.7E-03
Nickel oxide	01313-99-1							0.25	1.2E-04	0.48	2.4E-04
Cadmium oxide	01306-19-0							8.0E-02	4.0E-05	0.16	7.8E-05
Chromium oxide	01333-82-0							0.11	5.5E-05	0.21	1.1E-04
Mercury oxide	21908-53-2							1.0E-03	5.2E-07	2.0E-03	1.0E-06

Notes:

- (a) The composition of the particulate is based on analysis of a sample collected from dust accumulated in the baghouse.
- (b) For the furnaces, Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project. Potential Annual Operating Hours were provided by Revere.

For the Bypass processes, Future Projected Operating Hours are based on 2022 actual bypass hours and Potential Annual Operating Hours are based on permit limits.

- (c) PM Emission Factors for Process BH1 and BH2 are based on testing conducted in May 2023; testing included filterable PM, condensable PM, and particle size distribution, and represent post-control emissions. Individual constituent Emission Factors were calculated by multiplying the Total Particulate Matter Emission Factor by the estimated percentage of the constituent. For Process BP1 and BP2, the hourly Total Particulate Emission Factors were obtained from the June, 2008 source emissions test report provided by Revere. The hourly PM10 and PM2.5 Emission Factors were obtained from the February, 2002 source emissions test report provided by Revere. Both sets represent post-control emissions.
- Individual constituent Emission Factors were calculated by multiplying the Total PM_{10} Emission Factor by the estimated percentage of the constituent. Due to the different test methods used between the 2002 and 2008 source testing, the PM_{10} emission factor is higher than the total emission factor. Therefore, this higher value was used as the basis for the toxics in order to be conservative.
- (d) The EP00039 cyclone-baghouse control efficiency was obtained from the February 6, 2002 source emissions test report provided by Revere. The EP00040 cyclone-baghouse control efficiency was 99.7% for total particulate matter per the February 6, 2002 source emissions test report. To be conservative, 99% was used in the EP 00040 emissions calculations, which corresponds to the control efficiency for PM_{2.5} provided in AP-42 Appendix B.2 Table B.2-3 for fabric filters. Control efficiencies for the bypass cyclones were taken from values provided in AP-42 Appendix B.2 Table B.2-3 for single cyclones.
- (e) Emission Rate Potential (lb/hr) = Post-Control Emission Factor (lb/hr) ÷ (1- Control Efficiency) (%).
- (f) Actual Annual Emissions (lb/yr) = Future Projected Operating Hours (hr/yr) x Emission Factor (lb/hr). Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).
- (g) Potential Annual Emissions (lb/yr) = Potential Annual Operating Hours (hr/yr) x Emission Factor (lb/hr). Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) \div 2,000 (lb/ton).

Table 8 U-CAST1 - Central Vacuum System Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual Annual Emissions ^(f)		Potential Annu Emissions ^(g)	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
VAC Process (Single Cyclo	ne/Fabric Filter Ef	P 00602)	347	8,760							
Total Particulate Matter ^(h)	NY075-00-0	100			3.6E-02	99.9	36	12	6.2E-03	315	0.16
Total PM ₁₀ ^(h)	NY075-00-5	100			3.6E-02	99.9	36	12	6.2E-03	315	0.16
PM _{2.5} ^(h)	NY075-02-5	100			3.6E-02	99.9	36	12	6.2E-03	315	0.16
Graphite	07782-42-5	40			1.4E-02	99.9	14	5.0	2.5E-03	126	6.3E-02
Copper oxide	01317-38-0	31			1.1E-02	99.9	11	3.8	1.9E-03	96	4.8E-02
Iron oxide	01309-37-1	9.1			3.3E-03	99.9	3.3	1.1	5.7E-04	29	1.4E-02
Aluminum oxide	01344-28-1	0.27			9.9E-05	99.9	9.9E-02	3.4E-02	1.7E-05	0.86	4.3E-04
Zinc oxide	01314-13-2	8.4E-02			3.0E-05	99.9	3.0E-02	1.0E-02	5.2E-06	0.26	1.3E-04
Magnesium oxide	01309-48-4	2.3E-02			8.4E-06	99.9	8.4E-03	2.9E-03	1.5E-06	7.4E-02	3.7E-05
Barium oxide	01304-28-5	3.7E-03			1.3E-06	99.9	1.3E-03	4.6E-04	2.3E-07	1.2E-02	5.8E-06
Silver oxide	20667-12-3	9.7E-04			3.5E-07	99.9	3.5E-04	1.2E-04	6.1E-08	3.1E-03	1.5E-06
Total HAPs	NY100-00-0							7.5E-03	3.7E-06	0.19	9.4E-05
Lead oxide	01314-41-6	3.3E-02			1.2E-05	99.9	1.2E-02	4.1E-03	2.0E-06	0.10	5.2E-05
Manganese oxide	01313-13-9	2.3E-02			8.4E-06	99.9	8.4E-03	2.9E-03	1.5E-06	7.4E-02	3.7E-05
Nickel oxide	01313-99-1	2.1E-03			7.5E-07	99.9	7.5E-04	2.6E-04	1.3E-07	6.6E-03	3.3E-06
Cadmium oxide	01306-19-0	6.8E-04			2.4E-07	99.9	2.4E-04	8.4E-05	4.2E-08	2.1E-03	1.1E-06
Chromium oxide	01333-82-0	9.3E-04			3.4E-07	99.9	3.4E-04	1.2E-04	5.8E-08	2.9E-03	1.5E-06
Mercury oxide	21908-53-2	8.9E-06			3.2E-09	99.9	3.2E-06	1.1E-06	5.5E-10	2.8E-05	1.4E-08

Notes:

- (a) The composition of the particulate is based on testing conducted by Revere of a sample collected from dust accumulated in the baghouse.
- (b) Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (c) Particulate matter emission factors were based on May 2023 testing conducted on the EP 00040 baghouse vent (0.003 grains/dscf) and the engineering estimate that the Central Vacuum System baghouse provides control to the same outlet concentration. Emission factors for the individual constituents were calculated by multiplying the composition of each constituent by the Particulate Matter emission factor.
- (d) The cyclone and fabric filter particulate matter removal efficiency is estimated based on typical control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) The emission rate potentials were calculated by dividing the emission factor by one minus the control efficiency.
- (f) Actual Annual Emissions (lb/yr) = Future Projected Operating Hours (hr/yr) x Emission Factor (lb/hr).
- Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (g) Potential Annual Emissions (lb/yr) = Potential Annual Operating Hours (hr/yr) x Emission Factor (lb/hr).
- Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (h) It is assumed that all of the Particulate Matter is PM_{2.5.}

Table 9
U-ROLL1
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual Emission Rate ^(f)	Actual A Emissic		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
1176 Bliss Mill (Baffle Chambe	er, EP 00036)	100/	1,511	8,760							
Coolant (Baums 882) Total Particulate Matter ⁽ⁱ⁾	NIV (0.75 0.0 0	40%			40	0.05.00	0.05.00		4.55.00	4.0	0.05.00
	NY075-00-0	100			10		2.0E-03	3.0	1.5E-03	18	8.8E-03
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	100			10		2.0E-03	3.0	1.5E-03	18	8.8E-03
PM _{2.5} ⁽ⁱ⁾	NY075-02-5	100			10	2.2E-03	2.0E-03	3.0	1.5E-03	18	8.8E-03
Hydrotreated light naphthenic petroleum oil	64742-53-6	26			10	5.8E-04	5.2E-04	0.79	3.9E-04	4.6	2.3E-03
Hydrotreated heavy naphthenic		20			10	0.02 01	0.22 01	0.77	0.72 01	1.0	2.02 00
petroleum oil	64742-52-5	22			10	4.9E-04	4.4E-04	0.67	3.3E-04	3.9	1.9E-03
Fatty alcohol alkoxylate	37335-03-8	5			10	1.1E-04	1.0E-04	0.15	7.6E-05	0.88	4.4E-04
Hexahydro-1,3,5-tris(2-											
hydroxyethyl)-s-triazine	04719-04-4	1			10	2.2E-05	2.0E-05	3.0E-02	1.5E-05	0.18	8.8E-05
2-Amino-2-methyl-1-propanol	00124-68-5	1			10	2.2E-05	2.0E-05	3.0E-02	1.5E-05	0.18	8.8E-05
(Bonderite S-FN 870)		0.00006%									
Total Particulate Matter ⁽ⁱ⁾	NY075-00-0	100			10	3.2E-09	2.9E-09	4.3E-06	2.2E-09	2.5E-05	1.3E-08
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	100			10	3.2E-09	2.9E-09	4.3E-06	2.2E-09	2.5E-05	1.3E-08
PM _{2.5} ⁽ⁱ⁾	NY075-02-5	100			10	3.2E-09	2.9E-09	4.3E-06	2.2E-09	2.5E-05	1.3E-08
Petroleum distillates	Trade Secret #1	100			10	3.2E-09	2.9E-09	4.3E-06	2.2E-09	2.5E-05	1.3E-08
2-Butoxyethanol	00111-76-2	5			10	1.6E-10	1.4E-10	2.2E-07	1.1E-10	1.3E-06	6.3E-10
Bactericide (Grotan)		60%									
Total Particulate Matter ⁽ⁱ⁾	NY075-00-0	100			10	3.3E-03	3.0E-03	4.5	2.3E-03	26	1.3E-02
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	100			10	3.3E-03	3.0E-03	4.5	2.3E-03	26	1.3E-02
PM _{2.5} ⁽ⁱ⁾	NY075-02-5	100			10	3.3E-03	3.0E-03	4.5	2.3E-03	26	1.3E-02
2,2',2"-(Hexahydro-1,3,5-											
triazine-1,3,5-triyl)triethanol	04719-04-4	47			10	1.6E-03	1.4E-03	2.1	1.1E-03	12	6.2E-03
2-Aminoethanol	00141-43-5	1.8			10	6.0E-05	5.4E-05	8.1E-02	4.1E-05	0.47	2.4E-04
1706 Hot Mill (Mist Eliminator, Coolant (Astro-sol N)	, EP 00030)		3,580	8,760							
Total Particulate Matter ⁽ⁱ⁾	NY075-00-0	100			10	0.30	0.27	967	0.48	2,365	1.2
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	100			10		0.27	967	0.48	2,365	1.2
PM _{2.5} ⁽ⁱ⁾	NY075-02-5	100			10		0.27	967	0.48	2,365	1.2

Table 9
U-ROLL1
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual Emission Rate ^(f)	Actual A Emissic		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Sulfonic acid, petroleum,											
sodium salts	68608-26-4	20			10		5.4E-02	193	9.7E-02	473	0.24
Nonylphenol, ethoxylated Hexahydro-1,3,5-tris (2-	09016-45-9	20			10	6.0E-02	5.4E-02	193	9.7E-02	473	0.24
hydroxyethyl)-s-triazine	04719-04-4	20			10	6.0E-02	5.4E-02	193	9.7E-02	473	0.24
Base oil	Trade Secret #3	20			10	6.0E-02	5.4E-02	193	9.7E-02	473	0.24
Alkanolamine	00141-43-5	20			10	6.0E-02	5.4E-02	193	9.7E-02	473	0.24
1721 First Run Down Mill (Mis	st Eliminator, EP 0	0029)	5,859	8,760							
Coolant (Rodshield 68 (QH Ev	eroll A 9883))										
Total Particulate Matter	NY075-00-0	100			10		0.83	4,863	2.4	7,271	3.6
Total PM ₁₀	NY075-00-5	100			10		0.80	4,687	2.3	7,008	3.5
Total PM _{2.5}	NY075-02-5	100			10	0.77	0.69	4,043	2.0	6,044	3.0
Total Filterable PM	F-PM				10	0.29	0.26				
Filterable PM ₁₀	F-PM10				10	0.26	0.23				
Filterable PM _{2.5}	F-PM2.5				10	0.13	0.12				
Condensible PM ^(j) Highly refined, low viscosity	C-PM				10	0.63	0.57				
mineral oils/hydrocarbons Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9-	Trade Secret #4	90			10	0.63	0.57	3,340	1.7	4,993	2.5
octadecen-1-yloxy]- Amines, tallow alkyl,	57635-48-0	5			10	3.5E-02	3.2E-02	186	9.3E-02	277	0.14
ethoxylated	61791-26-2	3			10	2.1E-02	1.9E-02	111	5.6E-02	166	8.3E-02
Propane-1,2-diol Sulfonic acids, petroleum,	00057-55-6	3			10	2.1E-02	1.9E-02	111	5.6E-02	166	8.3E-02
sodium salts (Z)-9-Octadecen-1-ol	68608-26-4	3			10	2.1E-02	1.9E-02	111	5.6E-02	166	8.3E-02
ethoxylated Fatty acids, C18-unsaturated	09004-98-2	3			10	2.1E-02	1.9E-02	111	5.6E-02	166	8.3E-02
phosphates	Trade Secret #5	3			10	2.1E-02	1.9E-02	111	5.6E-02	166	8.3E-02
1,2-Benzisothiazol-3(2H)-one	02634-33-5	0.3			10	2.1E-03	1.9E-03	11	5.6E-03	17	8.3E-03
Trade Secret	Trade Secret #8	10			10		6.3E-02	371	0.19	555	0.28
1723 Reversing Mill (No Cont	rol, EP 00026)		6,776	7,858							
Coolant (Cupromul 23)		86.7%									
Total Particulate Matter	NY075-00-0	100			0	0.36	0.36	2,439	1.2	2,829	1.4

Table 9
U-ROLL1
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual Emission Rate ^(f)	Actual A Emissio		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Total PM ₁₀	NY075-00-5	100			0	0.35	0.35	2,372	1.2	2,750	1.4
Total PM _{2.5}	NY075-02-5	100			0	0.29	0.29	1,938	0.97	2,247	1.1
Filterable PM	F-PM				0	0.16	0.16				
Filterable PM ₁₀	F-PM10				0	0.15	0.15				
Filterable PM _{2.5}	F-PM2.5				0	8.6E-02	8.6E-02				
Condensible PM ^(j) Hydrotreated heavy naphtheni	C-PM				0	0.20	0.20				
petroleum distillate	64742-52-5	74			0	0.15	0.15	999	0.50	1,158	0.58
Hexylene glycol	00107-41-5	4.3			0	8.7E-03	8.7E-03	59	2.9E-02	68	3.4E-02
Bactericide (Grotan)		13.3%									
Total Particulate Matter	NY075-00-0	100			0	0.36					
Total PM ₁₀	NY075-00-5	100			0	0.35					
Total PM _{2.5}	NY075-02-5	100			0	0.29					
Filterable PM	F-PM				0	0.16					
Filterable PM ₁₀	F-PM10				0	0.15					
Filterable PM _{2.5}	F-PM2.5				0	8.6E-02					
Condensible PM ^(j)	C-PM				0	0.20					
2,2',2"-(Hexahydro-1,3,5-											
triazine-1,3,5-triyl)triethanol	04719-04-4	10			0	2.1E-02	2.1E-02	47	2.4E-02	55	2.7E-02
2-Aminoethanol	00141-43-5	0.40			0	8.0E-04	8.0E-04	1.8	9.0E-04	2.1	1.0E-03
1724 Z-Mill (No Control, EP 0	0025)		906	8,760							
Roll Oil (Navi-Guard 135)											
Total Particulate Matter ⁽ⁱ⁾	NY075-00-0	100			0		1.1	1,006	0.50	9,724	4.9
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	100			0	1.1	1.1	1,006	0.50	9,724	4.9
PM _{2.5} ⁽ⁱ⁾ Distillates (petroleum), solvent	NY075-02-5 t-	100			0	1.1	1.1	1,006	0.50	9,724	4.9
dewaxed light paraffinic	64742-56-9	75			0	0.83	0.83	754	0.38	7,293	3.6
Total											
Total Particulate Matter	NY075-00-0							9,282	4.6	22,232	11
PM ₁₀	NY075-00-5							9,039	4.5	21,891	11

Table 9
U-ROLL1
Summary of Actual and Potential Emissions

Sources and Pollutants	Weight CAS Number Percent ^(a)		Future Projected Operating Hours ^(b)	Potential Annual Operating Hours ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual Emission Rate ^(f)	Actual A Emissio		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
PM _{2.5}	NY075-02-5							7,960	4.0	20,424	10
Propane-1,2-diol	00057-55-6							111	5.6E-02	166	8.3E-02
Hexylene glycol	00107-41-5							59	2.9E-02	68	3.4E-02
2-Butoxyethanol	00111-76-2							2.2E-07	1.1E-10	1.3E-06	6.3E-10
2-Amino-2-methyl-1-propanol	00124-68-5							3.0E-02	1.5E-05	0.18	8.8E-05
Alkanolamine	00141-43-5							195	9.8E-02	476	0.24
1,2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-	02634-33-5							11	5.6E-03	17	8.3E-03
hydroxyethyl)-s-triazine (Z)-9-Octadecen-1-ol	04719-04-4							243	0.12	540	0.27
ethoxylated	09004-98-2							111	5.6E-02	166	8.3E-02
Nonylphenol, ethoxylated	09016-45-9							193	9.7E-02	473	0.24
Fatty alcohol alkoxylate Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9-	37335-03-8							0.15	7.6E-05	0.88	4.4E-04
octadecen-1-yloxy]- Amines, tallow alkyl,	57635-48-0							186	9.3E-02	277	0.14
ethoxylated Hydrotreated heavy naphthenic	61791-26-2							111	5.6E-02	166	8.3E-02
petroleum oil Hydrotreated light naphthenic	64742-52-5							1,000	0.50	1,162	0.58
petroleum oil Distillates (petroleum), solvent-								0.79	3.9E-04	4.6	2.3E-03
dewaxed light paraffinic Sulfonic acids, petroleum,	64742-56-9							754	0.38	7,293	3.6
sodium salts	68608-26-4							305	0.15	639	0.32
Petroleum distillates Petroleum distillates (mineral	Trade Secret #1							4.3E-06	2.2E-09	2.5E-05	1.3E-08
oil) ^(k)	Trade Secret #2										
Base oil Highly refined, low viscosity	Trade Secret #3							193	9.7E-02	473	0.24
mineral oils/hydrocarbons Fatty acids, C18-unsaturated	Trade Secret #4							3,340	1.7	4,993	2.5
phosphates	Trade Secret #5							111	5.6E-02	166	8.3E-02
Trade Secret	Trade Secret #8							371	0.19	555	0.28

Table 9 U-ROLL1 Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

			Future Projected	Potential Annual		Emission	Actual				
		Weight	Operating	Operating	Control	Rate	Emission	Actual A	Annual	Potential	Annual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Hours ^(c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)			Emissi	ons ^(h)
		(%)	(hr/yr)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

Notes:

- (a) Based on cooling bath composition information provided by Revere and manufacturer's Safety Data Sheets.
- (b) Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (c) Revere is proposing an annual operating hour cap on the Reversing Mill of 7,858 hours per year in order to demonstrate compliance with Part 212. This cap may change based on additional source testing.
- (d) The mist eliminator particulate matter removal efficiency is estimated based on typical control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potentials for the Bliss Mill, Hot Mill, and Z-Mill were estimated using hourly emission rates for Total Particulate Matter provided by Revere, divided by the assumed particulate matter removal efficiency. For the 1st Run Down Mill and Reversing Mill, PM emission rates are based on testing conducted in May 2023, divided by the assumed particulate matter removal efficiency.
- (f) Actual Emission Rates for the Bliss Mill, Hot Mill, and Z-Mill were estimated using hourly emission rates for Total Particulate Matter provided by Revere. For the 1st Run Down Mill and Reversing Mill, PM emission rates are based on testing conducted in May 2023.
- (g) Actual Annual Emissions (lb/yr) = Future Projected Operating Hours (hr/yr) x Emission Rate Potential (lb/hr) x (1-Control Efficiency) (%).

Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

(h) Potential Annual Emissions (lb/yr) = Potential Annual Operating Hours (hr/yr) x Emission Rate Potential (lb/hr) x (1-Control Efficiency) (%). For Mills using multiple oils, the Emission Rate Potential was divided by three.

Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

- (i) For the Mills that did not undergo testing in May 2023, all particulate matter is assumed to be PM_{2.5}.
- (j) For the Mills that underwent testing in May 2023, the individual contaminants are assumed to only be present in the condensible phase, and emissions are estimated by multiplying the weight percent by the Condensible PM emissions.
- (k) This pollutant is present in a biocide applied on some of the Rolling Mills and was included in the prior permit application as being potentially emitted from the Rolling Mills. Upon further investigation, the biocide is completely consumed by the bacteria within 24 hours of application and is not expected to be released to the atmosphere. As such, this biocide has been removed from the Emission Inventory tables. This pollutant has been left in the inventory to maintain the same Trade Secret identification methodology to avoid possible confusion.

Table 10 U-OVER1 Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent	Future Projected Operating Hours ^(a)	Potential Annual Operating Hours ^(b)	Post- Control Emission Rate ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual <i>I</i> Emissi		Potential Emissio	
		(%)	(hr/yr)	(hhr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
1715 Overhauler (Wet Scru	bber, EP 00031)		6,066	6,658							
Copper Shavings											
Total Particulate Matter	NY075-00-0	100			2.9	91	32	17,713	8.9	19,441	9.7
Total PM ₁₀	NY075-00-5	100			0.72	91	8.0	4,368	2.2	4,794	2.4
Total PM _{2.5}	NY075-02-5	100			0.66	91	7.3	4,004	2.0	4,394	2.2
Filterable PM	F-PM				2.4	91					
Filterable PM ₁₀	F-PM10				0.20	91					
Filterable PM _{2.5}	F-PM2.5				0.14	91					
Condensible PM	C-PM				0.52	91					
Copper	07440-50-8	99.99			0.37	91	4.1	2,250	1.1	2,470	1.2
Tin	07440-31-5	0.15			3.6E-03	91	6.0E-05	3.3E-02	1.6E-05	3.6E-02	1.8E-05
Silver	07440-22-4	0.10			2.4E-03	91	2.7E-05	1.5E-02	7.3E-06	1.6E-02	8.0E-06
Tellurium	13494-80-9	0.05			1.2E-03	91	6.7E-06	3.6E-03	1.8E-06	4.0E-03	2.0E-06
HAPs	NY100-00-0						4.3E-06	2.3E-03	1.2E-06	2.6E-03	1.3E-06
Phosphorus	07723-14-0	0.04			9.6E-04	91	4.3E-06	2.3E-03	1.2E-06	2.6E-03	1.3E-06
Wallover Copperol 1000B											
Total Particulate Matter	NY075-00-0	100			2.9	91					
Total PM ₁₀	NY075-00-5	100			0.72	91					
Total PM _{2.5}	NY075-02-5	100			0.66	91					
Filterable PM	F-PM				2.4	91					
Filterable PM ₁₀	F-PM10				0.20	91					
Filterable PM _{2.5}	F-PM2.5				0.14	91					
Condensible PM	C-PM				0.52	91					
Highly refined, low viscosity											
mineral oils/hydrocarbons	Trade Secret #4	70			0.36	91	2.8	2,208	1.1	2,424	1.2
Proprietary emulsifier	Trade Secret #6	10			5.2E-02	91	5.8E-02	315	0.16	346	0.17
Total											
Particulate Matter	NY075-00-0						32	17,713	8.9	19,441	9.7
PM ₁₀	NY075-00-5						8.0	4,368	2.2	4,794	2.4
PM _{2.5}	NY075-02-5						7.3	4,004	2.0	4,394	2.2
Copper	07440-50-8						4.1	2,250	1.1	2,470	1.2
Tin	07440-31-5						6.0E-05	3.3E-02	1.6E-05	3.6E-02	1.8E-05

Table 10 U-OVER1 Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent	Future Projected Operating Hours ^(a)	Potential Annual Operating Hours ^(b)	Post- Control Emission Rate ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual A Emissio		Potential Emissio	
		(%)	(hr/yr)	(hhr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Silver	07440-22-4						2.7E-05	1.5E-02	7.3E-06	1.6E-02	8.0E-06
Tellurium	13494-80-9						6.7E-06	3.6E-03	1.8E-06	4.0E-03	2.0E-06
Highly refined, low viscosity	1										
mineral oils/hydrocarbons	Trade Secret #4						2.8	2,208	1.1	2,424	1.2
Proprietary emulsifier	Trade Secret #6						5.8E-02	315	0.16	346	0.17
HAPs	NY100-00-0						4.3E-06	2.3E-03	1.2E-06	2.6E-03	1.3E-06
Phosphorus	07723-14-0						4.3E-06	2.3E-03	1.2E-06	2.6E-03	1.3E-06

Notes:

- (a) Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (b) Revere is proposing an annual operating hour cap on the Overhauler of 6,658 hours per year in order to demonstrate compliance with Part 212. This cap may change based on additional source testing.
- (c) The PM and Copper Emission Factors are based on testing of post-control emissions in May 2023. For the other metal content of the copper shavings, emission factors for the individual constituents are calculated by multiplying the Total Filterable PM Emission Factor by the weight percent for each constituent. For the metal working fluid, emission factors for the individual constituents are calculated by multiplying the Condensible PM Emission Factor by the weight percent for each constituent.
- (d) The control efficiency of the scrubber is based on control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3, and assumed to meet the 212-2.3(a) Table 3 control efficiency requirement.
- (e) Emission Rate Potential (lb/hr) = Weight Percent (%) x Emission Factor (lb/hr) ÷ 1-Control Efficiency (%).
- (f) Actual Annual Emissions (lb/yr) = Weight Percent (%) x Emission Factor (lb/hr) x Future Projected Operating Hours (hr/yr). Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).
- (g) Potential Annual Emissions (lb/yr) = Weight Percent (%) x Emission Factor (lb/hr) x Potential Annual Operating Hours (hr/yr). Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) \div 2,000 (lb/ton).

Table 11
U-ANNE1
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating E Hours ^(c)	Emission Rate Potential ^(d)	Actual <i>I</i> Emissio		Potential Emissi	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
1729-1734 Lee Wilson Anneal (EP 0	0369)								
Navi-Guard Roll Oil 135			3,610	17,520					
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75			5.2E-03	19	9.4E-03	91	4.6E-02
dewaxed light paraffinic	64742-56-9	75			5.2E-03	19	9.4E-03	91	4.6E-02
Bonderite S-FN 860			3,610	17,520					
Volatile Organic Compounds	NY998-00-0	100			1.8E-04	0.64	3.2E-04	3.1	1.6E-03
Diethylene glycol	00111-46-6	60			1.1E-04	0.38	1.9E-04	1.9	9.3E-04
Polyethylene glycol	25322-68-3	60			1.1E-04	0.38	1.9E-04	1.9	9.3E-04
Azole derivative	Trade Secret #7	5			8.9E-06	3.2E-02	1.6E-05	0.16	7.8E-05
Bonderite S-FN 870			3,610	17,520					
VOC	NY998-00-0	100			1.8E-04	0.64	3.2E-04	3.1	1.6E-03
Petroleum distillates	Trade Secret #1	100			1.8E-04	0.64	3.2E-04	3.1	1.6E-03
2-Butoxyethanol	00111-76-2	5			8.9E-06	3.2E-02	1.6E-05	0.16	7.8E-05
Wallover Premium 40			3,610	17,520					
VOC	NY998-00-0	100			1.4E-04	0.49	2.4E-04	2.4	1.2E-03
Petroleum distillates (mineral oil)	08042-47-5	100			1.4E-04	0.49	2.4E-04	2.4	1.2E-03
2383-2386 Ebner Anneal (EP 00440									
Navi-Guard Roll Oil 135			10,130	17,520					
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75			1.9E-03	19	9.7E-03	34	1.7E-02
dewaxed light paraffinic	64742-56-9	75			1.9E-03	19	9.7E-03	34	1.7E-02
Bonderite S-FN 860			10,130	17,520					
Volatile Organic Compounds	NY998-00-0	100			6.6E-05	0.66	3.3E-04	1.1	5.7E-04
Diethylene glycol	25322-68-3	60			3.9E-05	0.40	2.0E-04	0.69	3.4E-04
Polyethylene glycol	Trade Secret #7	60			3.9E-05	0.40	2.0E-04	0.69	3.4E-04

Table 11
U-ANNE1
Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating E Hours ^(c)	Emission Rate Potential ^(d)	Actual <i>I</i> Emissi		Potential Emission	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Azole derivative	00111-46-6	5			3.3E-06	3.3E-02	1.7E-05	5.7E-02	2.9E-05
Bonderite S-FN 870			10,130	17,520					
VOC	NY998-00-0	100			6.6E-05	0.66	3.3E-04	1.1	5.7E-04
Petroleum distillates	Trade Secret #1	100			6.6E-05	0.66	3.3E-04	1.1	5.7E-04
2-Butoxyethanol	00111-76-2	5			3.3E-06	3.3E-02	1.7E-05	5.7E-02	2.9E-05
Wallover Premium 40			10,130	17,520					
VOC	NY998-00-0	100			4.8E-05	0.49	2.4E-04	0.84	4.2E-04
Petroleum distillates (mineral oil)	08042-47-5	100			4.8E-05	0.49	2.4E-04	0.84	4.2E-04
1154 Bright Anneal (EP 00367/003	62)								
Navi-Guard Roll Oil 135			1,368	8,760					
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75			1.2E-02	17	8.4E-03	108	5.4E-02
dewaxed light paraffinic	64742-56-9	75			1.2E-02	17	8.4E-03	108	5.4E-02
Bonderite S-FN 860			1,368	8,760					
Volatile Organic Compounds	NY998-00-0	100			4.2E-04	0.57	2.9E-04	3.7	1.8E-03
Diethylene glycol	25322-68-3	60			2.5E-04	0.34	1.7E-04	2.2	1.1E-03
Polyethylene glycol	Trade Secret #7	60			2.5E-04	0.34	1.7E-04	2.2	1.1E-03
Azole derivative	00111-46-6	5			2.1E-05	2.9E-02	1.4E-05	0.18	9.2E-05
Bonderite S-FN 870			1,368	8,760					
VOC	NY998-00-0	100			4.2E-04	0.57	2.9E-04	3.7	1.8E-03
Petroleum distillates	Trade Secret #1	100			4.2E-04	0.57	2.9E-04	3.7	1.8E-03
2-Butoxyethanol	00111-76-2	5			2.1E-05	2.9E-02	1.4E-05	0.18	9.2E-05
Wallover Premium 40			1,368	8,760					
VOC	NY998-00-0	100			3.6E-04	0.49	2.4E-04	3.1	1.6E-03
Petroleum distillates (mineral oil)	08042-47-5	100			3.6E-04	0.49	2.4E-04	3.1	1.6E-03

Table 11 U-ANNE1 Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating E Hours ^(c)	Emission Rate Potential ^(d)	Actual <i>A</i>		Potential Emission	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
464 Tray Style/Coil Anneal (EP 001	89/00190)								
Navi-Guard Roll Oil 135	ĺ		7,496	8,760					
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75	· ·	·	1.2E-02	17	8.4E-03	108	5.4E-02
dewaxed light paraffinic	64742-56-9	75			1.2E-02	17	8.4E-03	108	5.4E-02
Bonderite S-FN 860			7,496	8,760					
Volatile Organic Compounds	NY998-00-0	100	•		4.2E-04	0.57	2.9E-04	3.7	1.8E-03
Diethylene glycol	25322-68-3	60			2.5E-04	0.34	1.7E-04	2.2	1.1E-03
Polyethylene glycol	Trade Secret #7	60			2.5E-04	0.34	1.7E-04	2.2	1.1E-03
Azole derivative	00111-46-6	5			2.1E-05	2.9E-02	1.4E-05	0.18	9.2E-05
Bonderite S-FN 870			7,496	8,760					
VOC	NY998-00-0	100			4.2E-04	0.57	2.9E-04	3.7	1.8E-03
Petroleum distillates	Trade Secret #1	100			4.2E-04	0.57	2.9E-04	3.7	1.8E-03
2-Butoxyethanol	00111-76-2	5			2.1E-05	2.9E-02	1.4E-05	0.18	9.2E-05
Wallover Premium 40			7,496	8,760					
VOC	NY998-00-0	100			3.6E-04	0.49	2.4E-04	3.1	1.6E-03
Petroleum distillates (mineral oil)	08042-47-5	100			3.6E-04	0.49	2.4E-04	3.1	1.6E-03
1738 Strand Anneal (EP 00027)									
Navi-Guard Roll Oil 135			6,372	8,760					
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75			1.3E-02	84	4.2E-02	116	5.8E-02
dewaxed light paraffinic	64742-56-9	75			1.3E-02	84	4.2E-02	116	5.8E-02
Bonderite S-FN 860			6,372	8,760					
Volatile Organic Compounds	NY998-00-0	100			1.6E-03	10	5.2E-03	14	7.1E-03
Diethylene glycol	00111-46-6	5			1.2E-03	7.6	3.8E-03	11	5.3E-03

Table 11 U-ANNE1 Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

		Weight	Future Projected Operating	Potential Annual Operating	Emission Rate	Actual A	ınnual	Potential	Annual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Hours ^(c)	Potential ^(d)	Emissio	ons ^(e)	Emissi	ons ^(f)
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Polyethylene glycol	25322-68-3	60			1.4E-03	9.2	4.6E-03	13	6.3E-03
Azole derivative	Trade Secret #7	60			1.4E-03	9.2	4.6E-03	13	6.3E-03
Bonderite S-FN 870			6,372	8,760					
VOC	NY998-00-0	100			2.0E-03	13	6.4E-03	18	8.8E-03
Petroleum distillates	Trade Secret #1	100			2.0E-03	13	6.4E-03	18	8.8E-03
2-Butoxyethanol	00111-76-2	5			1.6E-03	10	5.0E-03	14	6.9E-03
Wallover Premium 40			6,372	8,760					
VOC	NY998-00-0	100			7.7E-05	0.49	2.4E-04	0.67	3.4E-04
Petroleum distillates (mineral oil)	08042-47-5	100			7.7E-05	0.49	2.4E-04	0.67	3.4E-04
Total									
VOC	NY998-00-0					187	9.3E-02	521	0.26
Diethylene glycol	00111-46-6					8.1	4.1E-03	13	6.4E-03
2-Butoxyethanol	00111-76-2					10	5.1E-03	14	7.2E-03
Petroleum distillates (mineral oil)	08042-47-5					2.4	1.2E-03	10	5.1E-03
Polyethylene glycol Distillates (petroleum), solvent-	25322-68-3					11	5.3E-03	20	9.8E-03
dewaxed light paraffinic	64742-56-9					156	7.8E-02	456	0.23
Petroleum distillates	Trade Secret #1					15	7.6E-03	29	1.5E-02
Azole derivative	Trade Secret #7					10	5.2E-03	18	9.0E-03

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (c) The Potential Annual Operating Hours are based on the units running for 24 hours/day, 7 days/week, 365 days/yr, which results in 8,760 hours per year. The Lee Wilson and Ebner Anneals each have two furnaces so the Potential Annual Operating Hours for those units represent both furnaces running for 8,760 hours.

Table 11 U-ANNE1

Summary of Actual and Potential Emissions

			Future Projected	Potential Annual					
		Weight	Operating	Operating E	mission Rate	Actual An	nual	Potential A	Annual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Hours ^(c)	Potential ^(d)	Emission	าร ^(e)	Emissio	ns ^(f)
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

⁽d) The hourly emissions of volatile organic compounds from the residual metalworking fluid were based on the estimated fraction of fluid that remains on the metal, the constituent weight percent of the fluid, the maximum amount of fluid used in a single year between 2019 and 2021, the operating time in 2021, and the fraction of metal fed to the annealing units.

⁽e) Actual Annual Emissions (lb/yr) = Future Projected Operating Hours (hr/yr) x Emission Rate Potential (lb/hr). Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).

⁽f) Potential Annual Emissions (lb/yr) = Potential Annual Operating Hours (hr/yr) x Emission Rate Potential (lb/hr). Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) \div 2,000 (lb/ton).

Table 12 Pickling Line Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Density ^(a)	Maximum Hourly Application Rate ^(b)	Future Projected Annual Usage ^(c)	Potential Annual Usage ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Actual An Emission		Potential A Emission	
			(lb/gal)	(gal/hr)	(gal/yr)	(gal/yr)	(%)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
1740 Heavy Gauge Cleanin	ng - Entry (Wet S	crubber, EP 00	028)									
PCK Process - Sulfuric acid	k		15.3	1.59	13,928	13,928						
Particulate Matter ^(h)	NY075-00-0	8					25	0.19	1,276	0.64	1,276	0.64
PM_{10}	NY075-00-5	8					25	0.19	1,276	0.64	1,276	0.64
PM _{2.5}	NY075-02-5	8					25	0.19	1,276	0.64	1,276	0.64
Sulfuric acid	07664-93-9	8					25	0.19	1,276	0.64	1,276	0.64

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) The Maximum Hourly Application Rate was provided by Revere.
- (c) The Actual Annual Usage from 2021 is scaled up to represent an increase of annual operating hours to 8,760 hr/yr estimated by Revere to occur as a result of the EP 00040 furnace replacement project. Since the estimated future projected operating hours are estimated by Revere to be 8,760 hr/yr, Potential Annual Usage is estimated to equal Future Projected Annual Usage.
- (d) Emissions from the Pickling Process are controlled by a wet scrubber. The control efficiency of the scrubber is based on the control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potential (lb/hr) = Maximum Hourly Application Rate (gal/hr) x Density (lb/gal) x Weight Percent (%) x Loss Factor of 10 (%).

The majority of the sulfuric acid used in the pickling line remains as a liquid and is sent to on-site waste treatment. To be conservative, it was assumed that 10% of the sulfuric acid is emitted to the exhaust stack.

- (f) Actual emissions (lb/yr) = Future Projected Annual Usage (gal/yr) x Density (lb/gal) x Weight Percent (%) x 1-Control Efficiency (%) x 10 (%).
- The majority of the sulfuric acid used in the pickling line remains as a liquid and is sent to on-site waste treatment. It was estimated that 10% of the sulfuric acid is emitted to the exhaust stack. Actual Annual Emissions (tyy) = Actual An
- (g) Potential emissions (lb/yr) = Potential Annual Usage (gal/yr) x Density (lb/gal) x Weight Percent (%) x 1-Control Efficiency (%) x 10 (%).

The majority of the sulfuric acid used in the pickling line remains as a liquid and is sent to on-site waste treatment. It was estimated that 10% of the sulfuric acid is emitted to the exhaust stack. Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) \div 2,000 (lb/ton).

(h) All particulate matter is assumed to be PM_{2.5}.

Table 13 Anneal Cleaning Summary of Actual and Potential Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a) (%)		Maximum Hourly Application Rate ^(b) (gal/hr)	Actual Annual Usage ^(c) (gal/yr)	_	Control Efficiency ^(e)	Emission Rate Potential ^(f) (lb/hr)	Post- Control Emission Rate ^(g) (lb/hr)			Potential En	
Line 1738 Strand Anneal Cle	aning (Wet Scrubb		(lb/gal)	(gai/iii)	(gai/ yi)	(gal/yr)	(%)	(10/111)	(10/111)	(lb/yr)	(tpy)	(ID7 yI)	(tpy)
Aquaease PL714	<u> </u>	,	8.345	0.795	3,454	6,964							
Particulate Matter ^(j)	NY075-00-0	1.5					85	0.10	1.5E-02	65	3.2E-02	131	6.5E-02
PM ₁₀ ^(j)	NY075-00-5	1.5					85	0.10	1.5E-02	65	3.2E-02	131	6.5E-02
PM _{2.5} ^(j)	NY075-02-5	1.5					85	0.10	1.5E-02	65	3.2E-02	131	6.5E-02
Sodium metasilicate	06834-92-0	0.15					85	1.0E-02	1.5E-03	6.5	3.2E-03	13	6.5E-03
Sodium phosphate, tribasic	10101-89-0	6.0E-02					85	4.0E-03	6.0E-04	2.59	1.3E-03	5.2	2.6E-03
Bonderite S-FN 860			8.345	0.795	1,612	6,964							
Particulate Matter ^(j)	NY075-00-0	1.0E-02					85	6.6E-04	1.0E-04	0.20	1.0E-04	0.87	4.4E-04
PM ₁₀ ^(j)	NY075-00-5	1.0E-02					85	6.6E-04	1.0E-04	0.20	1.0E-04	0.87	4.4E-04
PM _{2.5} ^(j)	NY075-02-5	1.0E-02					85	6.6E-04	1.0E-04	0.20	1.0E-04	0.87	4.4E-04
Polyethylene glycol	25322-68-3	6.0E-03					85	4.0E-04	6.0E-05	0.12	6.1E-05	0.52	2.6E-04
Azole derivative	Trade Secret #7	6.0E-03					85	4.0E-04	6.0E-05	0.12	6.1E-05	0.52	2.6E-04
Diethylene glycol	00111-46-6	5.0E-04					85	3.3E-05	5.0E-06	1.0E-02	5.0E-06	4.4E-02	2.2E-05
Line 1740 Heavy Gauge Clea	ning (Wet Scrubbe	er, EP 00028)											
Aquaease PL714			8.345	0.795	3,654	6,964							
Particulate Matter ^(j)	NY075-00-0	1.5					85	0.10	1.5E-02	69	3.4E-02	131	6.5E-02
PM ₁₀ ^(j)	NY075-00-5	1.5					85	0.10	1.5E-02	69	3.4E-02	131	6.5E-02
PM _{2.5} ^(j)	NY075-02-5	1.5					85	0.10	1.5E-02	69	3.4E-02	131	6.5E-02
Sodium metasilicate	06834-92-0	0.15					85	1.0E-02	1.5E-03	6.9	3.4E-03	13	6.5E-03
Sodium phosphate, tribasic	10101-89-0	6.0E-02					85	4.0E-03	6.0E-04	2.7	1.4E-03	5.2	2.6E-03
Bonderite S-FN 860			8.345	0.795	758	6,964							
Particulate Matter ^(j)	NY075-00-0	1.3E-02					85	8.3E-04	1.2E-04	0.12	5.9E-05	1.1	5.4E-04
PM ₁₀ ^(j)	NY075-00-5	1.3E-02					85	8.3E-04	1.2E-04	0.12	5.9E-05	1.1	5.4E-04
PM _{2.5} ^(j)	NY075-02-5	1.3E-02					85	8.3E-04	1.2E-04	0.12	5.9E-05	1.1	5.4E-04
Polyethylene glycol	25322-68-3	7.5E-03					85	5.0E-04	7.5E-05	7.1E-02	3.6E-05	0.65	3.3E-04
Azole derivative	Trade Secret #7	7.5E-03					85	5.0E-04	7.5E-05	7.1E-02	3.6E-05	0.65	3.3E-04
Diethylene glycol	00111-46-6	6.3E-04					85	4.1E-05	6.2E-06	5.9E-03	3.0E-06	5.4E-02	2.7E-05
Hydrogen Peroxide			9.3464	0.795	2,551	6,964							
Particulate Matter ^(j)	NY075-00-0	0.5					85	3.7E-02	5.6E-03	18	8.9E-03	49	2.4E-02
PM ₁₀ ^(j)	NY075-00-5	0.5					85	3.7E-02	5.6E-03	18	8.9E-03	49	2.4E-02
PM _{2.5} ^(j)	NY075-02-5	0.5					85	3.7E-02	5.6E-03	18	8.9E-03	49	2.4E-02
Hydrogen peroxide	07722-84-1	0.5					85	3.7E-02	5.6E-03	18	8.9E-03	49	2.4E-02

Table 13 Anneal Cleaning Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

				Maximum Hourly	Actual	Potential		Emission	Post- Control				
		Weight		Application	Annual	Annual	Control	Rate	Emission				
Sources and Pollutants	CAS Number	Percent ^(a)	Density ^(a)	Rate ^(b)	Usage ^(c)	Usage ^(d)	Efficiency ^(e)	Potential ^(f)	Rate ^(g)	Actual Emi	ssions ^(h)	Potential Em	nissions ⁽ⁱ⁾
		(%)	(lb/gal)	(gal/hr)	(gal/yr)	(gal/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Total													
Particulate Matter	NY075-00-0									152	7.6E-02	312	0.16
PM10	NY075-00-5									152	7.6E-02	312	0.16
PM2.5	NY075-02-5									152	7.6E-02	312	0.16
Diethylene glycol	00111-46-6									1.6E-02	8.0E-06	9.8E-02	4.9E-05
Sodium metasilicate	06834-92-0									13.3	6.7E-03	26	1.3E-02
Hydrogen peroxide	07722-84-1									18	8.9E-03	49	2.4E-02
Sodium phosphate, tribasic	10101-89-0									5.3	2.7E-03	10	5.2E-03
Polyethylene glycol	25322-68-3									0.19	9.6E-05	1.2	5.9E-04
Azole derivative	Trade Secret #7									0.19	9.6E-05	1.2	5.9E-04

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) The Maximum Hourly Application Rate was provided by Revere.
- (c) The Actual Annual Usage is based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (d) Potential Annual Usage (gal/yr) = Maximum Hourly Application Rate (gal/hr) x 8,760 (hr/yr)
- (e) Emissions from the Pickling Process are controlled by a wet scrubber. The control efficiency of the scrubber is based on the control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (f) Emission Rate Potential (lb/hr) = Weight Percent (%) x Density (lb/gal) x Maximum Hourly Application Rate (gal/hr).
- (g) Post-Control Emission Rate (lb/hr) = Emission Rate Potential (lb/hr) x 1-Control Efficiency (%).
- (h) Actual emissions (lb/yr) = Weight Percent (%) x Density (lb/gal) x Actual Annual Usage (gal/yr) x (1-Control Efficiency) (%).
- Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (i) Potential emissions (lb/yr) = Weight Percent (%) x Density (lb/gal) x Potential Annual Usage (gal/yr) x (1-Control Efficiency) (%).
- Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (j) All Particulate Matter is assumed to be PM_{2.5}.

Table 14 U-GALV1 Molten Metal Tank Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours	Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Post- Control Emission Rate ^(f)	Actual A		Potential Emissio	
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Molten Zinc/Tin Bath (Bag	ghouse, EP 00601)		185	8,760								
Molten Metal												
Particulate Matter ^(h)	NY075-00-0	100			2.1	99	2.1	2.1E-02	3.8	1.9E-03	181	9.1E-02
PM ₁₀ ^(h)	NY075-00-5	100			2.1	99	2.1	2.1E-02	3.8	1.9E-03	181	9.1E-02
PM _{2.5} ^(h)	NY075-02-5	100			2.1	99	2.1	2.1E-02	3.8	1.9E-03	181	9.1E-02
Zinc	07440-66-6	50			2.1	99	1.0	1.0E-02	1.9	9.6E-04	91	4.5E-02
Tin	07440-31-5	50			2.1	99	1.0	1.0E-02	1.9	9.6E-04	91	4.5E-02
Zacion AB Flux												
Particulate Matter ^(h)	NY075-00-0	100			2.09E-02	99	2.1E-02	2.1E-04	3.9E-02	1.9E-05	1.8	9.2E-04
PM ₁₀ ^(h)	NY075-00-5	100			2.09E-02	99	2.1E-02	2.1E-04	3.9E-02	1.9E-05	1.8	9.2E-04
PM _{2.5} ^(h)	NY075-02-5	100			2.09E-02	99	2.1E-02	2.1E-04	3.9E-02	1.9E-05	1.8	9.2E-04
Zinc chloride	07646-85-7	70			2.09E-02	99	1.5E-02	1.5E-04	2.7E-02	1.4E-05	1.3	6.4E-04
Ammonium chloride	12125-02-9	30			2.09E-02	99	6.3E-03	6.3E-05	1.2E-02	5.8E-06	0.55	2.7E-04
Total												
Particulate Matter ^(h)	NY075-00-0						2.1	2.1E-02	3.9	1.9E-03	183	9.2E-02
PM ₁₀ ^(h)	NY075-00-5						2.1	2.1E-02	3.9	1.9E-03	183	9.2E-02
PM _{2.5} ^(h)	NY075-02-5						2.1	2.1E-02	3.9	1.9E-03	183	9.2E-02
Tin	07440-31-5						1.0	1.0E-02	1.9	9.6E-04	91	4.5E-02
Zinc	07440-66-6						1.0	1.0E-02	1.9	9.6E-04	91	4.5E-02
Zinc chloride	07646-85-7						1.5E-02	1.5E-04	2.7E-02	1.4E-05	1.3	6.4E-04
Ammonium chloride	12125-02-9						6.3E-03	6.3E-05	1.2E-02	5.8E-06	0.55	2.7E-04

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (c) The emission factor of 2.09 lb/hr was taken from *Emissions From Hot-Dip Galvanizing Processes: Final Report; EPA 905/4-76-002* (March 1976). The emission factor includes the full standard deviation to be conservative and is representative of emissions from both the flux and molten metal. In order to separate emissions from the molten metal and the flux, the emission factor was multiplied by 99% for the molten metal and 1% for the flux. This was based on the relative mass of flux added compared to the amount of molten metal in the bath.
- (d) The control efficiency of the baghouse is based on control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potential (lb/hr) = Emission Factor (lb/hr) x Composition (%).
- (f) Post-Control Emission Rate (lb/hr) = Emission Factor (lb/hr) x 1-Control Efficiency (%) x Composition (%).
- (g) Actual Annual Emissions (lb/yr) = Future Projected Operating Hours (hr/yr) x Emission Rate Potential (lb/hr) x (1-Control Efficiency (%)/100).

Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

(h) Potential annual emissions are based on post-control because the control device is required under the ASF Permit. Potential Annual Emissions (lb/yr) = Potential Annual Operating Hours (hr/yr) x Emission Factor (hr/yr) x Composition (%) x (1-Control Efficiency (%)/100).

Table 14 U-GALV1 Molten Metal Tank Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

			Future	Potential				Post-				
			Projected	Annual			Emission	Control				
			Operating	Operating	Emission	Control	Rate	Emission	Actual Ar	nual	Potential A	Annual
Sources and Pollutants	CAS Number	Composition ^(a)	Hours ^(b)	Hours	Factor (c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)	Emission	าร ^(g)	Emission	ns ^(h)
		(%)	(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

⁽i) All particulate matter is assumed to be $PM_{2.5}$.

Table 15 U-GALV1 Acid Tank Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

HCl and Flux Bath (Scrubber, EP 00600) 185 3,760	Sources and Pollutants	CAS Number	Composition ^(a)	Future Projected Operating Hours ^(b)	Potential Annual Operating Hours	Factor ^(c)	Control Efficiency ^(d)		Post- Control Emission Rate ^(f)	Actual <i>A</i>	ons ^(g)	Potential Emission	ons ^(h)
Muriatic Acid Particulate Matter ⁽⁰⁾ NY075-00-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM100 NY075-00-5 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM220 NY075-02-5 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 HAPS NY100-00-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 Hydrogen chloride 07647-01-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 Eactor W Particulate Matter ⁽⁰⁾ NY075-00-0 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM100 NY075-00-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM2.5 NY075-00-5 73 2.7E-02	HOL and Elm Bath (Camb	h		(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Particulate Matter (1) NY075-00-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM ₁₀ (1) NY075-00-5 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM _{2.5} (1) NY075-02-5 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM _{2.5} (1) NY075-02-5 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM _{2.5} (1) NY075-00-0 85 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM _{2.5} (1) NY075-01-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM _{2.5} (1) NY075-00-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 PM _{2.5} (1) NY075-00-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM ₁₀ (1) NY075-00-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} (1) NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} (1) NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} (1) NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} (1) NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} (1) NY075-02-5 73 2.7E-02 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 PM _{2.5} (1) NY075-02-5 73 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 PM _{2.5} (1) NY075-02-5 73 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 PM _{2.5} (1) NY075-02-5 73 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 PM _{2.5} (1) NY075-02-5 (1) NY075-00-5 (1) NY075-02-5 (1) NY075		ber, EP 00600)		185	8,760								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NY075-00-0	37			9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03	119	6.0E-02
PM2_5 0												119	6.0E-02
HAPS NY100-00-0 37 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 9.1E-02 85 9.1E-02 1.4E-02 2.5 1.3E-03 119 9.1E-03 119 9.1E-03 85 9.1E-02 1.4E-03 0.76 3.8E-04 36 9.1E-03 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76		NY075-02-5	37			9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03	119	6.0E-02
Hydrogen chloride		NY100-00-0				9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03	119	6.0E-02
Particulate Matter ⁽¹⁾ NY075-00-0 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM ₁₀ ⁽¹⁾ NY075-00-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} ⁽¹⁾ NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 PM _{2.5} ⁽¹⁾ NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 Zinc chloride 07646-85-7 40 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Ammonium chloride 12125-02-9 30 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Barium chloride 10361-37-2 2.5 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Particulate Matter NY075-00-0 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 NY075-00-5 0.12 1.8E-02 3.3 1.6E-03 155 PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	Hydrogen chloride	07647-01-0	37									119	6.0E-02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zalcon W												
PM _{2.5} (0) NY075-02-5 73 2.7E-02 85 2.7E-02 4.1E-03 0.76 3.8E-04 36 2.7IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Particulate Matter ⁽ⁱ⁾	NY075-00-0	73			2.7E-02	85	2.7E-02	4.1E-03	0.76	3.8E-04	36	1.8E-02
Zinc chloride 07646-85-7 40 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Ammonium chloride 12125-02-9 30 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Barium chloride 10361-37-2 2.5 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Total Particulate Matter NY075-00-0 0.12 1.8E-02 3.3 1.6E-03 155 PM ₁₀ NY075-00-5 0.12 1.8E-02 3.3 1.6E-03 155 PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	PM ₁₀ ⁽ⁱ⁾	NY075-00-5	73			2.7E-02	85	2.7E-02	4.1E-03	0.76	3.8E-04	36	1.8E-02
Ammonium chloride 12125-02-9 30 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Barium chloride 10361-37-2 2.5 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Total Particulate Matter NY075-00-0 0.12 1.8E-02 3.3 1.6E-03 155 PM ₁₀ NY075-00-5 0.12 1.8E-02 3.3 1.6E-03 155 PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	PM _{2.5} ⁽ⁱ⁾	NY075-02-5	73			2.7E-02	85	2.7E-02	4.1E-03	0.76	3.8E-04	36	1.8E-02
Barium chloride 10361-37-2 2.5 9.1E-03 85 9.1E-03 1.4E-03 0.25 1.3E-04 12 Total Particulate Matter NY075-00-0 0.12 1.8E-02 3.3 1.6E-03 155 PM ₁₀ NY075-00-5 0.12 1.8E-02 3.3 1.6E-03 155 PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	Zinc chloride	07646-85-7	40			9.1E-03	85	9.1E-03	1.4E-03	0.25	1.3E-04	12	6.0E-03
Total Particulate Matter NY075-00-0 0.12 1.8E-02 3.3 1.6E-03 155 PM ₁₀ NY075-00-5 0.12 1.8E-02 3.3 1.6E-03 155 PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	Ammonium chloride	12125-02-9	30			9.1E-03	85	9.1E-03	1.4E-03	0.25	1.3E-04	12	6.0E-03
Particulate Matter NY075-00-0 0.12 1.8E-02 3.3 1.6E-03 155 PM ₁₀ NY075-00-5 0.12 1.8E-02 3.3 1.6E-03 155 PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	Barium chloride	10361-37-2	2.5			9.1E-03	85	9.1E-03	1.4E-03	0.25	1.3E-04	12	6.0E-03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total												
PM _{2.5} NY075-02-5 0.12 1.8E-02 3.3 1.6E-03 155 Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	Particulate Matter	NY075-00-0						0.12	1.8E-02	3.3	1.6E-03	155	7.8E-02
Zinc chloride 07646-85-7 9.1E-03 1.4E-03 0.25 1.3E-04 12	PM_{10}	NY075-00-5						0.12	1.8E-02	3.3	1.6E-03	155	7.8E-02
	PM _{2.5}	NY075-02-5						0.12	1.8E-02	3.3	1.6E-03	155	7.8E-02
Barium chloride 10361-37-2 9 1F-03 1 4F-03 0 25 1 3F-04 12	Zinc chloride	07646-85-7						9.1E-03	1.4E-03	0.25	1.3E-04	12	6.0E-03
7.1E 00 1.1E 01 0.20 1.0E 01 12	Barium chloride	10361-37-2						9.1E-03	1.4E-03	0.25	1.3E-04	12	6.0E-03
Ammonium chloride 12125-02-9 9.1E-03 1.4E-03 0.25 1.3E-04 12	Ammonium chloride	12125-02-9						9.1E-03	1.4E-03	0.25	1.3E-04	12	6.0E-03
HAPs NY100-00-0 9.1E-02 1.4E-02 2.5 1.3E-03 119	HAPs	NY100-00-0						9.1E-02	1.4E-02	2.5	1.3E-03	119	6.0E-02
Hydrogen chloride 07647-01-0 9.1E-02 1.4E-02 2.5 1.3E-03 119	Hydrogen chloride	07647-01-0						9.1E-02	1.4E-02	2.5	1.3E-03	119	6.0E-02

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) Future Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace replacement project.
- (c) The hydrogen chloride emission factor was calculated using the equations provided in EPA's Guidance Document National Emission Standards for Hazardous Air Pollutants (NESHAP) for Steel Pickling HCl Process Background Information for Proposed Standards (June, 1997) Appendix E.

The guidance document does not provide methods to estimate the emissions of the other chloride constituents. A literature search revealed that the other chloride constituents are expected to have significantly lower vapor pressures than hydrogen chloride. Therefore, the emission factors for these constituents were conservatively assumed to be 10% of the emission factor for hydrogen chloride.

(d) The control efficiency of the wet scrubber is based on control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.

Table 15 U-GALV1 Acid Tank Summary of Actual and Potential Emissions

			Future	Potential				Post-				
			Projected	Annual			Emission	Control				
			Operating	Operating	Emission	Control	Rate	Emission	Actual A	nnual	Potential A	Annual
Sources and Pollutants	CAS Number	Composition (a)	Hours ^(b)	Hours	Factor ^(c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)	Emissio	ns ^(g)	Emissio	ns ^(h)
			(hr/yr)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)

- (e) Emission Rate Potential (lb/hr) = Emission Factor (lb/hr).
- (f) Post-Control Emission Rate (lb/hr) = Emission Rate Potential (lb/hr) x 1-Control Efficiency (%).
- (g) Actual Annual Emissions (lb/yr) = Future Projected Operating Hours (hr/yr) x Emission Factor (lb/hr) x (1-Control Efficiency (%)/100). Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).
- (h) Potential Annual Emissions (lb/yr) = Potential Annual Operating Hours (hr/yr) x Emission Factor (lb/hr) x (1-Control Efficiency (%)/100). Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) \div 2,000 (lb/ton).
- (i) All particulate matter is assumed to be $PM_{2.5}$.

Table 16 U-SOLV1 Non-Exempt Parts Washer Summary of Actual and Potential Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Density ^(a)	Volume ^(b)	Surface Area ^(b)	Actual Annual Usage ^(b)	Emission Rate Potential ^(c)	Actual A		Potential A	
		(%)	(lb/gal)	(gal)	(ft ²)	(gal/yr)	(lb/hr)	(lb/yr)	(tpy)	(lb/yr)	(tpy)
Evaporation Calculation M	ethod		6.8	550	34	870					
VOC Distillates, petroleum,	NY998-00-0	3.1					5.0E-02	181	9.1E-02	434	0.22
hydrotreated light ^(f)	64742-47-8	3.1					5.0E-02	181	9.1E-02	434	0.22

- (a) From manufacturer's Safety Data Sheets.
- (b) Information provided by Revere for 2021 and reflects annual usage minus the amount of solvent disposed of as liquid waste.
- (c) The Emission Rate Potential was estimated using the evaporation model provided in *Methods for Estimating Air Emissions from Chemical Manufacturing Facilities, Volume II: Chapter 16* (August 2007) Section 3.7.
- (d) Actual Annual Emissions (lb/yr) = Actual Annual Usage (gal/yr) x Density (lb/gal) Weight Percent (%)

Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

- (e) Potential Annual Emissions (lb/yr) = Emission Rate Potential (lb/hr) x 8,760 (hr/yr)
- Potential Annual Emissions (tpy) = Potential Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (f) The manufacturer's SDS indicates that the solvent is entirely comprised of distillates, petroleum, hydrotreated light, but also guarentees that the VOC content is less than 25 g/L. Emissions were estimated assuming 25 g/L of VOC and that all of the VOC consists of distillates, petroleum, hydrotreated light.

ATTACHMENT D REGULATORY DISCUSSION

Attachment D Regulatory Discussion Revere Copper Products, Inc.

The following discussion provides additional information regarding key state and federal regulations that apply to the Revere Copper Products, Inc. (Revere) facility.

Title 6 of the New York Codes, Rules and Regulations (6 NYCRR) Subpart 201-5

Revere currently operates under an Air State Facility (ASF) Permit (No. 6-3013-00091/00039), which has an expiration date of October 31, 2023. Revere is submitting an application to both renew and modify the ASF Permit. The primary modifications being proposed include the change from firing No. 6 fuel oil to firing No. 2 fuel oil as backup fuel by the facility boilers and replacing an electric casting furnace with a new electric casting furnace that will provide an estimated 23.3% increase in output casting.

In accordance with 201-5.1(a)(1) and 201-7.1, the facility has established emission caps of 95 tons per year (tpy) each for nitrogen oxides (NO_X) and sulfur dioxide (SO₂), and 90 tpy each for total particulate matter (PM) and PM less than 10 and 2.5 microns (PM₁₀ and PM_{2.5}, respectively).

As shown in the emission inventory (**Attachment C**), annual actual and potential emissions of carbon monoxide (CO), PM, PM $_{10}$, PM $_{2.5}$, and SO $_{2}$ are each estimated to be less than the respective major source thresholds. Annual potential and actual emissions of volatile organic compounds (VOCs) and individual and combined hazardous air pollutants (HAPs) also are estimated to be below their respective major source thresholds.

Revere is proposing to maintain the existing emission cap for NO_X , but is requesting that the emission caps for PM, PM_{10} , and $PM_{2.5}$ be removed from the Permit. Additionally, Revere is proposing that the SO_2 and associated fuel oil use caps be removed from the permit as the estimated potential SO_2 emissions have decreased to below 100 tpy due to the shift from No. 6 to No. 2 fuel oil as backup fuel for the main boilers and the current sulfur content limit for No. 2 fuel oil (15 ppm).

6 NYCRR PART 212

Part 212 applies to emission sources and/or emission points associated with a process operation. Upon issuance of a renewal for an existing permit or registration, facilities must evaluate emissions from processes with respect to Part 212. In accordance with 212-1.2(b)(18), combustion installations are not a process operation and are not subject to Part 212. Therefore, combustion sources at the Revere facility have not been included in the Part 212 evaluation. In addition, in accordance with 212-1.4(a) process emission sources that are exempt or trivial under Section 201-3.2 and 201-3.3 are exempt from Part 212 and have not been included in the evaluation.

Process operations at the facility that are subject to Subparts 212-1 and 212-2 include casting furnaces, rolling mills, annealing furnaces, a pickling line, and a zinc/tin galvanizing line. These sources and their associated key parameters pertinent to the Part 212 evaluation are summarized in **Tables 1** and **2** at the end of this Attachment. Contaminants with high, medium, and low toxicity were assigned an initial

Environmental Rating (ER) of A, B, and C, respectively. Contaminants that did not have a toxicity provided in NYSDEC's *DAR-1 Guidelines for the Evaluation and Control of Ambient Air Contaminants under Part 212* (issued February 2021) were assigned an initial ER of B.

Process operations potentially emit the following HTACs: cadmium oxide, chromium oxide, lead oxide, mercury oxide, and nickel oxide, all of which may be emitted from the induction furnaces in the Cast Shop. The furnaces are typically exhausted to two baghouses, but each of the baghouses can be bypassed in the event there is a fire or emergency in the system. Emissions of PM, PM_{10} , and $PM_{2.5}$ during bypass operations are capped in the existing permit through conditions limiting the number of bypass hours allowed on a 12-month rolling basis. As the bypass scenario is considered to be a trivial activity in accordance with 201-3.3(c)(33), emissions from bypass operations were not included in the Part 212 evaluation as emissions from exempt and trivial activities are not subject to Part 212 (212-1.4(a)).

Emissions from the baghouses as well as emissions from bypass operations are exhausted from Emission Points (EPs) 00039 and 00040. In addition, Cast Shop dust is periodically vented from a central vacuum exhaust (EP 00602) that is used for housekeeping purposes.

Annual actual emissions of the five HTACs are estimated to be less than their respective Mass Emission Limits (MELs) in Table 2 of Subpart 212-2. As such, these emissions are not required to be modeled.

Non-HTACs also are estimated to be emitted from the facility including some that are projected to have actual annual emissions in excess of 100 pounds per year (lb/yr). The non-HTACs with emissions in excess of 100 lb/yr are subject to the air cleaning requirements in Table 4 of Subpart 212-2. In accordance with NYSDEC's DAR-1 guidance, non-HTAC contaminants with actual annual emissions less than 100 lb/yr do not need to be assigned an environmental rating or be further evaluated. However, during the review of the air dispersion modeling protocol for this project, NYSDEC indicated that non-HTACs that are not listed in DAR-1 must undergo a toxicity review by NYSDEC. Refer to the dispersion modeling report in **Attachment E** for further discussion of the evaluation of unlisted non-HTAC emissions.

Non-HTACs with estimated ERPs that trigger a control efficiency requirement other than the guideline concentration are graphite, iron oxide, and copper oxide. Based on the proposed ER for these constituents of B and estimated ERPs greater than 10 lb/hr for EPs 00040 (graphite, iron oxide, and copper oxide) and 00602 (graphite and copper oxide), these emissions are subject to 90% control. The baghouses associated with EPs 00040 and 00602 achieve estimated control efficiencies of greater than 90% for PM emissions. Therefore, emissions from these sources meet the above-mentioned control requirements. One additional constituent that was not listed in DAR-1 that NYSDEC has identified as A-rated, 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol, has estimated emissions from EP 00026 (Reversing Mill) that are subject to a Guideline Concentration and, therefore, required modeling. Refer to **Attachment E** for additional discussion.

Emission points with estimated emission rates of PM_{10} and $PM_{2.5}$ that trigger a control efficiency requirement based on Table 3 of Subpart 212-2 are in the U-CAST1 emission unit: EPs 00040 and 00602. Note that emissions of PM_{10} and $PM_{2.5}$ have been assumed to be B-rated because the PM is comprised primarily of medium toxicity constituents.

Air Dispersion Modeling

The facility has performed a Part 212 air dispersion modeling evaluation and has included the evaluation in **Attachment E**. The modeling evaluation includes the modeling protocol submitted to NYSDEC on December 1, 2022 and approved with comments via email received on January 9, 2023; NYSDEC's comments on the modeling protocol were incorporated into the modeling performed and are addressed in the modeling report provided in **Attachment E**.

Grain Standard

The Subpart 212-2.4 grain standard, which applies to non-exempt process operations with emissions of PM, is 0.15 grains per dry standard cubic foot of exhaust gas (gr/dscf) for sources permitted prior to July 1, 1973 or 0.05 gr/dscf for sources permitted after July 1, 1973. As shown in **Table 3**, estimated actual hourly emission rates are well under the most conservative limit of 0.05 gr/dscf for all emission points.

6 NYCRR Subpart 225-1

Revere has changed the backup fuel for the three main boilers from No. 6 fuel oil to No. 2 fuel oil. Due to this change, the facility is subject to the fuel sulfur limit of 0.0015 percent sulfur by weight provided in Section 225-1.2(d).

6 NYCRR Subpart 226-1

Subpart 226-1 establishes requirements for cold cleaning degreasers, open-top vapor degreasers, and conveyorized degreasers that use a solution containing VOCs. The criteria for compliant solvents used in cold cleaning degreasers was modified effective December 1, 2020 from a vapor pressure limit of 1 millimeter of mercury (mmHg) at 20°C to a VOC content limit of 50 grams per liter (g/L) of solvent. Revere operates three cold cleaning degreasers. The cleaner materials used in two of the units are caustic cleaners and based on their Safety Data Sheets (SDSs) do not contain VOCs. The cleaning material used in the third unit has a VOC content below the applicable limit, based on a review of the SDS.

Climate Leadership and Community Protection Act (CLCPA)

The CLCPA, which became effective January 1, 2020, directs state agencies to identify whether the decisions they make are consistent with the Statewide greenhouse gas (GHG) emission limits established by the CLCPA in Environmental Conservation Law (ECL) Article 75. In the case of NYSDEC, this includes evaluating whether permits issued are consistent with or would interfere with the attainment of the Statewide GHG emission limits in ECL Article 75.

NYSDEC has recently finalized *DAR-21 – The Climate Leadership and Community Protection Act (CLCPA)* and *Air Permit Applications* (DAR-21). In accordance with DAR-21, the policy applies to new and modified ASF permits and ASF permit renewals. However, DAR-21 also states that "A permit renewal that does not include a significant modification and would not lead to an increase in actual or potential GHG emissions would in most circumstances be considered consistent with the CLCPA pending finalization of the scoping plan and future regulations. However, DEC staff may require an applicant to submit a CLCPA analysis for a permit renewal to ensure the requirements of Section 7(2) are met."

A CLCPA analysis has been completed as part of this ASF Permit renewal/modification application and is provided in **Exhibit 1**.

Title 40 of the Code of Federal Regulations (40 CFR) Part 63, Subpart JJJJJJ (6J)

Subpart 6J applies to each existing, new, and reconstructed industrial, commercial, and institutional boiler within a subcategory (coal, biomass, oil) located at an area source of HAP. Boilers meeting the definition of gas-fired boiler are not subject to the Area Source Boiler MACT. Gas-fired boilers that burn liquid fuel during periods of gas curtailment, gas supply emergencies, or for periodic testing not to exceed 48 hours during any calendar year are included in the definition of gas-fired boilers and, therefore, are not subject to Subpart 6J.

The three boilers at Revere are dual-fuel boilers that fire primarily natural gas. These boilers previously used No. 6 fuel oil as a backup but have transitioned to using No. 2 fuel oil as a backup. Revere plans to operate the boilers as gas-fired boilers and will fire No. 2 fuel oil only during periods of natural gas curtailment and up to 48 hours per calendar year for periodic testing and maintenance.

40 CFR Part 63, Subpart TTTTTT (6T)

Revere no longer produces or uses brass and has no plans to re-introduce capability to use or produce brass in the future. Subpart 6T only applies to secondary nonferrous metals processing facilities, which are defined in §63.11472 as:

"Secondary nonferrous metals processing facility means a brass and bronze ingot making, secondary magnesium processing, or secondary zinc processing plant that uses furnace melting operations to melt post-consumer nonferrous metal scrap to make products including bars, ingots, blocks, or metal powders."

As such, Revere is no longer subject to Subpart 6T and the existing Subpart 6T conditions in the permit should be removed.

Table 1 Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status Evaluation Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Toxicity ^(a)	NYSDEC Assigned Toxicity ^(b)	Proposed Environmental Rating ^(c)	HTAC ^(d) (Y/N)	HTAC Mass Emission Limit ^(d) (lb/yr)	PB Trigger ^(e) (Y/N)	Pre-Control Hourly Emissions (lb/hr)	Control Efficiency (%)	Post- Control Hourly Emissions (lb/hr)	Wide Annual Actual Emissions Part 212 Requirement (lb/yr)	Modeling Required ^{(f} (Yes/No)
U-CAST1 (EP 00039) - Cas	sting Furnaces To	Baghouse ^(g)			((and yay	(a day	(,	(1.5)	(all the party		,
PM ₁₀	NY075-00-5			В				4.8E+00	95		20,831 Table 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				2.9E+00	95	1.5E-01	15,496 Table 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
Barium oxide	01304-28-5	NL	M	В	N		N	2.4E-04	95	1.2E-05	4.2E-01 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshol	I. No
Cadmium oxide	01306-19-0	Н		Α	Υ	1	Υ	4.5E-05	95		7.8E-02 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Iron oxide	01309-37-1			В	N		N	6.0E-01	95		1,049 Table 4, B-Rated; ERP < 1 lb/hr = Guideline Concentration	Yes
Magnesium oxide	01309-48-4			В	N		N	1.5E-03	95		2.7 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Nickel oxide	01313-99-1	Н		Α	Y	10	N	1.4E-04	95		2.4E-01 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Zinc oxide	01314-13-2	M		В	N		N	5.5E-03	95		9.7 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Lead oxide	01314-41-6	Н		A	Y	5	Y	2.2E-03	95		3.8 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Copper oxide	01317-38-0			В	N		N	2.0E+00	95		3,528 Table 4, B-Rated; ERP < 10 lb/hr = Guideline Concentration	Yes
Chromium oxide	01333-82-0	Н		A	Y	250	N	6.2E-05	95		1.1E-01 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Aluminum oxide	01344-28-1			В	N		N	1.8E-02	95		32 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Graphite Silver avide	07782-42-5	 NII		В	IN N		IN N	2.6E+00	95		4,620 Table 4, B-Rated; ERP < 10 lb/hr = Guideline Concentration	Yes
Silver oxide	20667-12-3	NL	NA	ь	N Y	 E	IN V	6.4E-05	95		1.1E-01 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Mercury oxide	21908-53-2	Н		Α	Υ	5	Υ	5.8E-07	95	2.9E-08	1.0E-03 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
J-CAST1 (EP 00040) - Cas PM ₁₀	NY075-00-5	Baghouse ^(g)		В				9.8E+01	99	9.8E-01	20,831 Table 3, B-Rated; ERP < 100 lb/hr = 91% Control Required	No*
· -	NY075-02-5			D				2.9E+01	99		15,496 Table 3, B-Rated; ERP < 100 lb/hr = 91% Control Required	No*
PM _{2.5}		 NII	 N /	D	 NI		 NI				•	
Barium oxide Cadmium oxide	01304-28-5 01306-19-0	NL H	M	Δ	IN V	1	IN V	7.3E-03 1.4E-03	99 99		4.2E-01 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold 7.8E-02 Facility-wide annual emissions are below the HTAC Mass Emission Limit	
Iron oxide	01309-37-1			A	r N	'	Y N	1.4E-03 1.8E+01	99		1,049 Table 4, B-Rated; ERP > 10 lb/hr = 90% Control Required	No No *
Magnesium oxide	01309-48-4			D D	N		N N	4.7E-02	99		2.7 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Nickel oxide	01303-48-4	н		Δ	ν Υ	10	N	4.7E-02 4.2E-03	99		2.4E-01 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Zinc oxide	01314-13-2	M		В	N		N	1.7E-01	99		9.7 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Lood ovide	01214 41 /			۸	V	_	V	/ FF 02	00	/ FF 04	2.0 Facility wide appual emissions are below the UTAC Mass Emission Limit	Ne
Lead oxide	01314-41-6	Н		A	Y N	5	Y N	6.5E-02	99		3.8 Facility-wide annual emissions are below the HTAC Mass Emission Limit 3,528 Table 4 , B-Rated ; ERP > 10 lb/hr = 90% Control Required	No No *
Copper oxide Chromium oxide	01317-38-0 01333-82-0	 H		Δ	IN V	250	IN N	6.1E+01 1.9E-03	99 99		1.1E-01 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No*
Aluminum oxide	01344-28-1			A D	T NI		IN N	5.5E-01	99		32 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshol	No No
Graphite	07782-42-5			D D	N		IN N	8.0E+01	99		4,620 Table 4, B-Rated; ERP > 10 lb/hr = 90% Control Required	l. No No *
Silver oxide	20667-12-3	NL	NA	D D	N N		IN N	1.9E-03	99		1.1E-01 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Mercury oxide	21908-53-2	Н		A	Y	5	Y	1.8E-05	99		1.0E-03 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
U-CAST1 (EP 00602) - Cer	ntral Vacuum											
PM ₁₀	NY075-00-5			В				3.6E+01	99.9	3.6E-02	20,831 Table 3, B-Rated; ERP < 100 lb/hr = 91% Control Required	No*
PM _{2.5}	NY075-02-5			B				3.6E+01	99.9		15,496 Table 3, B-Rated; ERP < 100 lb/hr = 91% Control Required	No*
Barium oxide	01304-28-5	NL	M	B	N		N.	1.3E-03	99.9		4.2E-01 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshol	
Cadmium oxide	01304-28-3	H		Δ	V	1	V	2.4E-04	99.9		7.8E-02 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Iron oxide	01309-37-1			R	N		N.	3.3E+00	99.9		1,049 Table 4, B-Rated; ERP < 10 lb/hr = Guideline Concentration	Yes
Magnesium oxide	01309-37-1			B	N		N	8.4E-03	99.9		3 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Nickel oxide	01313-99-1	Н		Δ	V	10	N	7.5E-04	99.9		2.4E-01 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Zinc oxide	01314-13-2	M		В	N.		N	3.0E-02	99.9		10 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Load avida	01214 41 6	ш		۸	V	5	V	1 25 02	00.0	1 25 05	4 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No
Lead oxide	01314-41-6 01317-38-0	H		A B	Y N	•	Y N	1.2E-02 1.1E+01	99.9 99.9		3,528 Table 4, B-Rated; ERP > 10 lb/hr = 90% Control Required	No No *
Copper oxide Chromium oxide	01317-38-0	 H		Δ	N V	250	IN NI	3.4E-04	99.9 99.9		1.1E-01 Facility-wide annual emissions are below the HTAC Mass Emission Limit	
Aluminum oxide	01333-82-0			R	T NI		IN NI	3.4E-04 9.9E-02	99.9 99.9		32 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshol	No I. No
Graphite	07782-42-5			B R	N N		N N	9.9E-02 1.4E+01	99.9		4,620 Table 4, B-Rated; ERP > 10 lb/hr = 90% Control Required	n. No*
Silver oxide	20667-12-3	NL	NA	D	N		N N	3.5E-04	99.9		1.1E-01 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold	
Mercury oxide	21908-53-2	Н		A	Y	5	Y	3.2E-06	99.9		1.0E-03 Facility-wide annual emissions are below the HTAC Mass Emission Limit	No No
J-ROLL1 (EP 00036) - Blis	ss Mill											
<u> </u>	NY075-00-5			В				5.6E-03	10	5.0E-03	20,831 Table 3, A-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM ₁₀				_								
PM _{2.5}	NY075-02-5 00111-76-2	 M		B B	 N		 N	5.6E-03 1.6E-10	10 10		15,496 Table 3, A-Rated ; ERP < 1 lb/hr = NAAQS 10 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshole	Yes I. No
2-Butoxyethanol												
2-Butoxyethanol 2-Amino-2-methyl-1-												
3	00124-68-5	M		В	N		N	2.2E-05	10		3.0E-02 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshol	I. No
2-Amino-2-methyl-1-	00124-68-5 00141-43-5	M M		В В	N N		N N	2.2E-05 6.0E-05	10 10		3.0E-02 Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold 195 Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	I. No Yes

Table 1 Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status Evaluation Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Toxicity ^(a)	NYSDEC Assigned Toxicity ^(b)	Proposed Environmental Rating ^(c)	HTAC ^(d) (Y/N)	HTAC Mass Emission Limit ^(d) (lb/yr)	PB Trigger ^(e) (Y/N)	Pre-Control Hourly Emissions (lb/hr)	Control Efficiency (%)	Post- Control Hourly Emissions (lb/hr)	Facility- Wide Annual Actual Emissions (lb/yr)	Part 212 Requirement	Modeling Required ^(f) (Yes/No)
Fatty alcohol alkoxylate	37335-03-8	NL	U	В	N		N	1.1E-04	10			ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	NL	M	В	N		N	4.9E-04	10	4.4E-04	1,000 Table	e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Hydrotreated light naphthenic petroleum oil Petroleum distillates	64742-53-6 Trade Secret #1	M NL	 M	B B	N N		N N	5.8E-04 3.2E-09	10 10			ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No No
Petroleum distillates (minera oil)		NL	M	В	N		N	0.0E+00	10			ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
J-ROLL1 (EP 00030) - Hot N PM ₁₀	NY075-00-5			В				3.0E-01	10	2.7E-01	20.831 Table	e 3, A-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				3.0E-01	10			e 3, A-Rated; ERP < 1 lb/hr = NAAQS	Yes
Alkanolamine Hexahydro-1,3,5-tris(2-	00141-43-5	M		В	N		N	6.0E-02	10		·	e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
hydroxyethyl)-s-triazine	04719-04-4	NL	Н	Α	Ν		N	6.0E-02	10			e 4, A-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Nonylphenol, ethoxylated Sulfonic acid, petroleum,	09016-45-9	NL 	Н	A	N		N	6.0E-02	10			e 4, A-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
sodium salts Base oil	68608-26-4 Trade Secret #3	NL	NA	B B	N N		N N	6.0E-02 6.0E-02	10 10			e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes Yes
Ed3C Oil	Hade Secret #3			ь	IN		IN	0.UE-UZ	10	J.4E-UZ	173 14016	5 4, 5-Nateu, ERF < 0.1 ib/iii = Guideiiile Guideitti atioii	162
U-ROLL1 (EP 00029) - First	Run Down Mill												
PM ₁₀	NY075-00-5			В				8.9E-01	10	8.0E-01	20,831 Table	e 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				7.7E-01	10			e 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
Propane-1,2-diol 1,2-Benzisothiazol-3(2H)-	00057-55-6	M		В	N		N	2.1E-02	10			e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
one (Z)-9-Octadecen-1-ol	02634-33-5	NL	NA	В	N		N	2.1E-03	10	1.9E-03	II Facilit	ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
ethoxylated Poly(oxy-1,2-ethanediyl), a-	09004-98-2	NL	NA	В	N		N	2.1E-02	10	1.9E-02	111 Tabl e	e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	NL	U	В	N		N	3.5E-02	10	3.2E-02	186 Tabl e	e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Amines, tallow alkyl, ethoxylated Sulfonic acid, petroleum,	61791-26-2	NL	NA	В	N		N	2.1E-02	10	1.9E-02	111 Tabl e	e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
sodium salts Highly refined, low viscosity	68608-26-4	NL	NA	В	N		N	2.1E-02	10	1.9E-02	305 Table	e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
mineral oils/hydrocarbons Fatty acids, C18-unsaturated		NL	М	В	N		N	6.3E-01	10			e 4, B-Rated; ERP < 1 lb/hr = Guideline Concentration	Yes
phosphates Trade Secret	Trade Secret #5 Trade Secret #8	NL NL	 U	B B	N N		N N	2.1E-02 7.0E-02	10 10			e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes Yes
U-ROLL1 (EP 00026) - Reve	roing Mill												
PM ₁₀	NY075-00-5			В				3.5E-01	0	3.5E-01	20 831 Table	e 3, A-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				2.9E-01	0			e 3, A-Rated; ERP < 1 lb/hr = NAAQS	Yes
Hexylene glycol	00107-41-5	L		C	N		N	8.7E-03	0			ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Aminoethanol	00141-43-5	M		В	N		N	8.0E-04	0			e 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
2,2',2"-(Hexahydro-1,3,5- triazine-1,3,5-triyl)triethanol	04719-04-4	NL	Н	А	N		N	2.1E-02	0	2.1E-02	243 Tabl e	e 4, A-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Hydrotreated heavy naphthenic petroleum	(4740 50 5	N.I.					N.	4 55 04		4 55 04	4 000 T -1-1-	A. D. Datad. EDD. at the three Control time.	V
distillate	64742-52-5	NL	M	В	N		N	1.5E-01	0	1.5E-01	1,000 lable	e 4, B-Rated; ERP < 1 lb/hr = Guideline Concentration	Yes
U-ROLL1 (EP 00025) - Z-Mil	I												
PM ₁₀	NY075-00-5			В				1.1E+00	0	1.1E+00		e 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
PM _{2.5} Distillates (petroleum),	NY075-02-5			В				1.1E+00	0	1.1E+00	15,496 Table	e 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
solvent-dewaxed light paraffinic	64742-56-9	NL	M	В	N		N	8.3E-01	0	8.3E-01	910 Table	e 4, B-Rated; ERP < 1 lb/hr = Guideline Concentration	Yes
U-OVER1 (EP 00031) - Over	hauler												
PM ₁₀	NY075-00-5			В				8.0E+00	91	7.2E-01	20,831 Table	e 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				7.3E+00	91	6.6E-01	15,496 Table	e 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
Silver	07440-22-4			В	N		N	2.7E-05	91			ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Tin	07440-31-5			В	N		N	6.0E-05	91	5.4E-06	2 Facilit	ty-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No

Table 1 Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status Evaluation Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Toxicity ^(a)	NYSDEC Assigned Toxicity ^(b)	Proposed Environmental Rating ^(c)	HTAC ^(d) (Y/N)	HTAC Mass Emission Limit ^(d) (lb/yr)	PB Trigger ^(e) (Y/N)	Pre-Control Hourly Emissions (lb/hr)	Control Efficiency (%)	Post- Control Hourly Emissions (lb/hr)	Facility- Wide Annual Actual Emissions (lb/yr)	Part 212 Requirement	Modeling Required ^(f) (Yes/No)
Copper	07440-50-8	M		В	N		N	4.1E+00	91			Table 4, B-Rated; ERP < 10 lb/hr = Guideline Concentration	Yes
Phosphorus	07723-14-0	M		В	N		N	4.3E-06	91	3.8E-07	2.3E-03	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Tellurium	13494-80-9			В	N		N	6.7E-06	91	6.0E-07	3.6E-03	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Highly refined, low viscosity													
mineral oils/hydrocarbons	Trade Secret #4	NL	M	В	N		N	2.8E+00	91	2.5E-01		Table 4, B-Rated; ERP < 10 lb/hr = Guideline Concentration	Yes
Proprietary emulsifier	Trade Secret #6	NL	NA	В	N		N	5.8E-02	91	5.2E-03	315	Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
J-ANNE1 (EP 00362) - Brig								1.05.05		1.05.05			
Diethylene glycol	00111-46-6	M		В	N		N	1.9E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Butoxyethanol	00111-76-2	M		В	N		N	1.9E-05	0	1.9E-05	10	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Petroleum distillates (minera		NII	М	В	N		N	2 25 04	0	2 25 04	2	Facility, wide appual amissions are helew the new LITAC 100 lb/vs threshold	No
oil)	08042-47-5	NL						3.2E-04	· ·	0.22 0.		Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol Distillates (petroleum), solvent-dewaxed light	25322-68-3	NL	NA	В	N		N	2.3E-04	0	2.3E-04	11	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
paraffinic	64742-56-9	NL	М	D	N		N	1.1E-02	0	1.1E-02	010	Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	M	В	N		N	3.8E-04	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Azole derivative	Trade Secret #7	NL NL	NA	В	N N		N N	3.8E-04 2.3E-04	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
		INL	IVA	Ь	IN		IN	2.3E-04	0	2.3E-04	11	racility-wide affilial effissions are below the hori-mac 100 b/yr threshold.	INO
U-ANNE1 (EP 00367) - Brig Diethylene glycol	ht Anneal Entry 00111-46-6	M		В	N		N	2.1E-06	0	2.1E-06	8	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Butoxyethanol	00111-76-2	M		В	N		N	2.1E-06	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Petroleum distillates (minera		IVI		Б	14		14	2.1L-00	O	2.12-00	10	racinty-wide annual emissions are below the non-rivae roo by threshold.	140
oil)	08042-47-5	NL	М	В	N		N	3.6E-05	0	3.6E-05	2	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol	25322-68-3	NL	NA	В	N		N	2.5E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Distillates (petroleum), solvent-dewaxed light	20022 00 0							2.02 00	J	2.02 00		radinty that almaar emissions are select the new rivine ree large three selections.	
paraffinic	64742-56-9	NL	М	В	N		N	1.2E-03	0	1.2E-03	910	Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	М	В	N		N	4.2E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Azole derivative	Trade Secret #7	NL	NA	В	N		N	2.5E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
U-ANNE1 (EP 00369) - Lee	Wilson Anneal												
Diethylene glycol	00111-46-6	M		В	N		N	1.1E-04	0	1.1E-04	8	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Butoxyethanol	00111-76-2	M		В	Ν		N	8.9E-06	0	8.9E-06	10	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Petroleum distillates (minera	al												
oil)	08042-47-5	NL	M	В	N		N	1.4E-04	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol Distillates (petroleum),	25322-68-3	NL	NA	В	N		N	1.1E-04	0	1.1E-04	11	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
solvent-dewaxed light													
paraffinic	64742-56-9	NL	М	В	N		N	5.2E-03	0	0.22 00		Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	M	В	N		N	1.8E-04	0	1.02 01		Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Azole derivative	Trade Secret #7	NL	NA	В	N		N	8.9E-06	0	8.9E-06	11	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
J-ANNE1 (EP 00189) - 464								2.45.04		2.45.04			
Azole derivative	00111-46-6	M		В	N		N	2.1E-06	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No No
2-Butoxyethanol	00111-76-2	M		В	N		N	2.1E-06	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Petroleum distillates (minera		NL	М	В	N		N	3.6E-05	0	0.02 00		Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Diethylene glycol	25322-68-3	NL	NA	В	N		N	2.5E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Distillates (petroleum), solve		NL	M	В	N		N	1.2E-03	0	1.22 00		Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	M	В	N		N	4.2E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol	Trade Secret #7	NL	NA	В	N		N	2.5E-05	0	2.5E-05	11	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
U-ANNE1 (EP 00190) - 464				5				4.05.05	_	4.0= ==			
Azole derivative	00111-46-6	M		В	N		N	1.9E-05	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Butoxyethanol	00111-76-2	M		- R	N		N	1.9E-05	0	,_ 00		Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Petroleum distillates (minera		NL NI	M	В	N		N	3.2E-04	0	0.22 0.		Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Diethylene glycol	25322-68-3	NL	NA	В	N		N	2.3E-04	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Distillates (petroleum), solve		NL	M	В	N		N	1.1E-02	0	1.12 02		Table 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	М	В	N		N	3.8E-04	0	0.02 01		Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol	Trade Secret #7	NL	NA	В	N		N	2.3E-04	0	2.3E-04	11	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
J-ANNE1 (EP 00027) - Stra													
Diethylene glycol	00111-46-6	M		В	N		N	1.2E-03	0			Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Butoxyethanol	00111-76-2	M		В	N		N	1.6E-03	0	1.6E-03	10	Facility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No

Table 1 Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status Evaluation Revere Copper Products, Inc

Rome, NY

Sources and Pollutants	CAS Number	Toxicity ^(a)	NYSDEC Assigned Toxicity ^(b)	Proposed Environmental Rating ^(c)	HTAC ^(d) (Y/N)	HTAC Mass Emission Limit ^(d) (lb/yr)	PB Trigger ^(e) (Y/N)	Pre-Control Hourly Emissions (lb/hr)	Control Efficiency (%)	Post- Control Hourly Emissions (lb/hr)	Facility- Wide Annual Actual Emissions (lb/yr)	Part 212 Requirement	Modeling Required ⁽ (Yes/No)
Petroleum distillates (minera	al				(1714)	(167 yr)	(1714)	(167111)	(70)	(16/111)	(ID/ yl)		(163/140)
oil)	08042-47-5	NL	M	В	N		N	7.7E-05	0	7.7E-05	2 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol Distillates (petroleum), solvent-dewaxed light	25322-68-3	NL	NA	В	N		N	1.4E-03	0	1.4E-03	11 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
paraffinic	64742-56-9	NL	M	В	N		N	1.3E-02	0	1.3E-02	910 Ta	able 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	M	В	N		N	2.0E-03	0	2.0E-03	15 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Azole derivative	Trade Secret #7	NL	NA	В	N		N	1.4E-03	0	1.4E-03	11 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
PM ₁₀	NY075-00-5			В				1.0E-01	85	1.5E-02	20,831 Ta	able 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				1.0E-01	85	1.5E-02	15,496 Ta	able 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
Diethylene glycol	00111-46-6	M		В	N		N	3.3E-05	85	5.0E-06	8 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Sodium metasilicate	06834-92-0	NL	NA	В	N		N	1.0E-02	85	1.5E-03		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Sodium phosphate, tribasic	10101-89-0	NL	M	В	N		N	4.0E-03	85	6.0E-04		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol	25322-68-3	NL	NA	В	N		N	4.0E-04	85	6.0E-05		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Azole derivative	Trade Secret #7	NL	NA	В	N		N	4.0E-04	85			cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
J-ANNE1 (EP 00440) - Ebn	er Anneal												
Diethylene glycol	00111-46-6	M		В	N		N	3.3E-06	0	3.3E-06		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
2-Butoxyethanol Petroleum distillates (minera	00111-76-2 al	M		В	N		N	3.3E-06	0	3.3E-06	10 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
oil)	08042-47-5	NL	M	В	N		N	4.8E-05	0	4.8E-05	2 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol Distillates (petroleum),	25322-68-3	NL	NA	В	N		N	3.9E-05	0	3.9E-05	11 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
solvent-dewaxed light paraffinic	64742-56-9	NL	М	В	N		N	1.9E-03	0	1.9E-03	010 T a	able 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes
Petroleum distillates	Trade Secret #1	NL	M	В	N		IN N	6.6E-05	0	6.6E-05		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	
Azole derivative	Trade Secret #7	NL	NA	В	N		N	3.9E-05	0	3.9E-05		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No No
J-ANNE1 (EP 00028) - 174	0 Heavy Gauge Cl	eaning											
PM ₁₀	NY075-00-5			В				3.3E-01	25/85	1.7E-01	20,831 T a	able 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				3.3E-01	25/85	1.7E-01	15,496 Ta	able 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
Sulfuric acid	07664-93-9	M		В	N		N	1.9E-01	25	1.5E-01	1,276 Ta	able 4, B-Rated; ERP < 1 lb/hr = Guideline Concentration	Yes
Diethylene glycol	00111-46-6	M		В	N		N	4.1E-05	85	6.2E-06	8 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Sodium metasilicate	06834-92-0	NL	NA	В	N		N	1.0E-02	85	1.5E-03	13 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Hydrogen peroxide	07722-84-1			В	N		N	3.7E-02	85			cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Sodium phosphate, tribasic	10101-89-0	NL	M	В	N		N	4.0E-03	85	6.0E-04		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Polyethylene glycol	25322-68-3	NL	NA	В	N		N	5.0E-04	85	7.5E-05		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Azole derivative	Trade Secret #7	NL	NA	В	N		N	5.0E-04	85			cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
-GALV1 (EP 00601) - Molt													
PM ₁₀	NY075-00-5			В				2.1E+00	99			able 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			В				2.1E+00	99			able 3, B-Rated; ERP < 10 lb/hr = NAAQS	Yes
Tin	07440-31-5			В	N		N	1.0E+00	99	1.0E-02	2 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Zinc	07440-66-6	L		С	N		N	1.0E+00	99			cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Zinc chloride	07646-85-7	M		В	N		N	1.5E-02	99	1.5E-04	2.8E-01 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Ammonium chloride	12125-02-9	M		В	N		N	6.3E-03	99	6.3E-05	2.6E-01 Fa	cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
-GALV1 (EP 00600) - Acid								4.05.00	2-	4.05.05	00.001.5	able 0. D. Deded, EDD, 14.11.11.	
PM ₁₀	NY075-00-5			В				1.2E-01	85			able 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
PM _{2.5}	NY075-02-5			- R				1.2E-01	85			able 3, B-Rated; ERP < 1 lb/hr = NAAQS	Yes
Zinc chloride	07646-85-7	M		В -	N		N	9.1E-03	85			cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Hydrogen chloride	07647-01-0	M		В -	N		N	9.1E-02	85			cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No
Barium chloride Ammonium chloride	10361-37-2 12125-02-9	NL M	M 	B B	N N		N N	9.1E-03 9.1E-03	85 85	1.4E-03 1.4E-03		cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold. cility-wide annual emissions are below the non-HTAC 100 lb/yr threshold.	No No
J-SOLV1 - Parts Washer (F	ugitive)												
Distillates, petroleum,													
hydrotreated light	64742-47-8	M		В	N		N	5.0E-02	0	5.0E-02	101 T a	able 4, B-Rated; ERP < 0.1 lb/hr = Guideline Concentration	Yes

Notes:

⁽b) Toxicity as provided by Don Ward of the NYSDEC Air Toxics Section on 2/2/23. A code of "NA" indicates that no toxicity was assigned by NYSDEC. A code of "U" indicates that the toxicity is unknown.

⁽a) Toxicity as provided in the NYSDEC AGC/SGC Tables included in DAR-1 (February 2021). Contaminants present in DAR-1, but with no toxicity listed, are represented by "---". Contaminants not listed in DAR-1 are represented by "NL".

Table 1

Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status Evaluation

Revere Copper Products, Inc Rome, NY

											Facility-		
						HTAC				Post-	Wide		
			NYSDEC	Proposed		Mass		Pre-Control		Control	Annual		
			Assigned	Environmental		Emission	РВ	Hourly	Control	Hourly	Actual		Modeling
Sources and Pollutants	CAS Number	Toxicity ^(a)	Toxicity ^(b)	Rating ^(c)	HTAC(d)			Emissions				Part 212 Requirement	Required ^(f)
					(Y/N)	(lb/yr)	(Y/N)	(lb/hr)	(%)	(lb/hr)	(lb/yr)		(Yes/No)

- (c) Proposed Environmental Ratings are based on the toxicity ratings given in DAR-1, or assigned by the NYSDEC Air Toxics Section. Contaminants without a toxicity rating were assigned a rating of "B".
- (d) High Toxicity Air Contaminants (HTACs) and Mass Emission Limits listed in Table 2 of 6 NYCRR 212-2.2.
- (e) Contaminants with a PB Trigger identified in Part 212-2.2 Table 2 are indicated here.
- (f) No* indicates air dispersion modeling is not required to demonstrate compliance; however, modeling was performed to support the proposed Environmental Rating.
- (g) The U-CAST1 emission points can be operated so that emissions are routed through the baghouse or bypass the baghouse. The bypass exhaust is emitted from the same emission point as the baghouse exhaust. Bypass operations are considered to be a trivial activity in accordance with 6 NYCRR 201-3.3(c)(33); therefore, bypass emissions were not included in the Part 212 analysis in accordance with 6 NYCRR 212-1.4(a).
- (h) This pollutant is present in a biocide applied on some of the Rolling Mills and was included in the prior permit application as being potentially emitted from the Rolling Mills. Upon further investigation, the biocide is completely consumed by the bacteria within 24 hours of application and is not expected to be released to the atmosphere. As such, this biocide has been removed from the Emission Inventory to maintain the same Trade Secret identification methodology to avoid possible confusion.

Table 2 Summary of Part 212 Evaluation

Revere Copper Products, Inc Rome, NY

Propane-1,2-diol Hexylene glycol Diethylene glycol Diethylene glycol 2-Butoxyethanol 2-Butoxyethanol 30111-46-6 2-Butoxyethanol 00111-76-2 2-Amino-2-methyl-1-propanol 00124-68-5 Alkanolamine 00141-43-5 Barium oxide 01304-28-5 Cadmium oxide 01306-19-0 Iron oxide 01309-37-1 Magnesium oxide 01309-37-1 Magnesium oxide 01314-13-2 Lead oxide 01314-13-2 Lead oxide 01314-41-6 Copper oxide 01331-38-0 Chromium oxide 01333-82-0 Aluminum oxide Aluminum oxide Aluminum oxide Aluminum oxide Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine 06834-92-0 Silver 07440-22-4 Tin 07440-22-4 Sodium metasilicate 06834-92-0 Silver 07440-66-6 Zinc chloride Hydrogen chloride 07646-85-7 Hydrogen chloride 07646-93-9 Hydrogen peroxide 07722-84-1 Phosphorus Graphite Phosphorus Graphite Phosphorus Graphite Phosphorus Graphite O7722-84-1 Phosphorus Graphite Phosphorus Graphite O7722-84-1 Phosphorus Graphite O7723-14-0 Graphite O7723-14-0 Graphite O7723-14-0 Graphite O7723-14-0 Graphite Phosphorus Graphite O7723-14-0 Graphite	(Y/N)	(Y/N) N N N N N N N N N N N N N N N N N N	(lb/yr) 111 59 8.1 10 3.0E-02 195 0.42 7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	(lb/yr) 100 100 100 100 100 100 100 100 100 1	(Yes/No) YES
Hexylene glycol 00107-41-5 Diethylene glycol 00111-46-6 2-Butoxyethanol 00111-76-2 2-Butoxyethanol 00114-68-5 Alkanolamine 00141-43-5 Barium oxide 01304-28-5 Cadmium oxide 01304-28-5 Cadmium oxide 01309-37-1 Magnesium oxide 01309-37-1 Magnesium oxide 01313-99-1 Zinc oxide 01314-13-2 Lead oxide 01314-13-2 Lead oxide 01314-41-6 Copper oxide 01314-28-1 Chromium oxide 01338-20 Aluminum oxide 01338-20 Aluminum oxide 01338-20 Aluminum oxide 01334-28-1 1,2-Benzisothiazol-3(2H)-one 02634-33-5 Hexanbydro-1,3,5-tris(2-hydroxyethyl)-s-triazine 04719-04-4 Sodium metasilicate 07440-22-4 Tin 07440-31-5 Copper 07440-50-8 Zinc 07440-66-6 Zinc chloride 07647-01-0 Hydrogen chloride 07647-01-0 Hydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07723-41-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 (Z)-9-Octadecen-1-ol ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 12125-02-9 Tellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Poly(oxy-1,2-ethanediyl), a-(carboxymethyl)-w-[(9Z)-9-octadecen-1-yloxy]- Amines, tallow alklyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N N N N Y N Y N Y N Y N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	8.1 10 3.0E-02 195 0.42 7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100 100 1 100 100 100 5 100 250 100 100 100 100 100 100	NO NO NO YES NO NO NO NO NO NO NO YES NO NO NO NO YES NO NO NO YES NO NO NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Diethylene glycol 2-Butoxyethanol 2-Butoxyethanol 2-Butoxyethanol 2-Amino-2-methyl-1-propanol 300111-76-2 2-Amino-2-methyl-1-propanol 300124-68-5 304kanolamine 3014-43-5 301304-28-5 301304-28-5 301306-19-0 31009-37-1 31009-48-4 3109-48-4 3109-49-4 3109-4 3	N N N Y N Y N Y N X N N N N N N N N N N	N N N N Y N N N N N N N N N N N N N N N	10 3.0E-02 195 0.42 7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100 1 100 100 100 5 100 250 100 100 100 100 100 100	NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
2-Butoxyethanol 2-Amino-2-methyl-1-propanol Alkanolamine Michaels (111-76-2) 2-Amino-2-methyl-1-propanol Michaels (113-68-5) Alkanolamine O0141-43-5 Barium oxide O1304-28-5 Cadmium oxide O1304-28-5 Cadmium oxide O1309-37-1 Magnesium oxide O1309-48-4 Mickel oxide O1313-99-1 Zinc oxide O1314-13-2 Lead oxide Chopper oxide O1314-3-8-0 Chromium oxide O1333-82-0 Aluminum oxide O1333-82-0 Aluminum oxide O1334-28-1 1,2-Benzisothiazol-3(2H)-one O2634-33-5 Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine Sodium metasilicate O6834-92-0 Silver O7440-22-4 Fin O7440-31-5 Copper O7440-50-8 Zinc Cinc (111-76-2 Zinc chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen peroxide O7722-84-1 Phosphorus O7723-14-0 Graphite O7722-84-1 Phosphorus Graphite O7782-42-5 Petroleum distillates (mineral oil) O20-9-Octadecen-1-ol ethoxylated O9004-98-2 Onylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic Barium chloride O7647-01-0 Sarium chloride O7647-01-3 Mercury oxide O9016-45-9 Sodium phosphate, tribasic Barium chloride O70-01-03-02-03-03-03-03-03-03-03-03-03-03-03-03-03-	N N N Y N N Y N Y N Y N N N N N N N N N	N N N Y N N N N N N N N N N N N N N N N	3.0E-02 195 0.42 7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 1 100 100 100 5 100 250 100 100 100 100 100 100	NO YES NO NO YES NO NO NO YES NO NO NO YES NO NO YES NO NO NO YES NO NO NO NO NO YES NO NO NO
Alkanolamine Barium oxide Cadmium oxide Cadmium oxide Ciron oxide Magnesium oxide Mignesium o	N	N N Y N N N N N N N N N N N N	195 0.42 7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 1 100 100 100 100 5 100 250 100 100 100 100 100 100	YES NO NO YES NO NO NO YES NO NO NO YES NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Sarium oxide Cadmium oxide Camper oxide	N Y N N N N N N N N N N N N N N N N N N	N Y N N N N N N N N N N N	0.42 7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 1 100 100 100 100 5 100 250 100 100 100 100 100 100 100 1	NO NO YES NO NO NO YES NO NO NO YES NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Cadmium oxide Iron oxide O1306-19-0 Iron oxide O1309-37-1 Magnesium oxide O1309-37-1 Magnesium oxide O1313-99-1 Zinc oxide O1314-13-2 Lead oxide O1314-41-6 Copper oxide Copper oxide O133-82-0 Aluminum oxide O1344-28-1 1,2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine O6834-92-0 Sillver O7440-22-4 Tin O7440-31-5 Copper O7440-50-8 Zinc Cohoride Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Sulfuric acid Hydrogen peroxide Phydrogen peroxide Phydrogen peroxide Phydrogen peroxide Petroleum distillates (mineral oil) C(Z)-9-Octadecen-1-ol ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic Barium chloride Ammonium chloride Petroleum distillates (mineral oil) O8042-47-5 Copper Cammonium chloride O7647-01-0 O8042-47-5 O9016-45-9 O9016-4	Y N N Y N Y N Y N N N N N N N N N N N N	Y N N N N N N N N N N N N N N N N N N N	7.8E-02 1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	1 100 100 10 100 5 100 250 100 100 100 100 100 100	NO YES NO NO NO YES NO NO NO YES NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
ron oxide Magnesium oxide Magnesium oxide Magnesium oxide Magnesium oxide Mickel oxide O1313-99-1 Zinc oxide O1314-13-2 Lead oxide O1314-41-6 Copper oxide O1317-38-0 Chromium oxide Chromium oxide O1333-82-0 Aluminum oxide O1344-28-1 1,2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine O6834-92-0 Siliver O7440-31-5 Copper O7440-31-5 Copper O7440-31-5 Copper O7440-66-6 Zinc D7440-66-6 Zinc D7440-31-5 Zin	N N Y N Y N Y N N N N N N N N N N N N N	N N N Y N N N N N N N	1,049 2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 10 100 5 100 250 100 100 100 100 100 100	YES NO NO NO NO YES NO NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Magnesium oxide Nickel oxide N	N Y N Y N Y N N N N N N N N N N N N N N	N N N Y N N N N N N N	2.7 0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 10 100 5 100 250 100 100 100 100 100 100	NO NO NO YES NO NO YES NO NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Nickel oxide Zinc oxide Zinc oxide Zinc oxide O1314-13-2 Lead oxide O1314-13-2 Copper oxide Chromium oxide O1333-82-0 Aluminum oxide O1333-82-0 Aluminum oxide O1344-28-1 1,2-Benzisothiazol-3(2H)-one O2634-33-5 Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine O6834-92-0 Silver O7440-22-4 Fin O7440-31-5 Copper O7440-50-8 Zinc O7440-50-8 Zinc O7440-66-6 Zinc chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Sulfuric acid O7646-93-9 Hydrogen peroxide O7722-84-1 Phosphorus Graphite O7722-84-1 Phosphorus Graphite O7782-42-5 Petroleum distillates (mineral oil) Ci2)-9-Octadecen-1-ol ethoxylated O801-37-2 Ammonium chloride Mercury oxide O7010-8-3-2 Polyoky-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-1 Cottadecen-1-yloxy]- Ammines, tallow alkyl, ethoxylated O1791-26-2 Distillates, petroleum, hydrotreated light O1791-26-2 Distillates, petroleum, hydrotreated light	Y N Y N Y N N N N N N N N N N N N N N N	N N Y N N N N N N N	0.24 9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	10 100 5 100 250 100 100 100 100 100 100	NO NO YES NO NO YES NO NO YES NO NO NO NO NO NO NO NO NO NO YES NO
Zinc oxide Lead oxide Copper oxide Copper oxide Copper oxide Contromium oxide Aluminum oxide Aluminum oxide 1, 2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine Copper Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine Codium metasilicate Coliver Contromium oxide O7440-22-4 Coliver Copper O7440-50-8 Copper Contromium oxide Copper Contromium oxide O7440-50-8 Copper Copp	N Y N Y N N N N N N N N N N N N N N N N	N Y N N N N N N N	9.7 3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 5 100 250 100 100 100 100 100 100	NO NO YES NO NO YES NO NO YES NO NO NO NO
Lead oxide	Y N Y N N N N N N N N N N N N N N N N N	Y N N N N N N N N N N N N N N N N N	3.8 3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	5 100 250 100 100 100 100 100 100	NO YES NO NO YES NO NO YES NO NO NO NO
Copper oxide Chromium oxide Chromium oxide Chromium oxide Aluminum oxide Aluminum oxide Aluminum oxide Aluminum oxide Aluminum oxide 1, 2-Benzisothiazol-3(2H)-one Hexahydro-1, 3, 5-tris(2-hydroxyethyl)-s-triazine Codium metasilicate Sodium metasilicate O6834-92-0 Silver O7440-22-4 Fin O7440-50-8 Zinc O7440-50-8 Zinc O7440-50-8 Zinc O7440-66-6 Zinc chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen peroxide O7647-01-0 Solifuric acid O7664-93-9 Hydrogen peroxide O7722-84-1 Phosphorus O7723-14-0 Graphite O7782-42-5 Petroleum distillates (mineral oil) O8042-47-5 CONNIPhenol, ethoxylated O9004-98-2 ONONIPhenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic Darium chloride Fellurium I3494-80-9 Silver oxide Mercury oxide OPOly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-Cataboxylates) - Coly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-Cataboxylates) - Coly(oxy-1,2-ethanediylates) - Coly(oxy-1,2-ethanediylates) - Coly(oxy-1,	N Y N N N N N N N N N N	N N N N N N N N	3,528 0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 250 100 100 100 100 100 100 100	YES NO NO NO YES NO NO NO NO NO YES
Chromium oxide Aluminum oxide Aluminum oxide 1,2-Benzisothiazol-3(2H)-one 1,3-5-tris(2-hydroxyethyl)-s-triazine Codium metasilicate Column metasilicate Column metasilicate Column metasilicate Column metasilicate Copper Comper Copper Comper	Y N N N N N N N N N	N N N N N N N N	0.11 32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	250 100 100 100 100 100 100 100	NO NO VES NO NO VO NO NO NO NO NO NO NO
Aluminum oxide 1,2-Benzisothiazol-3(2H)-one 1,2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine O4719-04-4 Sodium metasilicate O6834-92-0 Silver O7440-22-4 Tin O7440-31-5 Copper O7440-50-8 Zinc Cinc O7440-66-6 Zinc chloride O7646-85-7 Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen peroxide O7722-84-1 Phosphorus O7723-14-0 Graphite O773-14-0 Graphite O7792-42-5 Petroleum distillates (mineral oil) O8042-47-5 (Z)-9-Octadecen-1-ol ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic Darium chloride Distillates (mineral oil) O8067-12-3 Distillates oxide Deliver oxid	N N N N N N N N N N	N N N N N N N	32 11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100 100 100 100	NO NO YES NO NO NO YES NO
1,2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine O4719-04-4 Sodium metasilicate O6834-92-0 Silver O7440-22-4 Fin O7440-31-5 Copper O7440-50-8 Zinc Cinc chloride O7646-85-7 Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen peroxide O7722-84-1 Phosphorus O7722-84-1 Phosphorus O7723-14-0 Graphite O77723-14-0 Graphite O7782-42-5 Petroleum distillates (mineral oil) O7904-98-2 Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic O361-37-2 Ammonium chloride Fellurium Silver oxide Mercury oxide O1904-98-3 Foly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9 O2014-08-1 (21)-26-2 O1905 (21)-26-2 O190	N N N N N N N	N N N N N N	11 243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100 100 100	NO YES NO NO NO YES NO
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine Godium metasilicate Godium metasilicate Goliver O7440-22-4 Fin O7440-31-5 Copper O7440-50-8 Zinc O7440-66-6 Zinc chloride O7646-85-7 Hydrogen chloride O7647-01-0 Hydrogen chloride O7647-01-0 Hydrogen peroxide O7649-99 Hydrogen peroxide O7722-84-1 Phosphorus O7722-84-1 Phosphorus O7782-42-5 Petroleum distillates (mineral oil) O8042-47-5 (Z)-9-Octadecen-1-ol ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Godium phosphate, tribasic Barium chloride Tellurium O8042-7-2 Ammonium chloride Fellurium O8042-8-3 Ferty alcohol alkoxylate Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-10-12-2 Ammons, tallow alkyl, ethoxylated O1791-26-2 Olstillates, petroleum, hydrotreated light O4719-04-4 Godium alkoxylate O1740-31-5 O7440-50-8 O7440-66-6 O7440-50-8 O7440-66-6 O7440-66-6 O7440-50-8 O7440-66-6 O7440-50-8 O7440-66-6 O7440-50-8 O7440-66-6 O7440-50-8 O7440-66-6 O7440-6-6 O7440-66-6 O7440-66-6 O7440-6-6 O7440-8 O7440-8 O7440-8 O7440-8 O7440-8 O7440-8 O7440-8 O7440-	N N N N N N	N N N N N N	243 13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100 100 100	YES NO NO NO YES
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine Godium metasilicate Godium metasilicate Goliver O7440-22-4 Fin O7440-31-5 Copper O7440-50-8 Zinc O7440-66-6 Zinc chloride O7646-85-7 Hydrogen chloride Hydrogen chloride O7647-01-0 Hydrogen peroxide O7649-99 Hydrogen peroxide O7722-84-1 Phosphorus Graphite O7782-42-5 Petroleum distillates (mineral oil) (Z)-9-Octadecen-1-ol ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Godium phosphate, tribasic Barium chloride Tellurium Tay49-80-9 Silver oxide Mercury oxide Polycoxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-10-10-10-10-10-10-10-10-10-10-10-10-10-	N N N N N N	N N N N N	13 1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100 100	NO NO NO YES NO
Silver 07440-22-4 Fin 07440-31-5 Copper 07440-50-8 Zinc 07440-66-6 Zinc chloride 07646-85-7 Hydrogen chloride 07647-01-0 Hydrogen chloride 07664-93-9 Hydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 (Z)-9-Octadecen-1-ol ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 10361-37-2 Ammonium chloride 1036-37-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 200(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	N N N N N	N N N N N	1.5E-02 1.9 2,250 1.9 0.28	100 100 100 100	NO NO YES NO
Fin 07440-31-5 Copper 07440-50-8 Zinc 07440-66-6 Zinc chloride 07646-85-7 Hydrogen chloride 07647-01-0 Hydrogen chloride 07647-01-0 Hydrogen chloride 07664-93-9 Hydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 (Z)-9-Octadecen-1-ol ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 12125-02-9 Fellurium 13494-80-9 Silver oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-2016-2016-2016-2016-2016-2016-2016-2016	N N N N	N N N N	1.9 2,250 1.9 0.28	100 100 100	NO YES NO
Copper 07440-50-8 Zinc 07440-66-6 Zinc chloride 07646-85-7 Hydrogen chloride 07647-01-0 Hydrogen chloride 07647-01-0 Sulfuric acid 07664-93-9 Hydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 (Z)-9-Octadecen-1-ol ethoxylated 09004-98-2 Nonylphenol, ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 10361-37-2 Ammonium chloride 12125-02-9 Fellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-6 Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N N N N	N N N	2,250 1.9 0.28	100 100	YES NO
Zinc chloride 07440-66-6 Zinc chloride 07646-85-7 Hydrogen chloride 07647-01-0 Hydrogen chloride 07647-01-0 Sulfuric acid 07664-93-9 Hydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 (Z)-9-Octadecen-1-ol ethoxylated 09004-98-2 Nonylphenol, ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 10361-37-2 Ammonium chloride 12125-02-9 Tellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 27635-48-0 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-2 Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N N N	N N N	1.9 0.28	100	NO
Zinc chloride 07440-66-6 Zinc chloride 07646-85-7 Alydrogen chloride 07647-01-0 Alydrogen chloride 07647-01-0 Alydrogen chloride 07647-01-0 Sulfuric acid 07664-93-9 Alydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 Zi2)-9-Octadecen-1-ol ethoxylated 09004-98-2 Alonylphenol, ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 10361-37-2 Ammonium chloride 12125-02-9 Tellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Teatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	N N	N N	0.28		
Hydrogen chloride Hydrogen chloride Hydrogen chloride O7647-01-0 O7722-84-1 O7723-14-0	N	N		100	NO
Alydrogen chloride Sulfuric acid O7664-93-9 Alydrogen peroxide O7722-84-1 Phosphorus O7723-14-0 Graphite O7782-42-5 Petroleum distillates (mineral oil) O8042-47-5 O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic O361-37-2 Ammonium chloride I2125-02-9 Fellurium I3494-80-9 Silver oxide Mercury oxide Oolyethylene glycol Fatty alcohol alkoxylate Oolyethylene glycol Amines, tallow alkyl, ethoxylated O7647-01-0 O7722-84-1 O7723-14-0 O7723-14-0 O7782-42-5 O7782-42-1 O7782-4 O7782-42-1 O7782-42-1 O7782-42-1 O7782-42-1 O7782-42-1 O7782-4				100	NO
Alydrogen chloride Sulfuric acid O7664-93-9 Alydrogen peroxide O7722-84-1 Phosphorus O7723-14-0 Graphite O7782-42-5 Petroleum distillates (mineral oil) O8042-47-5 (Z)-9-Octadecen-1-ol ethoxylated Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic O361-37-2 Ammonium chloride I2125-02-9 Iellurium I3494-80-9 Soliver oxide Mercury oxide Polyethylene glycol Fatty alcohol alkoxylate Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-octadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated Distillates, petroleum, hydrotreated light O7722-84-1 O7723-14-0 O7723-	N		2.5	100	NO
Sulfuric acid 07664-93-9 Hydrogen peroxide 07722-84-1 Phosphorus 07723-14-0 Graphite 07782-42-5 Petroleum distillates (mineral oil) 08042-47-5 (Z)-9-Octadecen-1-ol ethoxylated 09004-98-2 Nonylphenol, ethoxylated 09016-45-9 Sodium phosphate, tribasic 10101-89-0 Barium chloride 10361-37-2 Ammonium chloride 12125-02-9 Fellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-0ctadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated 1915-06-10-10-10-10-10-10-10-10-10-10-10-10-10-		N	2.5	100	NO
Phosphorus Graphite O7782-42-5 Petroleum distillates (mineral oil) O8042-47-5 (Z)-9-Octadecen-1-ol ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic O1011-89-0 Barium chloride O361-37-2 Ammonium chloride O5667-12-3 Fellurium O6782-42-5 Fellurium O9004-98-2 O6782-7 O7782-42-5 O7782-	N	N	1,276	100	YES
Phosphorus Graphite O7782-42-5 Petroleum distillates (mineral oil) O8042-47-5 (Z)-9-Octadecen-1-ol ethoxylated O9004-98-2 Nonylphenol, ethoxylated O9016-45-9 Sodium phosphate, tribasic O1011-89-0 Barium chloride O361-37-2 Ammonium chloride O5667-12-3 Fellurium O6782-42-5 Fellurium O9004-98-2 O6782-7 O7782-42-5 O7782-	N	N	18	100	NO
Graphite07782-42-5Petroleum distillates (mineral oil)08042-47-5(Z)-9-Octadecen-1-ol ethoxylated09004-98-2Nonylphenol, ethoxylated09016-45-9Sodium phosphate, tribasic10101-89-0Barium chloride10361-37-2Ammonium chloride12125-02-9Tellurium13494-80-9Silver oxide20667-12-3Mercury oxide21908-53-2Polyethylene glycol25322-68-3Fatty alcohol alkoxylate37335-03-8Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-Octadecen-1-yloxy]-57635-48-0Amines, tallow alkyl, ethoxylated61791-26-2Distillates, petroleum, hydrotreated light64742-47-8	N	N	2.3E-03	100	NO
Petroleum distillates (mineral oil) (Z)-9-Octadecen-1-ol ethoxylated Nonylphenol, ethoxylated Sodium phosphate, tribasic Barium chloride Barium chloride 10361-37-2 Ammonium chloride 12125-02-9 Tellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide Polyethylene glycol Fatty alcohol alkoxylate Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-cotadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated Distillates, petroleum, hydrotreated light 0904-98-2 09006-45-9 09006-49-9 090	N	N	4,620	100	YES
(Z)-9-Octadecen-1-ol ethoxylated09004-98-2Nonylphenol, ethoxylated09016-45-9Sodium phosphate, tribasic10101-89-0Barium chloride10361-37-2Ammonium chloride12125-02-9Tellurium13494-80-9Silver oxide20667-12-3Mercury oxide21908-53-2Polyethylene glycol25322-68-3Fatty alcohol alkoxylate37335-03-8Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-57635-48-0octadecen-1-yloxy]-61791-26-2Amines, tallow alkyl, ethoxylated61791-26-2Distillates, petroleum, hydrotreated light64742-47-8	N	N	2.4	100	NO
Nonylphenol, ethoxylated Sodium phosphate, tribasic Barium chloride Ammonium chloride Fellurium	N	N	111	100	YES
Sodium phosphate, tribasic Barium chloride Carium chlo	N	N	193	100	YES
Barium chloride Ammonium chloride Tellurium Tillurium T	N	N	5.3	100	NO
Ammonium chloride Tellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol Fatty alcohol alkoxylate Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-cotadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated Distillates, petroleum, hydrotreated light 12125-02-9 13494-80-9 20667-12-3 21908-53-2 25322-68-3 37335-03-8 57635-48-0 61791-26-2 64742-47-8	N	N	0.25	100	NO
Fellurium 13494-80-9 Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-cotadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N	N	0.26	100	NO
Silver oxide 20667-12-3 Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9- potadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N	N	3.6E-03	100	NO
Mercury oxide 21908-53-2 Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9- potadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N	N	0.11	100	NO
Polyethylene glycol 25322-68-3 Fatty alcohol alkoxylate 37335-03-8 Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9- potadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	Υ	Υ	1.0E-03	5	NO
Fatty alcohol alkoxylate Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9- potadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated Distillates, petroleum, hydrotreated light 37335-03-8 57635-48-0 61791-26-2 64742-47-8	N	N	11	100	NO
Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9- octadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N	N	0.15	0.1	NO ^(c)
Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8			00	. .	
Amines, tallow alkyl, ethoxylated 61791-26-2 Distillates, petroleum, hydrotreated light 64742-47-8	N	N	186	100	YES
Distillates, petroleum, hydrotreated light 64742-47-8	N	N	111	100	YES
· · · · · · · · · · · · · · · · · · ·	N	N	181	100	YES
Tydrotroatod ficavy hapithichic politicani on U4/42-32-3	N	N	1,000	100	YES
Hydrotreated light naphthenic petroleum oil 64742-53-6	N	N	0.79	100	NO
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9		N	910	100	YES
Sulfonic acids, petroleum, sodium salts 68608-26-4		N	305	100	YES
Petroleum distillates Trade Secret #1	N	N	15	100	NO
Base oil Trade Secret #3	N N	N	193	100	YES
	N N N	1.11	170	100	YES
3	N N N			100	YES
Fatty acids, C18-unsaturated phosphates Trade Secret #5	N N N N	N	5,548	11111	
Proprietary emulsifier Trade Secret #6	N N N N N	N N	5,548 111		YES
Azole derivative Trade Secret #7 Trade Secret #8	N N N N	N	5,548	100 100	NO

Table 2 Summary of Part 212 Evaluation

Revere Copper Products, Inc Rome, NY

		(a)	PB (a)	Facility-Wide Annual Actual	Mass Emission	Modeling
Contaminants	CAS Number	HTAC ^(a)	Trigger ^(a)	Emissions	Limit ^(b)	Required
		(Y/N)	(Y/N)	(lb/yr)	(lb/yr)	(Yes/No)

Notes:

- (a) HTAC and PB Trigger status as provided in 6 NYCRR Part 212-2.2 Table 2.
- (b) Mass Emission Limit (MEL) is based on 6 NYCRR Part 212-2.2 Table 2. For non-HTACs a limit of 100 lb/yr is listed.
- (c) The NYSDEC Air Toxics Section has reviewed this chemical and indicated that little or no toxicological information was found for it. It was NYSDEC's recommendation that, as this contaminant is approximately equal to the second most stringent MEL that is acceptable for use of 0.1 lb/yr, modeling is not required due to the lack of evidence of this contaminant being considered to be highly toxic.

Table 3 Part 212 Grain Standard Evaluation

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	Post-Control Emission Rate (lb/hr)	Exhaust Flow Rate ^(a) (ft ³ /min)	Exhaust Concentration ^(b) (gr/ft ³)	Grain Standard ^(c) (gr/ft ³)	Percent of Grain Standard (%)
U-CAST1 (EP00039) - To Baghouse	(d)				
Total Particulate Matter			7.10E-04	0.15	0%
U-CAST1 (EP00040) - To Baghouse	(d)				
Total Particulate Matter			6.00E-03	0.05	12%
U-CAST1 (EP00602) - Central Vacu	um				
Total Particulate Matter	3.6E-02	1,400	3.00E-03	0.05	6%
U-ROLL1 (EP00036) - Bliss Mill					
Total Particulate Matter	5.0E-03	620	9.41E-04	0.15	1%
U-ROLL1 (EP00030) - Hot Mill					
Total Particulate Matter	0.27	20,000	1.58E-03	0.15	1%
U-ROLL1 (EP00029) - First Run Do	wn Mill				
Total Particulate Matter			5.20E-04	0.15	0%
U-ROLL1 (EP00026) - Reversing M	ill				
Total Particulate Matter			8.20E-04	0.15	1%
U-ROLL1 (EP00025) - Z-Mill					
Total Particulate Matter	1.1	30,600	4.23E-03	0.15	3%
U-OVER1 (EP00031) - Overhauler					
Total Particulate Matter			5.00E-03	0.15	3%
U-ANNE1 (EP00027) - Strand Anne	al				
Total Particulate Matter	0.02	24,000	7.30E-05	0.15	0%
1740 Heavy Gauge Cleaning (EP 00	· · · · · · · · · · · · · · · · · · ·				
Total Particulate Matter	0.2	7,000	2.77E-03	0.05	6%

Confidential

Table 3 Part 212 Grain Standard Evaluation

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	Post-Control Emission Rate (lb/hr)	Exhaust Flow Rate ^(a) (ft ³ /min)	Exhaust Concentration ^(b) (gr/ft ³)	Grain Standard ^(c) (gr/ft ³)	Percent of Grain Standard (%)
U-GALV1 (EP 00600) - Acid Tank					
Total Particulate Matter	0.02	14,000	1.48E-04	0.05	0%
U-GALV1 (EP 00601) - Molten Metal	Tank				
Total Particulate Matter	0.02	10,000	2.44E-04	0.05	0%

Notes:

- (a) Exhaust flow rates provided by Revere.
- (b) Exhaust Concentration (gr/ft^3) = Post-Control Emission Rate (lb/hr) \div 60 (min/hr) \div Exhaust Flow Rate (ft^3/min) x 7,000 (gr/lb). For Emission Points 00039, 00040, 00029, 00026, and 00031 the Exhaust Concentration is the filterable particulate matter concentration measured during the May 2023 stack testing for these sources. For Emission Point 00040, the measured concentration was doubled since only one furnace was operating during the testing.
- (c) Grain standard as provided in 6 NYCRR 212-2.4(a)(1) for processes installed prior to July 1, 1973 and 212-2.4(b)(1) for processes installed after July 1, 1973. Note that U-CAST1, EP 00040, was formerly subject to the 212-2.4(a)(1) grain standard but, with the replacement of the furnace in this modification, becomes subject to the 212-2.4(b)(1) standard.
- (d) The U-CAST1 emission points can be operated so that emissions are routed through the baghouse or bypass the baghouse. The bypass exhaust is emitted from the same emission point as the baghouse exhaust. Bypass operations are considered to be a trivial activity in accordance with 6 NYCRR 201-3.3(c)(33); therefore, bypass emissions were not included in the grain standard analysis in accordance with 6 NYCRR 212-1.4(a).

ATTACHMENT E AIR DISPERSION MODELING REPORT

REVERE COPPER PRODUCTS, INC. **MODELING REPORT - PERMIT APPLICATION**

Project name	${\bf Revere\ Copper\ Products,\ IncAir\ State\ Facility\ Permit\ Renewal}$
Project no.	1087689\1940103004
Recipient	NYSDEC - Impact Assessment and Meteorology Group
Document type	Modeling Report
Version	2
Date	July 20, 2023
Prepared by	Steven Miraglia
Checked by	Cris Hine
Approved by	Matthew Traister, P.E.

CONTENTS

1.	Project Discussion	3
1.1	Facility Modifications	3
1.2	Differences Between the Updated Renewal Application and the February 8, 2023	
	Renewal Application	4
2.	Site Location and Description	6
3.	Stack Parameters and Buildings	7
4.	Emission Rates	7
5.	PM ₁₀ and PM _{2.5} Modeling	7
6.	Urban/Rural Classification	8
7.	Good Engineering Practice Stack Height Analysis	8
8.	Meteorological Data	8
9.	Receptor Locations	8
10.	Lakes Environmental Software – Multi-Chem Use	9
11.	Modeling Results	9
LIST	OF FIGURES	

I	Site Location Map
2	Site Layout Map
3	Building 51 Stack Locations and Building Heights
4	Building 45 Building Heights
5	Building 46 and 56 Building Heights
6	Building 1 Building Heights
7	Building 14 Building Heights
8	Building 21 and 69 Stack Locations and Building Heights
9	Building 50 Building Heights
10	Sensitive Receptor Locations
11	Environmental Justice Areas

12 Disadvantaged Communities Map

LIST OF TABLES

- 1 Summary of Part 212 Evaluation
- 2 Summary of Stack Parameters (English Units)
- 3 Summary of Stack Parameters (Metric Units)
- 4 Modeled Particulate Matter Emission Rates
- 5 Modeled Toxics Emission Rates (Permit Application 1-Hour)
- 6 Modeled Toxics Emission Rates (Permit Application Annual)
- 7 Sensitive Receptors
- 8 NAAQS Modeling Results
- 9 Permit Application Air Toxics Modeling Results

LIST OF EXHIBITS

- 1 Air Dispersion Modeling Protocol
- 2 Summary of May 2023 Stack Test Results

1. Project Discussion

Revere Copper Products, Inc. (Revere) is renewing and modifying the Air State Facility (ASF) Permit (ID 6-3013-00091/00039) for its manufacturing facility located at 1 Revere Park in Rome, New York. A site location map is provided in **Figure 1**.

An air dispersion modeling protocol (see **Exhibit 1**) was submitted to the New York State Department of Environmental Conservation (NYSDEC) on December 1, 2022 in order to satisfy NYSDEC's requirement for submitting a protocol prior to performing refined air dispersion modeling. NYSDEC provided comments on the protocol to Revere on January 9, 2023, which were incorporated into the modeling report submitted to NYSDEC with the ASF Permit renewal application on February 8, 2023.

In accordance with the Order on Consent (R6-20230614-21) and Schedule of Compliance, Revere is required to submit a complete ASF Permit renewal application containing the requested information identified in the Department's Notice of Incomplete Application no later than July 10, 2023; an extension to July 21, 2023 was requested by Revere and granted by NYSDEC.

Also, in accordance with the Schedule of Compliance, should Revere propose to commission or otherwise initiate the new furnace prior to receipt of the Permit Modification, Revere is to include for Department review and approval a temporary commissioning and/or operation plan, which includes sufficient detail to confirm the facility will be in compliance with applicable regulations during operation of the furnace.

Revere is submitting a revised ASF Permit application and including the Commissioning Plan as an attachment to the application (**Attachment H**). Air dispersion modeling was performed for both the ASF Permit application and the Commissioning Plan as these represent two different scenarios of operating the facility. This report focuses on the ASF Permit application and a separate modeling report has been prepared that focuses on the Commissioning Plan.

Air dispersion modeling was performed using the United States Environmental Protection Agency (USEPA) AERMOD (Version 22112) model.

1.1 Facility Modifications

Revere has removed casting furnace 2057 (Emission Unit U-CAST1, Emission Source 01257) and began the installation of a similar induction furnace (Emission Source 02728) that will provide an estimated 23.3% increase in output casting. The new furnace will vent to an existing cyclone and baghouse (00C40/00B40) and Emission Point (EP) 00040. Increases in emissions resulting from the furnace replacement project have been estimated, including emissions from the increased furnace capacity as well as emissions from downstream operations that will potentially increase as a result of increased furnace throughput.

The following additional facility changes that have been made were identified in the February 8, 2023 renewal application:

- The facility no longer produces or uses brass
- The facility has switched from residual (No. 6) to distillate (No. 2) fuel oil for the backup fuel combusted by the main boilers (Emission Unit U-COMB1)
- Machine #1187 has been removed from the facility

- Emission unit U-GRANC and Emission Point 00180 have been removed from the facility
- U-PTNRM, BH500, and Emission Point 00500 are no longer in use
- A non-exempt solvent cleaning bath has been identified (New Emission Unit U-SOLV1, Process SOL, Emission Source 02600) that is subject to Subpart 226-1 (Solvent Cleaning Processes)
- Estimated facility-wide potential emissions of SO₂ dropped below 100 tons per year (tpy) due to the shift from No. 6 to No. 2 fuel oil. Revere requested that the facility-wide cap on SO₂ emissions and the fuel oil usage cap be removed from the permit.

1.2 Differences Between the Updated Renewal Application and the February 8, 2023 Renewal Application

The renewal application incorporates the following key differences from the February 8, 2023 application:

- Since some of Revere's process emission rates were based on source testing conducted in 2001 and 2008 and that testing did not include particle size distribution (PSD) analysis, Revere initiated source testing (for engineering purposes) in May 2023 to develop updated emission rates for five emission sources:
 - o 1723 Reversing Mill (U-ROLL1, Emission Point (EP) 00026, Source 01723)
 - o 1721 First Run Down Mill (U-ROLL1, EP 00029, Source 01721, Control 00C29)
 - o Cast Shop 1799 Holding Furnace and 2443 Melting Furnace (U-CAST1, EP 00039, Source 01799 and 02443, Cyclone 00C39, and Baghouse 00C39)
 - o Cast Shop 2056 Melting Furnace (U-CAST1, EP 00040, Source 02056, Cyclone 00C40, and Baghouse 00B40)
 - o 1715 Overhauler (U-OVER1, EP 00031, Source 01715, Control 00C31).

For each of the above emission sources, samples were collected by Alliance Technical Group, LLC (Alliance) on May 30 through June 2, 2023 to establish updated emission rates for total filterable particulate matter (PM), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), and condensable PM. In addition, a sample collected from the overhauler exhaust was analyzed for copper. A summary of the stack test results is provided in **Exhibit 2**. The updated emission and exhaust flow rates have been incorporated into the emission calculations, Part 212 evaluation, and air dispersion modeling.

- Based on the updated emission rates, the estimated facility-wide potential emissions of total PM, PM₁₀, and PM_{2.5} are below 100 tons per year (tpy) each. Revere is requesting that the facility emission caps for these contaminants be removed from the permit.
- Testing was not able to be performed on the Central Vacuum System (U-CAST1, EP 00602, Source CSVAC, Cyclone CSC01, and Baghouse CSB01) during the May 2023 test program. Revere previously assumed the PM concentration in the Central Vacuum System exhaust was equivalent to the grain standard, *i.e.*, 0.05 grains per dry standard cubic foot (gr/dscf), which is overly conservative given the air pollution control devices in use (*i.e.*, cyclone and baghouse). For our calculations, we have assumed that the performance of the vacuum exhaust cyclone and filter housing system would perform similarly to the exhaust of the cyclone and filter housing operating on the cast furnace exhausts. To be conservative, we used the higher of two available cast furnace exhaust outlet concentrations from the May 2023 test program and applied it to the vacuum system exhaust. The performance of the vacuum cyclone and filter housing is reasonably expected to be similar since the design features of the two systems are also similar.

- NYSDEC provided updated meteorological data on July 3, 2023 and these data have been used in the updated modeling. This is discussed further in Section 8 of this report.
- Revere has clarified the EPs associated with the 464 Tray Style Coil Annealing Furnace (U-ANNE1, Source 00464) and 1154 Annealing Furnace (U-ANNE1, Source 01154). In each of these processes, a natural gas-fired DX boiler provides DX gas consisting of natural gas combustion byproducts and heat to the annealing furnace; the DX gas becomes the atmosphere in the furnace during the annealing process. A separate small natural gas-fired combustion unit provides heat to the furnace during the annealing process. Copper from a rolling mill moves through the annealing furnace. Both the furnace entrance and exit have a chamber that captures fugitive emissions and vents them to the outside. There also is an emergency relief vent that engages if the DX gas pressure builds up in the annealing chamber; this rarely occurs.

Each of these annealing furnaces has four EPs: one exempt EP for venting combustion gases from a small, exempt tube furnace that provides heat to the furnace; one EP for the furnace entry chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when entering the annealing furnace; one EP for the furnace exit chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when exiting the annealing furnace; and the exempt emergency relief vent. The DX furnace vent is directed to the annealing chamber and does not directly vent outside. The entrance and exit chamber EPs are understood to be the EPs venting process emissions from these operations. Therefore, the following process EPs for these two annealing furnaces should be included:

- Emission Source 00464 Tray Style/Coil Anneal: EPs 00189 (entrance chamber exhaust) and 00190 (exit chamber exhaust); both of these EPs are in the current ASF Permit as well as the renewal application.
- Emission Source 01154 1154 Annealing Furnace: EPs 00367 (entry chamber exhaust) and
 00362 (exit chamber exhaust). EP 00367 is in the current ASF Permit but EP 00362 is a new EP.

These stacks and their parameters have been added to the revised ASF Permit application and used in the updated modeling.

- Emissions from the combustion of natural gas by the DX boilers were double counted in the February 8, 2008 renewal application with the DX combustion gas that becomes the annealing furnace atmosphere. This double counting has been corrected.
- The coolants and additives used in the rolling mills (U-ROLL1) were updated based on additional bath composition information provided by Revere. In addition, Revere rolling mill process engineers have indicated the bacteria completely consume Kathon 886, an antimicrobial agent added to the 1723 Reversing Mill (U-ROLL1, EP 00026, Source 01723) and 1176 Bliss Mill (U-ROLL1, EP 00036, Source 01723) within 24 to 48 hours of its addition to the recirculating cooling water bath. As a result, emissions associated with constituents in Kathon 886 have been removed from the updated emission inventory.

When excessive biological growth (bacteria) is present in the water-soluble coolant systems, the pH of the solution is lowered from the acidic excretions of the bacteria. This biological growth is controlled by additions of antimicrobial agents to the coolant systems. Revere currently uses two different antimicrobials to stop the biological growth in the coolant systems: Grotan and Kathon. The Kathon

additive is used as an initial dose at the start of a new coolant change. While the system residual of the Kathon additive is not testable, it is known to be consumed based on the rapid increase in pH (less excretion from bacteria). Revere relies on the biological results reported by the in-house laboratory to gauge the need for additional antimicrobials.

- The distance to property line has been added for non-exempt emission points in **Tables 2 and 3** of this report.
- The Part 212 air toxics evaluation presented in **Attachment D** of the permit application, as well as **Table 1** of this report, has been updated to incorporate the changes in emission rates, cooling water composition, and stack flow rates discussed above. Note that emission rates of constituents associated with particulate emissions, such as those from the casting and rolling mills, have been updated based on the May 2023 source testing results.

As discussed in **Attachment D**, there are three constituents with predicted impacts that exceed the conservative interim annual guideline concentrations (AGCs) provided by the Air Toxics Section. Actual annual emissions are estimated to be 668 pounds for the three constituents combined. These exceedances are discussed in more detail in Section 11 of this modeling report, and in the T-BACT analysis in **Attachment F** of the permit application.

Two additional constituents, copper and 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol, initially had modeled impacts that exceeded their respective AGCs. Copper has been identified as a constituent potentially emitted from the Overhauler. 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol has been identified as a constituent potentially emitted from three rolling mills: Bliss Mill, Hot Mill, and Reversing Mill.

Revere is proposing annual operating hour limits that will reduce the modeled impacts of these two constituents to 95% of their respective AGCs. Based on emission rates from the May 2023 testing and the resulting predicted impacts, the proposed operating hour limits would be 6,658 hours per year for the Overhauler and 7,858 hours per year for the Reversing Mill. However, we are proposing that the actual limits be based on the most recent Department-approved post-control hourly emission rates and resulting modeled impacts that are 95% of their respective AGCs.

These caps and their effect on the air dispersion modeling are discussed in more detail later in this report.

2. Site Location and Description

The facility is located at 1 Revere Park in Rome, NY within Oneida County. A site location map is provided in **Figure 1**. The site is bounded by mixed residential and commercial development to the north, east, and south and by a public park and a permanently closed elementary school to the west.

The primary manufacturing operations at the Revere facility consist of induction furnaces used for copper casting operations, annealing units, rolling mills, and a copper galvanizing line. Emissions from these processes, except for the galvanizing line, require air dispersion modeling to demonstrate compliance with Part 212.

3. Stack Parameters and Buildings

Stack parameters for the EPs included in the refined modeling analysis are provided in **Table 2** (English Units) and **Table 3** (Metric Units). A site layout map showing the building locations and the facility fenceline is provided in **Figure 2**. Figures identifying the stack locations and building heights of the buildings at the site are provided in **Figure 3** through **Figure 9**.

4. Emission Rates

An air toxics evaluation was performed in accordance with NYSDEC's DAR-1 *Guidelines for the Evaluation and Control of Contaminants Under 6 NYCRR Part 212*, dated February 12, 2021. A summary of the Part 212 evaluation is provided in **Table 1**. This table provides a list of process emissions at the facility (excluding combustion units and exempt/trivial activities) and identifies emissions that require modeling. A more detailed Part 212 evaluation is provided in **Attachment D** of the ASF Permit application.

A summary of the emission rates used in the modeling analysis is provided in **Tables 4 to 6**. Emission rates were calculated based on historical emission factors and stack testing results. **Table 4** includes the PM emission rates, **Table 5** includes the 1-hour emission rates for the air toxics that were modeled, and **Table 6** includes the annual emission rates for the modeled air toxics. The PM emission rates and 1-hour toxics emission rates were modeled using post-control hourly emission rates. The annual toxics emission rates also were modeled using post-control hourly emission rates; however, for toxics emitted from the Reversing Mill and Overhauler, the emission rates were lowered to factor in the proposed annual operating hour caps on these two sources as discussed in Section 1.2. Hourly emission rates for those sources were multiplied by the capped operating hours and then divided by 8,760 hours to calculate annualized emission rates that are representative of the reduced hours of operation.

5. PM₁₀ and PM_{2.5} Modeling

PM₁₀ and PM_{2.5} emissions from the process emission sources, DX gas combustion sources (which are specifically permitted under Process DXG), the natural gas-fired Walking Beam Furnace, and the main natural gas-fired boilers were modeled. Note that particulate emissions from exempt combustion units and emergency generators were not included in the modeling. There are thirty-six natural gas combustion sources with maximum heat input ratings of 1 million British thermal units per hour (MMBtu/hr) or less, nine with maximum heat input ratings between 1 MMBtu/hr and 4.2 MMBtu/hr, and one with a maximum heat input rating of 9.7 MMBtu/hr. Based on the maximum heat input ratings, the exempt units are estimated to have the potential to use 18% of the total natural gas, the DX gas units account for 3%, the Walking Beam Furnace accounts for 21%, and the main boilers account for the remaining 58%. Based on these conditions and the fact that the exempt units are spread out across the facility, these sources we not included in the modeling. The emergency generators were excluded as they only operate during emergencies and readiness testing and are considered to be intermittent sources, which are excluded from NAAQS modeling in accordance with USEPA guidance. Background concentrations of PM₁₀ and PM_{2.5} were added to the results of the modeling and compared to their respective NAAQS.

Background $PM_{2.5}$ was based on the 3-year average values monitored at the Utica, New York station for years 2020-2022. The Utica station was chosen because it is the closest monitoring station and is likely to be representative of the area. Background 24-hour PM_{10} was based on the 2^{nd} maximum 24-hour concentration provided by the Rochester, New York station for calendar year 2022. The Rochester station

was chosen because it is the closest monitoring station and is likely to be representative of the area. Note that 2020-2022 are the most recent years of available data for this station.

6. Urban/Rural Classification

In accordance with Section 2.3 of NYSDEC's DAR-10 air dispersion modeling guidance document: "Only facilities located in the New York City metro area may have sufficiently high population density and urban heat island effects to justify the use of urban dispersion coefficients." The site is not located in the New York City metro area; therefore, rural dispersion coefficients were used in the analysis.

7. Good Engineering Practice Stack Height Analysis

USEPA provides specific guidance for calculating Good Engineering Practice (GEP) stack height and for evaluating whether building downwash will occur (USEPA, 2003). GEP stack height is defined by USEPA as the height of the structure plus 1.5 times the lesser of the structure height or projected width. If the stack height for a source is less than the height identified using GEP guidelines, based on the dimensions of nearby buildings, then the potential for building downwash to occur exists and is to be considered in the modeling analysis.

The stacks to be modeled in this analysis are less than GEP stack height. Therefore, 36 directional building heights and widths data were estimated using the USEPA Building Profile Input Program, PRIME version 04274 (BPIP-PRIME) and incorporated into the AERMOD model.

8. Meteorological Data

The closest National Weather Service (NWS) station to the facility that has the appropriate available data for AERMOD is located in Rome, New York. The Rome NWS station is located approximately 3 kilometers to the Northeast of the facility. Therefore, the Rome, New York NWS station was utilized for the surface data for this analysis. Upper-air data from Albany, New York was also used. NYSDEC provided the necessary pre-processed data for use in the analysis. Data for years 2018-2022 were used.

9. Receptor Locations

In accordance with Section 2.4 of DAR-10¹, the modeling analysis utilized a set of nested Cartesian grids of receptors with a spacing of 70, 100, 250, and 500 meters extending to a distance of 1, 2, 5, and 10 kilometers, respectively, from the facility. The facility has restricted access with a fence and outer building walls that encloses the majority of the property, with the exception of the eastern parking lot; therefore, fence line receptors were included at a spacing of 25 meters. On-site receptors inside the fence line were excluded. Maximum impacts occurred within the 70-meter grid; therefore, no additional grids were added to the model.

Discrete receptors were added to sensitive locations including schools, hospitals, nursing homes, and daycares located within a 10-kilometer radius from the facility. **Figure 10** provides a map showing the locations of the sensitive receptors included in the modeling and **Table 7** provides the name and coordinates of each receptor.

¹ NYSDEC Guidelines on Dispersion Modeling Procedures for Air Quality Impact Analysis, Issued Date September 1, 2020.

Additional receptor grids were added to the Environmental Justice areas within a 10-kilometer radius from the facility and are identified in **Figure 11**. A receptor grid at 50-meter spacing was added to each area, in addition to the nested Cartesian grids. Note that 50-meter spacing in addition to the regular nested Cartesian grids resulted in an overabundance of receptors, but in absence of NYSDEC recommended spacing for Environmental Justice areas, this 50-meter spacing was used.

Disadvantaged Communities within a 10-kilometer radius from the facility were also identified and are included in **Figure 12**. No receptors were added to these areas as the above receptor grids provide adequate characterization of the impacts surrounding the facility.

The current version of AERMAP was used to calculate the receptor elevations and appropriate hill height values. Ten-meter resolution National Elevation Dataset (NED) data were used in the analysis.

10. Lakes Environmental Software - Multi-Chem Use

As shown in **Table 1**, more than 20 contaminants were required to be included in the air toxics modeling. Due to the large number of contaminants, the multi-chemical (multi-chem) utility of the AERMOD View program by Lakes Environmental SoftwareTM was used as an initial screening level model for the air toxics. The purpose of the utility is to streamline the modeling of multiple contaminants by avoiding having to set up separate project files for each contaminant in the analysis.

For each emission source in the analysis, multi-chem creates an AERMOD input file using a normalized emission rate of 1.0 gram per second. The input files are run with AERMOD and produce post files containing the normalized predicted concentrations for each averaging period at each receptor. For example, if the model is run for the 1-hour averaging period, then the post file will contain the normalized 1-hour predicted concentrations for each hour in the meteorological dataset at each receptor. Next, multi-chem takes the source-specific contaminant emission rates, multiplies by the normalized predicted concentrations in the respective post files, and cumulatively adds the values paired in time and location. The results of the calculations are summarized in contaminant-specific plot files. At the bottom of the plot files is a summary of the source IDs and emission rates used to generate the plot files.

Initial results using the multi-chem utility were provided to NYSDEC in advance of the final modeling report to afford NYSDEC the opportunity to identify any toxics that should be modeled outside of the multi-chem utility. NYSDEC provided the following list of constituents to be run outside of the multi-chem utility:

Toxics here [CAS #]

11. Modeling Results

The results of the PM_{10} and $PM_{2.5}$ NAAQS modeling analysis are provided in **Table 8** and the results of the air toxics modeling are provided in **Table 9**.

The results of the NAAQS modeling indicate that the maximum predicted impacts of $PM_{2.5}$ are below both the 24-hour and the annual standards and that the maximum predicted impacts of PM_{10} are below the annual standards.

The results of the air toxics modeling indicate that the maximum predicted concentrations of three of the modeled air contaminants exceed the AGC values provided by the NYSDEC Air Toxics Section (ATS). None of the modeled air contaminants exceed the Short-term Guideline Concentration (SGC) values in the NYSDEC DAR-1 AGC/SGC tables.

Additionally, Revere is proposing to cap the annual operating hours from two sources so that maximum predicted impacts of two other contaminants (copper and 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol) are below their AGC values. Copper is only estimated to be emitted from the Overhauler, and 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol is estimated to be emitted from the Reversing Mill, Bliss Mill, and Hot Mill.

Revere is proposing annual operating hour limits that will reduce the modeled impacts of these two constituents to 95% of their respective AGCs. Based on emission rates from the May 2023 testing and the resulting predicted impacts, the proposed operating hour limits would be 6,658 hours per year for the Overhauler and 7,858 hours per year for the Reversing Mill. However, we are proposing that the actual limits be based on the most recent Department-approved post-control hourly emission rates and resulting modeled impacts that are 95% of their respective AGCs.

Three contaminants that exceed their respective AGCs are as follows:

- Poly(oxy-1,2-ethanediyl), a-(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- (CAS# 57635-48-0)
- Fatty acids, C18-unsaturated phosphates (CAS# Trade Secret #5)
- Trade Secret (CAS# Trade Secret #8)

These contaminants are emitted from the First Run Down Mill. None of these contaminants are listed in NYSDEC's DAR-1 AGC/SGC tables; therefore, the ATS provided interim AGC values based on toxicological reviews. The information regarding the toxicities of these contaminants that the ATS was able to find was extremely limited, which resulted in NYSDEC assigning very conservative interim AGC values to these contaminants.

A Toxic – Best Achievable Control Technology (T-BACT) analysis has been included in Attachment F of the air permit application. In this analysis, it is presented that the following factors impact the assessment of T-BACT for the First Run Down Mill:

- Revere has instituted effective process controls to the extent practical
- Revere has conducted initial evaluations of coolant alternatives, and each has challenges that would need to be vetted with further evaluation before they could be trialed at the facility
- The First Run Down Mill is equipped with a mist eliminator to minimize emissions
- The three target constituents have low volatility and, therefore, estimated emissions may be overly conservative (on the high side)
- There is a lack of specific sampling and analytical methods for the target constituents
- The interim AGCs assigned by NYSDEC have built-in safety factors of 10x and 100x due to a lack of available toxicological information and, thus, are overly conservative
- Predicted impacts of the three target constituents are less than NYSDEC's published de mimimis AGC of 0.1 micrograms per cubic meter (μg/m³)
- It is doubtful that an air pollution control manufacturer will provide a removal efficiency guarantee for the target compounds given the lack of information on these chemicals and the inability to quantify their physical state (e.g., aerosol, solid) or their present concentration/mass

• The estimated cost of removing approximately 665 combined pounds per year of the three target contaminants (540 pounds for the Commissioning Plan operating scenario) is \$1.3 to \$1.8 million per ton of contaminant removed.

For these reasons, this evaluation concludes that the 1721 First Run Down Mill has T-BACT for emissions of the three specified contaminants, since no other alternatives could be demonstrated as feasible. Considered alternatives were either not technically feasible or not economically feasible.

Electronic copies of the AERMOD input and output files for PM₁₀, PM_{2.5}, and the air toxics that were run outside of multi-chem, contaminant-specific plot files for the contaminants run within multi-chem, BPIP input and output files, AERMAP input and output files, and meteorological data files were submitted to the NYSDEC File Transfer Service (FTS) site.

REVERE COPPER PRODUCTS, INC. MODELING REPORT – PERMIT APPLICATION

Project name	Revere Copper Products, Inc. – Air State Facility Permit Renewal
Project no	1087689\1940103004

Recipient NYSDEC - Impact Assessment and Meteorology Group

Document type Modeling Report

Version 2

Date July 21, 2023
Prepared by Steven Miraglia
Checked by Cris Hine

Approved by Matthew Traister, P.E.

CONTENTS

1.	Project Discussion	3
1.1	Facility Modifications	3
1.2	Differences Between the Updated Renewal Application and the February 8, 2023	
	Renewal Application	4
2.	Site Location and Description	6
3.	Stack Parameters and Buildings	7
4.	Emission Rates	7
5.	PM ₁₀ and PM _{2.5} Modeling	7
6.	Urban/Rural Classification	8
7.	Good Engineering Practice Stack Height Analysis	8
8.	Meteorological Data	8
9.	Receptor Locations	8
10.	Lakes Environmental Software – Multi-Chem Use	9
11.	Modeling Results	10

LIST OF FIGURES

I	Site	Location	ı ıvıap
ı	Site	LUCATIOI	ı ıvıap

- 2 Site Layout Map
- 3 Building 51 Stack Locations and Building Heights
- 4 Building 45 Building Heights
- 5 Building 46 and 56 Building Heights
- 6 Building 1 Building Heights
- 7 Building 14 Building Heights
- 8 Building 21 and 69 Stack Locations and Building Heights
- 9 Building 50 Building Heights
- 10 Sensitive Receptor Locations
- 11 Environmental Justice Areas

- 12 Disadvantaged Communities Map
- 13 Copper and Copper Oxide Combined Exceedance Isopleth

LIST OF TABLES

- 1 Summary of Part 212 Evaluation
- 2 Summary of Stack Parameters (English Units)
- 3 Summary of Stack Parameters (Metric Units)
- 4 Modeled Particulate Matter Emission Rates
- 5 Modeled Toxics Emission Rates (Permit Application 1-Hour)
- 6 Modeled Toxics Emission Rates (Permit Application Annual)
- 7 Sensitive Receptors
- 8 NAAQS Modeling Results
- 9 Permit Application Air Toxics Modeling Results Run With Multi-Chem
- 10 Permit Application Air Toxics Modeling Results Run Without Multi-Chem

LIST OF EXHIBITS

- 1 Air Dispersion Modeling Protocol
- 2 Summary of May 2023 Stack Test Results

1. Project Discussion

Revere Copper Products, Inc. (Revere) is renewing and modifying the Air State Facility (ASF) Permit (ID 6-3013-00091/00039) for its manufacturing facility located at 1 Revere Park in Rome, New York. A site location map is provided in **Figure 1**.

An air dispersion modeling protocol (see **Exhibit 1**) was submitted to the New York State Department of Environmental Conservation (NYSDEC) on December 1, 2022 in order to satisfy NYSDEC's requirement for submitting a protocol prior to performing refined air dispersion modeling. NYSDEC provided comments on the protocol to Revere on January 9, 2023, which were incorporated into the modeling report submitted to NYSDEC with the ASF Permit renewal application on February 8, 2023.

In accordance with the Order on Consent (R6-20230614-21) and Schedule of Compliance, Revere is required to submit a complete ASF Permit renewal application containing the requested information identified in the Department's Notice of Incomplete Application no later than July 10, 2023; an extension to July 21, 2023 was requested by Revere and granted by NYSDEC.

Also, in accordance with the Schedule of Compliance, should Revere propose to commission or otherwise initiate the new furnace prior to receipt of the Permit Modification, Revere is to include for Department review and approval a temporary commissioning and/or operation plan, which includes sufficient detail to confirm the facility will be in compliance with applicable regulations during operation of the furnace.

Revere is submitting a revised ASF Permit application and including the Commissioning Plan as an attachment to the application (**Attachment H**). Air dispersion modeling was performed for both the ASF Permit application and the Commissioning Plan as these represent two different scenarios of operating the facility. This report focuses on the ASF Permit application and a separate modeling report has been prepared that focuses on the Commissioning Plan.

Air dispersion modeling was performed using the United States Environmental Protection Agency (USEPA) AERMOD (Version 22112) model.

1.1 Facility Modifications

Revere has removed casting furnace 2057 (Emission Unit U-CAST1, Emission Source 01257) and began the installation of a similar induction furnace (Emission Source 02728) that will provide an estimated 23.3% increase in output casting. The new furnace will vent to an existing cyclone and baghouse (00C40/00B40) and Emission Point (EP) 00040. Increases in emissions resulting from the furnace replacement project have been estimated, including emissions from the increased furnace capacity as well as emissions from downstream operations that will potentially increase as a result of increased furnace throughput.

The following additional facility changes that have been made were identified in the February 8, 2023 renewal application:

- The facility no longer produces or uses brass
- The facility has switched from residual (No. 6) to distillate (No. 2) fuel oil for the backup fuel combusted by the main boilers (Emission Unit U-COMB1)
- Machine #1187 has been removed from the facility

- Emission unit U-GRANC and Emission Point 00180 have been removed from the facility
- U-PTNRM, BH500, and Emission Point 00500 are no longer in use
- A non-exempt solvent cleaning bath has been identified (New Emission Unit U-SOLV1, Process SOL, Emission Source 02600) that is subject to Subpart 226-1 (Solvent Cleaning Processes)
- Estimated facility-wide potential emissions of SO₂ dropped below 100 tons per year (tpy) due to the shift from No. 6 to No. 2 fuel oil. Revere requested that the facility-wide cap on SO₂ emissions and the fuel oil usage cap be removed from the permit.

1.2 Differences Between the Updated Renewal Application and the February 8, 2023 Renewal Application

The renewal application incorporates the following key differences from the February 8, 2023 application:

- Since some of Revere's process emission rates were based on source testing conducted in 2001 and 2008 and that testing did not include particle size distribution (PSD) analysis, Revere initiated source testing (for engineering purposes) in May 2023 to develop updated emission rates for five emission sources:
 - o 1723 Reversing Mill (U-ROLL1, Emission Point (EP) 00026, Source 01723)
 - o 1721 First Run Down Mill (U-ROLL1, EP 00029, Source 01721, Control 00C29)
 - o Cast Shop 1799 Holding Furnace and 2443 Melting Furnace (U-CAST1, EP 00039, Source 01799 and 02443, Cyclone 00C39, and Baghouse 00C39)
 - o Cast Shop 2056 Melting Furnace (U-CAST1, EP 00040, Source 02056, Cyclone 00C40, and Baghouse 00B40)
 - o 1715 Overhauler (U-OVER1, EP 00031, Source 01715, Control 00C31).

For each of the above emission sources, samples were collected by Alliance Technical Group, LLC (Alliance) on May 30 through June 2, 2023 to establish updated emission rates for total filterable particulate matter (PM), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), and condensable PM. In addition, a sample collected from the overhauler exhaust was analyzed for copper. A summary of the stack test results is provided in **Exhibit 2**. The updated emission and exhaust flow rates have been incorporated into the emission calculations, Part 212 evaluation, and air dispersion modeling.

- Based on the updated emission rates, the estimated facility-wide potential emissions of total PM, PM₁₀, and PM_{2.5} are below 100 tons per year (tpy) each. Revere is requesting that the facility emission caps for these contaminants be removed from the permit.
- Testing was not able to be performed on the Central Vacuum System (U-CAST1, EP 00602, Source CSVAC, Cyclone CSC01, and Baghouse CSB01) during the May 2023 test program. Revere previously assumed the PM concentration in the Central Vacuum System exhaust was equivalent to the grain standard, *i.e.*, 0.05 grains per dry standard cubic foot (gr/dscf), which is overly conservative given the air pollution control devices in use (i.e., cyclone and baghouse). For our calculations, we have assumed that the performance of the vacuum exhaust cyclone and filter housing system would perform similarly to the exhaust of the cyclone and filter housing operating on the cast furnace exhausts. To be conservative, we used the higher of two available cast furnace exhaust outlet concentrations from the May 2023 test program and applied it to the vacuum system exhaust. The performance of the vacuum cyclone and filter housing is reasonably expected to be similar since the design features of the two systems are also similar.

- NYSDEC provided updated meteorological data on July 3, 2023 and these data have been used in the updated modeling. This is discussed further in Section 8 of this report.
- Revere has clarified the EPs associated with the 464 Tray Style Coil Annealing Furnace (U-ANNE1, Source 00464) and 1154 Annealing Furnace (U-ANNE1, Source 01154). In each of these processes, a natural gas-fired DX boiler provides DX gas consisting of natural gas combustion byproducts and heat to the annealing furnace; the DX gas becomes the atmosphere in the furnace during the annealing process. A separate small natural gas-fired combustion unit provides heat to the furnace during the annealing process. Copper from a rolling mill moves through the annealing furnace. Both the furnace entrance and exit have a chamber that captures fugitive emissions and vents them to the outside. There also is an emergency relief vent that engages if the DX gas pressure builds up in the annealing chamber; this rarely occurs.

Each of these annealing furnaces has four EPs: one exempt EP for venting combustion gases from a small, exempt tube furnace that provides heat to the furnace; one EP for the furnace entry chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when entering the annealing furnace; one EP for the furnace exit chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when exiting the annealing furnace; and the exempt emergency relief vent. The DX furnace vent is directed to the annealing chamber and does not directly vent outside. The entrance and exit chamber EPs are understood to be the EPs venting process emissions from these operations. Therefore, the following process EPs for these two annealing furnaces should be included:

- Emission Source 00464 Tray Style/Coil Anneal: EPs 00189 (entrance chamber exhaust) and 00190 (exit chamber exhaust); both of these EPs are in the current ASF Permit as well as the renewal application.
- Emission Source 01154 1154 Annealing Furnace: EPs 00367 (entry chamber exhaust) and
 00362 (exit chamber exhaust). EP 00367 is in the current ASF Permit but EP 00362 is a new EP.

These stacks and their parameters have been added to the revised ASF Permit application and used in the updated modeling.

- Emissions from the combustion of natural gas by the DX boilers were double counted in the February 8, 2008 renewal application with the DX combustion gas that becomes the annealing furnace atmosphere. This double counting has been corrected.
- The coolants and additives used in the rolling mills (U-ROLL1) were updated based on additional bath composition information provided by Revere. In addition, Revere rolling mill process engineers have indicated the bacteria completely consume Kathon 886, an antimicrobial agent added to the 1723 Reversing Mill (U-ROLL1, EP 00026, Source 01723) and 1176 Bliss Mill (U-ROLL1, EP 00036, Source 01723) within 24 to 48 hours of its addition to the recirculating cooling water bath. As a result, emissions associated with constituents in Kathon 886 have been removed from the updated emission inventory.

When excessive biological growth (bacteria) is present in the water-soluble coolant systems, the pH of the solution is lowered from the acidic excretions of the bacteria. This biological growth is controlled by additions of antimicrobial agents to the coolant systems. Revere currently uses two different antimicrobials to stop the biological growth in the coolant systems: Grotan and Kathon. The Kathon

additive is used as an initial dose at the start of a new coolant change. While the system residual of the Kathon additive is not testable, it is known to be consumed based on the rapid increase in pH (less excretion from bacteria). Revere relies on the biological results reported by the in-house laboratory to gauge the need for additional antimicrobials.

- The distance to property line has been added for non-exempt emission points in **Tables 2 and 3** of this report.
- The Part 212 air toxics evaluation presented in **Attachment D** of the permit application, as well as **Table 1** of this report, has been updated to incorporate the changes in emission rates, cooling water composition, and stack flow rates discussed above. Note that emission rates of constituents associated with particulate emissions, such as those from the casting and rolling mills, have been updated based on the May 2023 source testing results.

As discussed in **Attachment D**, there are three constituents with predicted impacts that exceed the conservative interim annual guideline concentrations (AGCs) provided by the Air Toxics Section. Actual annual emissions are estimated to be 668 pounds for the three constituents combined. These exceedances are discussed in more detail in Section 11 of this modeling report, and in the T-BACT analysis in **Attachment F** of the permit application.

Two additional constituents, copper and 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol, initially had modeled impacts that exceeded their respective AGCs. Copper has been identified as a constituent potentially emitted from the Overhauler. 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol has been identified as a constituent potentially emitted from three rolling mills: Bliss Mill, Hot Mill, and Reversing Mill.

Revere is proposing annual operating hour limits that will reduce the modeled impacts of these two constituents to 95% of their respective AGCs. Based on emission rates from the May 2023 testing and the resulting predicted impacts, the proposed operating hour limits would be 6,658 hours per year for the Overhauler and 7,858 hours per year for the Reversing Mill. However, we are proposing that the actual limits be based on the most recent Department-approved post-control hourly emission rates and resulting modeled impacts that are 95% of their respective AGCs.

In accordance with communication from NYSDEC received on July 20, 2023, emissions of copper and copper oxide must be modeled together for comparison to the copper guideline concentrations. This was incorporated into the modeling. Revere is continuing to propose an operating hour cap on the Overhauler to achieve 95% of the AGC of copper from copper emissions alone. In addition, Revere is also proposing to restrict public access to the area of their parking lot where the copper and copper oxide combined impacts are at their highest concentrations.

These caps and their effect on the air dispersion modeling are discussed in more detail later in this report.

2. Site Location and Description

The facility is located at 1 Revere Park in Rome, NY within Oneida County. A site location map is provided in **Figure 1**. The site is bounded by mixed residential and commercial development to the north, east, and south and by a public park and a permanently closed elementary school to the west.

The primary manufacturing operations at the Revere facility consist of induction furnaces used for copper casting operations, annealing units, rolling mills, and a copper galvanizing line. Emissions from these processes, except for the galvanizing line, require air dispersion modeling to demonstrate compliance with Part 212.

3. Stack Parameters and Buildings

Stack parameters for the EPs included in the refined modeling analysis are provided in **Table 2** (English Units) and **Table 3** (Metric Units). A site layout map showing the building locations and the facility fence line is provided in **Figure 2**. Figures identifying the stack locations and building heights of the buildings at the site are provided in **Figure 3** through **Figure 9**.

4. Emission Rates

An air toxics evaluation was performed in accordance with NYSDEC's DAR-1 *Guidelines for the Evaluation and Control of Contaminants Under 6 NYCRR Part 212*, dated February 12, 2021. A summary of the Part 212 evaluation is provided in **Table 1**. This table provides a list of process emissions at the facility (excluding combustion units and exempt/trivial activities) and identifies emissions that require modeling. A more detailed Part 212 evaluation is provided in **Attachment D** of the ASF Permit application.

A summary of the emission rates used in the modeling analysis is provided in **Tables 4 to 6**. Emission rates were calculated based on historical emission factors and stack testing results. **Table 4** includes the PM emission rates, **Table 5** includes the 1-hour emission rates for the air toxics that were modeled, and **Table 6** includes the annual emission rates for the modeled air toxics. The PM emission rates and 1-hour toxics emission rates were modeled using post-control hourly emission rates. The annual toxics emission rates also were modeled using post-control hourly emission rates; however, for toxics emitted from the Reversing Mill and Overhauler, the emission rates were lowered to factor in the proposed annual operating hour caps on these two sources as discussed in Section 1.2. Hourly emission rates for those sources were multiplied by the capped operating hours and then divided by 8,760 hours to calculate annualized emission rates that are representative of the reduced hours of operation.

5. PM₁₀ and PM_{2.5} Modeling

PM₁₀ and PM_{2.5} emissions from the process emission sources, DX gas combustion sources (which are specifically permitted under Process DXG), the natural gas-fired Walking Beam Furnace, and the main natural gas-fired boilers were modeled. Note that particulate emissions from exempt combustion units and emergency generators were not included in the modeling. There are thirty-six natural gas combustion sources with maximum heat input ratings of 1 million British thermal units per hour (MMBtu/hr) or less, nine with maximum heat input ratings between 1 MMBtu/hr and 4.2 MMBtu/hr, and one with a maximum heat input rating of 9.7 MMBtu/hr. Based on the maximum heat input ratings, the exempt units are estimated to have the potential to use 18% of the total natural gas, the DX gas units account for 3%, the Walking Beam Furnace accounts for 21%, and the main boilers account for the remaining 58%. Based on these conditions and the fact that the exempt units are spread out across the facility, these sources we not included in the modeling. The emergency generators were excluded as they only operate during emergencies and readiness testing and are considered to be intermittent sources, which are excluded

from NAAQS modeling in accordance with USEPA guidance. Background concentrations of PM_{10} and $PM_{2.5}$ were added to the results of the modeling and compared to their respective NAAQS.

Background PM_{2.5} was based on the 3-year average values monitored at the Utica, New York station for years 2020-2022. The Utica station was chosen because it is the closest monitoring station and is likely to be representative of the area. Background 24-hour PM₁₀ was based on the 2nd maximum 24-hour concentration provided by the Rochester, New York station for calendar year 2022. The Rochester station was chosen because it is the closest monitoring station and is likely to be representative of the area. Note that 2020-2022 are the most recent years of available data for this station.

6. Urban/Rural Classification

In accordance with Section 2.3 of NYSDEC's DAR-10 air dispersion modeling guidance document: "Only facilities located in the New York City metro area may have sufficiently high population density and urban heat island effects to justify the use of urban dispersion coefficients." The site is not located in the New York City metro area; therefore, rural dispersion coefficients were used in the analysis.

7. Good Engineering Practice Stack Height Analysis

USEPA provides specific guidance for calculating Good Engineering Practice (GEP) stack height and for evaluating whether building downwash will occur (USEPA, 2003). GEP stack height is defined by USEPA as the height of the structure plus 1.5 times the lesser of the structure height or projected width. If the stack height for a source is less than the height identified using GEP guidelines, based on the dimensions of nearby buildings, then the potential for building downwash to occur exists and is to be considered in the modeling analysis.

The stacks to be modeled in this analysis are less than GEP stack height. Therefore, 36 directional building heights and widths data were estimated using the USEPA Building Profile Input Program, PRIME version 04274 (BPIP-PRIME) and incorporated into the AERMOD model.

8. Meteorological Data

The closest National Weather Service (NWS) station to the facility that has the appropriate available data for AERMOD is located in Rome, New York. The Rome NWS station is located approximately 3 kilometers to the Northeast of the facility. Therefore, the Rome, New York NWS station was utilized for the surface data for this analysis. Upper-air data from Albany, New York was also used. NYSDEC provided the necessary pre-processed data for use in the analysis. Data for years 2018-2022 were used.

9. Receptor Locations

In accordance with Section 2.4 of DAR-10¹, the modeling analysis utilized a set of nested Cartesian grids of receptors with a spacing of 70, 100, 250, and 500 meters extending to a distance of 1, 2, 5, and 10 kilometers, respectively, from the facility. The facility has restricted access with a fence and outer building walls that encloses the majority of the property, with the exception of the eastern parking lot; therefore, fence line receptors were included at a spacing of 25 meters. On-site receptors inside the fence line were

¹ NYSDEC Guidelines on Dispersion Modeling Procedures for Air Quality Impact Analysis, Issued Date September 1, 2020

excluded. Maximum impacts occurred within the 70-meter grid; therefore, no additional grids were added to the model.

Discrete receptors were added to sensitive locations including schools, hospitals, nursing homes, and daycares located within a 10-kilometer radius from the facility. **Figure 10** provides a map showing the locations of the sensitive receptors included in the modeling and **Table 7** provides the name and coordinates of each receptor.

Additional receptor grids were added to the Environmental Justice areas within a 10-kilometer radius from the facility and are identified in **Figure 11**. A receptor grid at 50-meter spacing was added to each area, in addition to the nested Cartesian grids. Note that 50-meter spacing in addition to the regular nested Cartesian grids resulted in an overabundance of receptors, but in absence of NYSDEC recommended spacing for Environmental Justice areas, this 50-meter spacing was used.

Disadvantaged Communities within a 10-kilometer radius from the facility were also identified and are included in **Figure 12**. No receptors were added to these areas as the above receptor grids provide adequate characterization of the impacts surrounding the facility.

The current version of AERMAP was used to calculate the receptor elevations and appropriate hill height values. Ten-meter resolution National Elevation Dataset (NED) data were used in the analysis.

10. Lakes Environmental Software - Multi-Chem Use

As shown in **Table 1**, more than 20 contaminants were required to be included in the air toxics modeling. Due to the large number of contaminants, the multi-chemical (multi-chem) utility of the AERMOD View program by Lakes Environmental SoftwareTM was used as an initial screening level model for the air toxics. The purpose of the utility is to streamline the modeling of multiple contaminants by avoiding having to set up separate project files for each contaminant in the analysis.

For each emission source in the analysis, multi-chem creates an AERMOD input file using a normalized emission rate of 1.0 gram per second. The input files are run with AERMOD and produce post files containing the normalized predicted concentrations for each averaging period at each receptor. For example, if the model is run for the 1-hour averaging period, then the post file will contain the normalized 1-hour predicted concentrations for each hour in the meteorological dataset at each receptor. Next, multi-chem takes the source-specific contaminant emission rates, multiplies by the normalized predicted concentrations in the respective post files, and cumulatively adds the values paired in time and location. The results of the calculations are summarized in contaminant-specific plot files. At the bottom of the plot files is a summary of the source IDs and emission rates used to generate the plot files.

Initial results using the multi-chem utility were provided to NYSDEC in advance of the final modeling report to afford NYSDEC the opportunity to identify any toxics that should be modeled outside of the multi-chem utility. NYSDEC provided the following list of constituents on July 20, 2023 to be run outside of the multi-chem utility:

- 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol [04719-04-4]
- Copper Oxide [01317-38-0]
- Copper [07440-50-8]

- Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- [57635-48-0]
- Fatty acids, C18-unsaturated phosphates [Trade Secret #5]
- Trade Secret [Trade Secret #8]

Additionally, NYSDEC required that emissions of copper oxide and copper be combined and modeled together for comparison to the short-term and annual guideline concentrations (SGC and AGC, respectively) for copper. Copper oxide and copper were run together outside of the multi-chem utility, and the other four contaminants listed above were also run separately without using the multi-chem utility.

11. Modeling Results

The results of the PM_{10} and $PM_{2.5}$ NAAQS modeling analysis are provided in **Table 8**, the results of the air toxics modeling using the multi-chem utility are provided in **Table 9**, and the results for the specific contaminants run outside of the multi-chem utility are provided in **Table 10**.

The results of the NAAQS modeling indicate that the maximum predicted impacts of $PM_{2.5}$ are below both the 24-hour and the annual $PM_{2.5}$ standards and the maximum predicted impacts of PM_{10} are below the annual PM_{10} standards.

The results of the air toxics modeling indicate that the maximum predicted concentrations of three of the modeled air contaminants exceed the AGC values provided by the NYSDEC Air Toxics Section (ATS). None of the modeled air contaminants exceed the SGCs in the NYSDEC DAR-1 AGC/SGC tables.

Two additional modeled air contaminants were initially shown to exceed their respective AGC values (2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol and the combination of copper and copper oxide). 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol is estimated to be emitted from the Reversing Mill, Bliss Mill, and Hot Mill. Copper is estimated to be emitted from the Overhauler; however, NYSDEC is requiring copper and copper oxide to be modeled together. Copper oxide is estimated to be emitted from the EP 00039 Casting and Holding Furnaces, the EP 00040 Casting Furnaces, and the Central Vacuum System.

Revere is proposing annual operating hour limits that will reduce the modeled impacts of (2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol and copper to 95% of their respective AGCs. Based on emission rates from the May 2023 testing and the resulting predicted impacts, the proposed operating hour limits would be 6,658 hours per year for the Overhauler and 7,858 hours per year for the Reversing Mill. However, we are proposing that the actual limits be based on the most recent Department-approved post-control hourly emission rates and resulting modeled impacts that are 95% of their respective AGCs.

It is important to note that the proposed operating hour limit cap of 6,658 hours per year on the Overhauler, based on the emission rates from the May 2023 testing, would reduce predicted copper impacts to 95% of its AGC. However, with this proposed operating hour limit, the predicted impact of copper and copper oxide combined exceeds the AGC, as shown in **Table 10**. For the maximum predicted concentration of the combined emissions of copper and copper oxide, based on emission rates from the May 2023 testing, to be below the AGC, multiple operating hour limits would be required, which would significantly hamper Revere's business operations.

An isopleth of the copper and copper oxide combined exceedance area is provided in **Figure 13**. This figure shows that the exceedance area of the combined copper and copper oxide impact is located entirely on Revere's property, specifically within the parking lot to the northeast of the manufacturing operations. The Revere facility has restricted access to the plant through a combination of fences and outer walls of certain buildings. However, this fence line does not include the parking lot, which is owned and maintained by Revere. While Revere owns this parking lot, there is not explicit restricted access to the public. Revere is proposing to explicitly restrict public access to this parking lot, which, in combination with the proposed 6,658 hour per year annual operating hour limit cap on the Overhauler, will reduce the combined offsite impacts of copper and copper oxide to below the AGC.

The three remaining contaminants that exceed their respective AGCs are as follows:

- Poly(oxy-1,2-ethanediyl), a-(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- (CAS# 57635-48-0)
- Fatty acids, C18-unsaturated phosphates (CAS# Trade Secret #5)
- Trade Secret (CAS# Trade Secret #8)

These contaminants are emitted from the First Run Down Mill. None of these contaminants are listed in NYSDEC's DAR-1 AGC/SGC tables; therefore, the ATS provided interim AGC values based on toxicological reviews. The information regarding the toxicities of these contaminants that the ATS was able to find was extremely limited, which resulted in NYSDEC assigning very conservative interim AGC values to these contaminants.

A Toxic – Best Achievable Control Technology (T-BACT) analysis has been included in Attachment F of the air permit application. In this analysis, it is presented that the following factors impact the assessment of T-BACT for the First Run Down Mill:

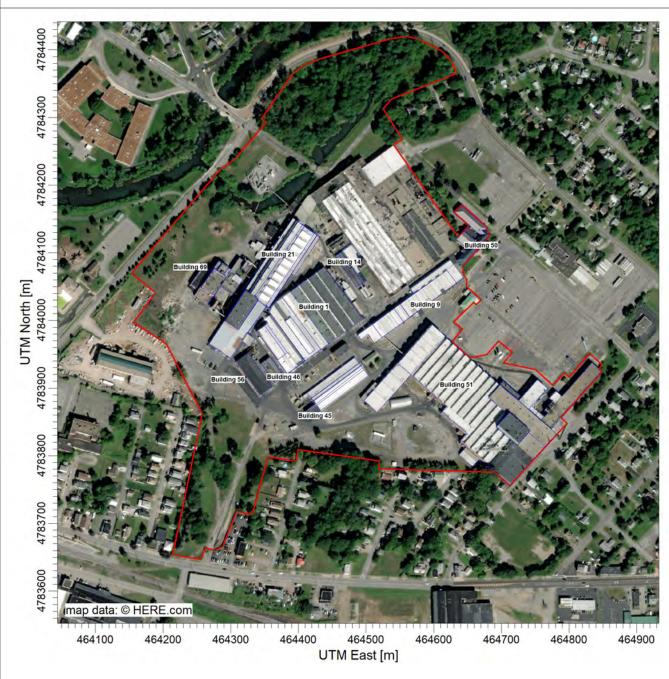
- Revere has instituted effective process controls to the extent practical
- Revere has conducted initial evaluations of coolant alternatives, and each has challenges that would need to be vetted with further evaluation before they could be trialed at the facility
- The First Run Down Mill is equipped with a mist eliminator to minimize emissions
- The three target constituents have low volatility and, therefore, estimated emissions may be overly conservative (on the high side)
- There is a lack of specific sampling and analytical methods for the target constituents
- The interim AGCs assigned by NYSDEC have built-in safety factors of 10x and 100x due to a lack of available toxicological information and, thus, are overly conservative
- Predicted impacts of the three target constituents are less than NYSDEC's published de mimimis AGC of 0.1 micrograms per cubic meter (μg/m³)
- It is doubtful that an air pollution control manufacturer will provide a removal efficiency guarantee for the target compounds given the lack of information on these chemicals and the inability to quantify their physical state (e.g., aerosol, solid) or their present concentration/mass
- The estimated cost of removing approximately 665 combined pounds per year of the three target contaminants (540 pounds for the Commissioning Plan operating scenario) is \$1.3 to \$1.8 million per ton of contaminant removed.

For these reasons, this evaluation concludes that the 1721 First Run Down Mill has T-BACT for emissions of the three specified contaminants, since no other alternatives could be demonstrated as feasible. Considered alternatives were either not technically feasible or not economically feasible.

Electronic copies of the AERMOD input and output files for PM₁₀, PM_{2.5}, and the air toxics that were run outside of multi-chem, contaminant-specific plot files for the contaminants run within multi-chem, BPIP input and output files, AERMAP input and output files, and meteorological data files were submitted to the NYSDEC File Transfer Service (FTS) site.

FIGURES

SITE LOCATION MAP


FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY

Revere Copper Products, Inc. 1 Revere Park Rome, NY 13440

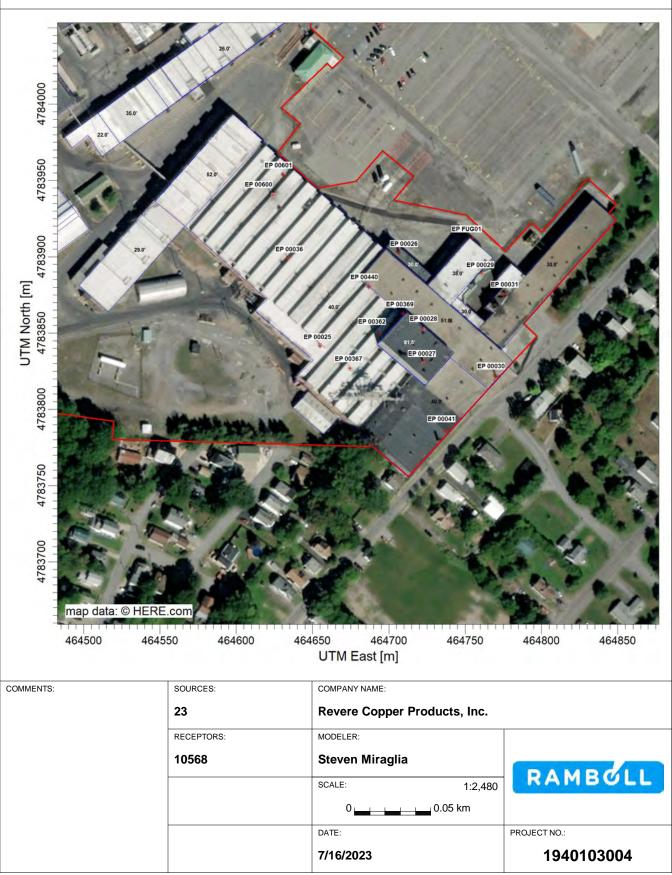

RAMBOLL

Figure 2 - Site Layout Map

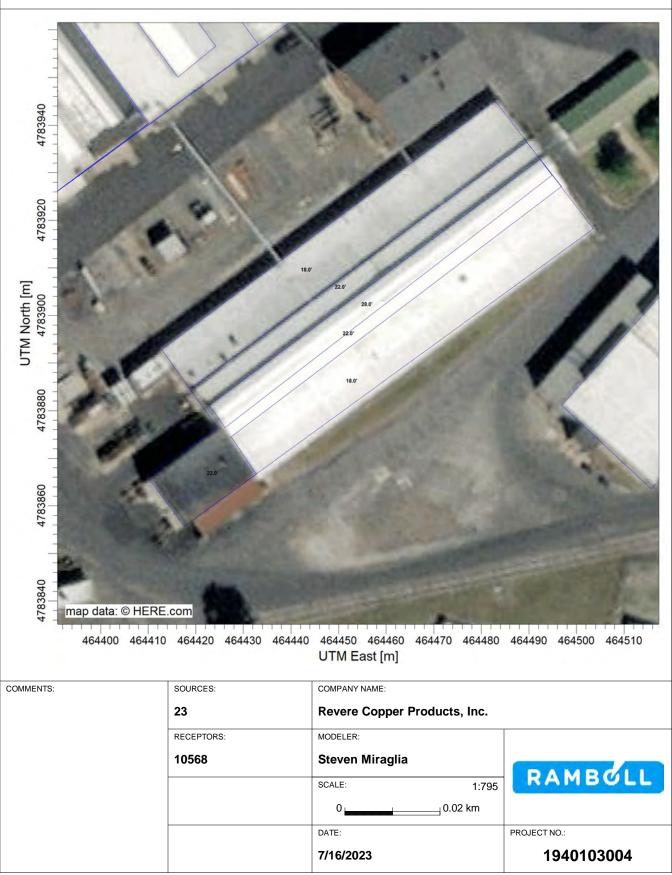

COMMENTS:	SOURCES:	COMPANY NAME:					
The red line represents the facility fenceline.	23	Revere Copper Products, Inc.					
	RECEPTORS:	MODELER:					
	10568	Steven Miraglia	DAMBOUL				
		SCALE: 1:5,592	RAMBOLL				
		0.2 km					
		DATE:	PROJECT NO.:				
		7/16/2023	1940103004				

Figure 3 - Building 51 Stack Locations and Building Heights

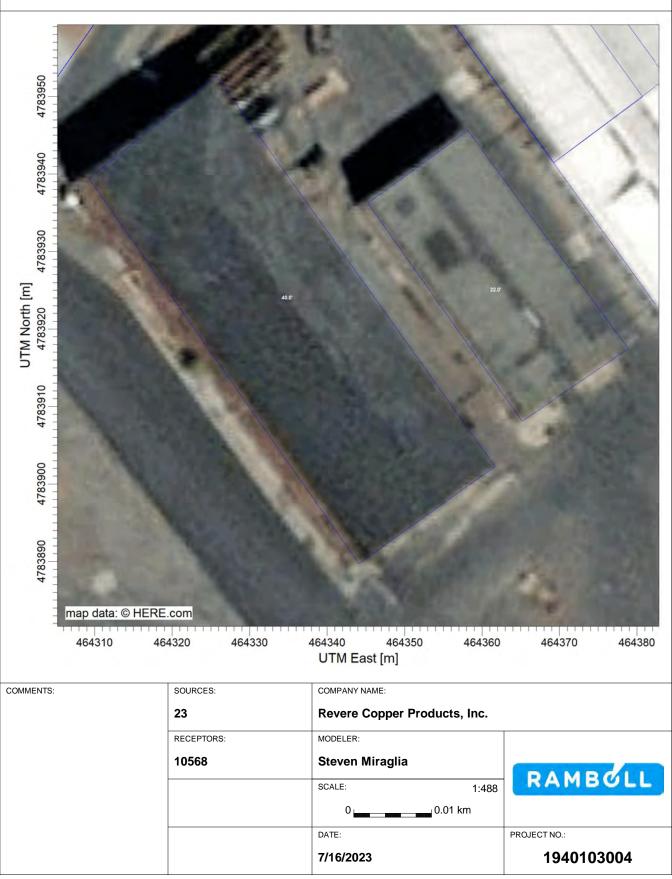

PROJECT TITLE:

Figure 4 - Building 45 Building Heights

PROJECT TITLE:

Figure 5 - Building 46 and 56 Building Heights

PROJECT TITLE:

Figure 6 - Building 1 Stack Locations and Building Heights

Figure 7 - Building 14 Stack Locations and Building Heights

Figure 8 - Building 21 and 69 Stack Locations and Building Heights

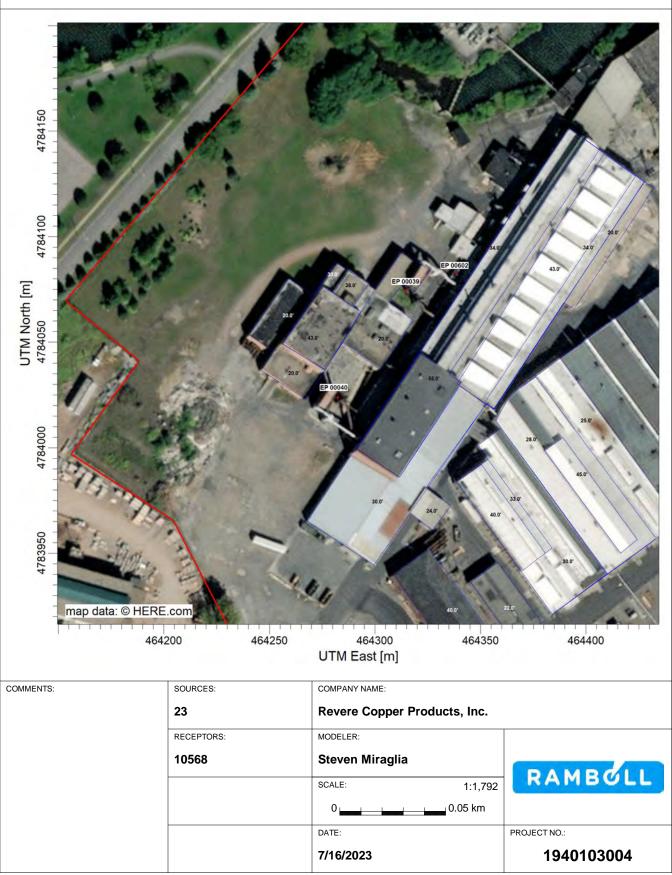


Figure 9 - Building 50 Building Heights

Figure 10 - Sensitive Receptor Locations

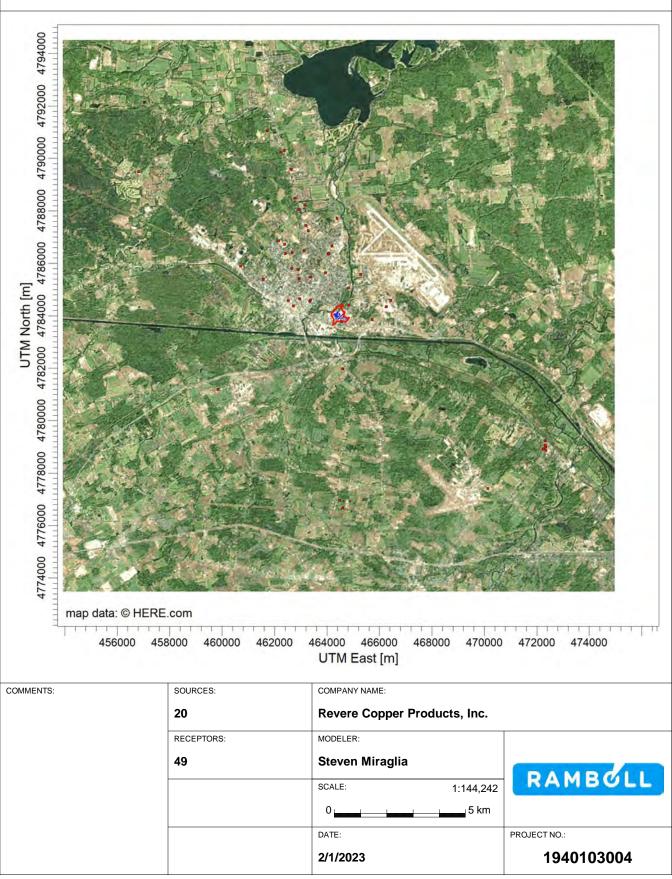


Figure 11 - Environmental Justice Area Map

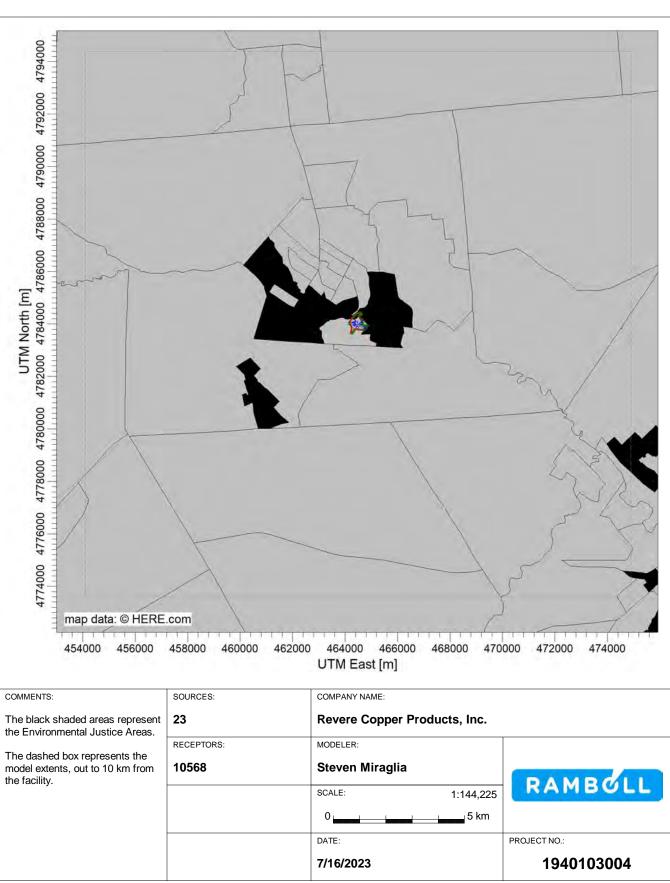


Figure 12 - Disadvantaged Communities Map

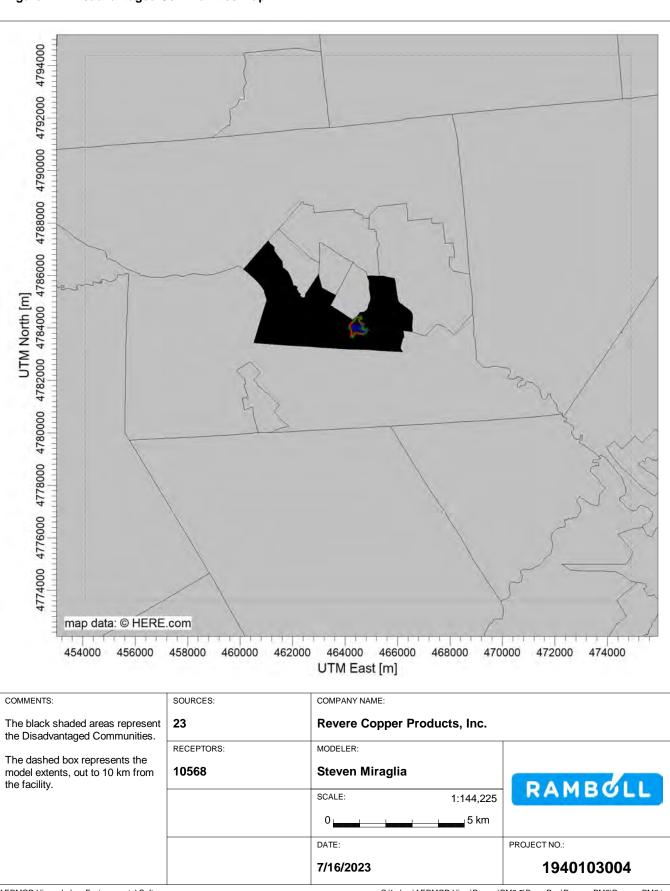
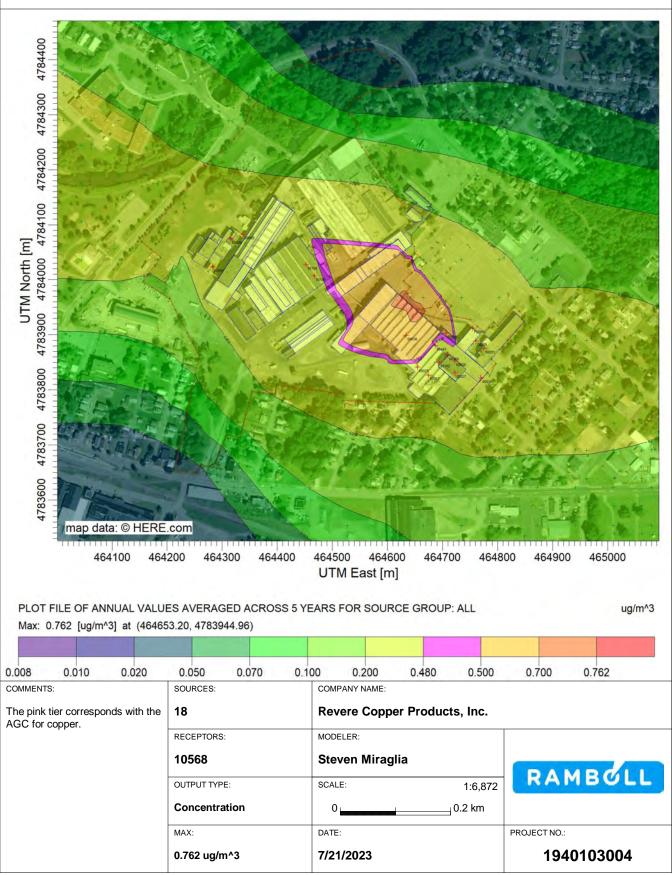



Figure 13 - Copper & Copper Oxide Combined Exceedance Isopleth

TABLES

Table 1
Summary of Part 212 Evaluation

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Actual Emissions (lb/yr)	Mass Emission Limit ^(b) (lb/yr)	Modeling Required (Yes/No)
Propane-1,2-diol	00057-55-6	N	N	111	100	YES
Hexylene glycol	00107-41-5	N	N	59	100	NO
Diethylene glycol	00111-46-6	N	N	8.1	100	NO
2-Butoxyethanol	00111-76-2	N	N	10	100	NO
2-Amino-2-methyl-1-propanol	00124-68-5	N	N	3.0E-02	100	NO
Alkanolamine	00141-43-5	N	N	195	100	YES
Barium oxide	01304-28-5	N	N	0.42	100	NO
Cadmium oxide	01306-19-0	Υ	Υ	7.8E-02	1	NO
Iron oxide	01309-37-1	N	N	1,049	100	YES
Magnesium oxide	01309-48-4	N	N	3	100	NO
Nickel oxide	01313-99-1	Υ	N	0.24	10	NO
Zinc oxide	01314-13-2	N	N	10	100	NO
Lead oxide	01314-41-6	Υ	Υ	3.8	5	NO
Copper oxide	01317-38-0	N	N	3,528	100	YES
Chromium oxide	01333-82-0	Υ	N	0.11	250	NO
Aluminum oxide	01344-28-1	N	N	32	100	NO
1,2-Benzisothiazol-3(2H)-one	02634-33-5	N	N	11	100	NO
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	N	N	243	100	YES
Sodium metasilicate	06834-92-0	N	N	13	100	NO
Silver	07440-22-4	N	N	1.5E-02	100	NO
Tin	07440-31-5	N	N	1.9	100	NO
Copper	07440-50-8	N	N	2,250	100	YES
Zinc	07440-66-6	N	N	1.9	100	NO
Zinc chloride	07646-85-7	N	N	0.28	100	NO
Hydrogen chloride	07647-01-0	N	N	2.5	100	NO
Hydrogen chloride	07647-01-0	N	N	2.5	100	NO
Sulfuric acid	07664-93-9	N	N	1,276	100	YES
Hydrogen peroxide	07722-84-1	N	N	18	100	NO
Phosphorus	07723-14-0	N	N	2.3E-03	100	NO
Graphite	07782-42-5	N	N	4,620	100	YES
Petroleum distillates (mineral oil)	08042-47-5	N	N	2.4	100	NO
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	N	N	111	100	YES

Table 1 Summary of Part 212 Evaluation

Revere Copper Products, Inc Rome, NY

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Actual Emissions (lb/yr)	Mass Emission Limit ^(b) (lb/yr)	Modeling Required (Yes/No)
Nonylphenol, ethoxylated	09016-45-9	N	N	193	100	YES
Sodium phosphate, tribasic	10101-89-0	N	N	5.3	100	NO
Barium chloride	10361-37-2	N	N	0.25	100	NO
Ammonium chloride	12125-02-9	N	N	0.26	100	NO
Tellurium	13494-80-9	N	N	3.6E-03	100	NO
Silver oxide	20667-12-3	N	N	0.11	100	NO
Mercury oxide	21908-53-2	Υ	Υ	1.0E-03	5	NO
Polyethylene glycol	25322-68-3	N	N	11	100	NO
Fatty alcohol alkoxylate	37335-03-8	N	N	0.15	0.1	NO ^(c)
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	N	N	186	100	YES
Amines, tallow alkyl, ethoxylated	61791-26-2	N	N	111	100	YES
Distillates, petroleum, hydrotreated light	64742-47-8	N	N	181	100	YES
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	N	N	1,000	100	YES
Hydrotreated light naphthenic petroleum oil	64742-53-6	N	N	0.79	100	NO
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	N	N	910	100	YES
Sulfonic acids, petroleum, sodium salts	68608-26-4	N	N	305	100	YES
Petroleum distillates	Trade Secret #1	N	N	15	100	NO
Base oil	Trade Secret #3	N	N	193	100	YES
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	N	N	5,548	100	YES
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	N	N	111	100	YES
Proprietary emulsifier	Trade Secret #6	N	N	315	100	YES
Azole derivative	Trade Secret #7	N	N	11	100	NO
Trade Secret	Trade Secret #8	N	N	371	100	YES

Notes:

- (a) HTAC and PB Trigger status as provided in 6 NYCRR Part 212-2.2 Table 2.
- (b) Mass Emission Limit (MEL) is based on 6 NYCRR Part 212-2.2 Table 2. For non-HTACs a limit of 100 lb/yr is listed.
- (c) The NYSDEC Air Toxics Section has reviewed this chemical and indicated that little or no toxicological information was found for it. It was NYSDEC's recommendation that, as this contaminant is approximately equal to the second most stringent MEL that is acceptable for use of 0.1 lb/yr, modeling is not required due to the lack of evidence of this contaminant being considered to be highly toxic.

Table 2 Summary of Stack Parameters^(a) (English Units)

Revere Copper Products, Inc

Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate	Stack Location Y-Coordinate	Distance to Property Line	Base Elevation	Stack Height	Stack Diameter	Stack Diameter	Exit Temperature	Exit Velocity	Exit Flowrate	Stack Orientation
Offic	Foliit	Building	Description	(meters)	(meters)	(ft)	(ft)	(ft)	(inches)	(ft)	(°F)	(ft/sec)	(acfm)	Orientation
				(11101010)	(motor o)	(11)	(1.1)	(11)	(11101100)	(11)	(.)	(11, 500)	(domi)	
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	464,723	4,783,831	142	453	100	36	3.0	80	57	24,000	Vertical
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	464,722	4,783,853	191	453	92	19	1.6	80	58	7,000	Vertical
U-ANNE1	00367	51	1154 Bright Anneal Entry Exhaust	464,674	4,783,827	180	453	45	9.0	0.75	100	19	500	Capped
U-ANNE1	00362	51	1154 Bright Anneal Exit Exhaust	464,694	4,783,850	253	453	45	9.0	0.75	100	19	500	Vertical
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	464,709	4,783,863	244	453	55	7.0	0.58	100	0.001	0.016	Capped
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	464,687	4,783,880	190	453	65	3.0	0.25	150	59	174	Vertical
U-ANNE1	00189	1	464 Tray Style/Coil Anneal Entry Exhaust	464,468	4,784,007	531	453	35	9.0	0.75	100	19	500	Vertical
U-ANNE1	00190	1	464 Tray Style/Coil Anneal Exit Exhaust	464,452	4,784,028	591	453	42	9.0	0.75	100	19	500	Vertical
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	464,315	4,784,074	384	455	50	48	4.0	200	48	36,499	Vertical
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	464,282	4,784,024	313	455	50	48	4.0	200	50	37,621	Vertical
U-CAST1	00602	21	Central Vacuum Exhaust	464,338	4,784,083	420	455	18	6.0	0.50	80	119	1,400	Vertical
U-FURN1	00041	51	Walking Beam Furnace Exhaust	464,737	4,783,786	9.84	453	60	51	4.3	510	43	37,000	Vertical
U-OVER1	00031	51	1715 Overhauler Exhaust	464,775	4,783,875	80.4	453	35	48	4.0	70	51	38,827	Vertical
U-ROLL1	00025	51	1724 Z-Mill Exhaust	464,655	4,783,842	226	453	44	42	3.5	150	53	30,600	Capped
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	464,707	4,783,903	102	453	57	36	3.0	70	56	23,554	Vertical
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	464,761	4,783,889	76.8	453	60	72	6.0	70	36	61,334	Vertical
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	464,770	4,783,822	4.49	453	80	30	2.5	115	68	20,000	Vertical
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	464,634	4,783,899	161	453	45	18	1.5	70	5.8	620	Capped
U-SOLV1	FUG01	51	Solvent Degreaser Exhaust	464,755	4,783,912	30.7	453	14	196	16	70	0.001	13	Horizontal
U-COMB1	00004	14	Boilers 1 & 2	464,492	4,784,078	482	453	150	84	7.0	200	7.3	16,800	Vertical
U-COMB1	00003	14	Boiler 3	464,490	4,784,069	505	453	60	50	4.2	390	9.4	7,700	Capped
U-GALV1	00600	51	02587 Acid Tank	464,624	4,783,941	73.5	453	44	24	2.0	70	74	14,000	Capped
U-GALV1	00601	51	02587 Molten Metal Tank	464,631	4,783,954	25.4	453	45	22	1.8	70	63	10,000	Capped

Notes:

(a) Stack parameters are based on information provided by Revere.

Table 3 Summary of Stack Parameters^(a) (Metric Units)

Revere Copper Products, Inc

Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate	Stack Location Y-Coordinate	Distance to Property Line	Base Elevation	Stack Height	Stack Diameter	Exit Temperature	Exit Velocity	Exit Flowrate	Stack Orientation
				(meters)	(meters)	(m)	(m)	(m)	(m)	(°C)	(m/sec)	(m ³ /sec)	
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	464,723	4,783,831	43.2	138	30	0.91	27	17	11	Vertical
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	464,722	4,783,853	58.3	138	28	0.48	27	18	3.3	Vertical
U-ANNE1	00367	51	1154 Bright Anneal Entry Exhaust	464,674	4,783,827	54.9	138	14	0.23	38	5.7	0.24	Capped
U-ANNE1	00362	51	1154 Bright Anneal Exit Exhaust	464,694	4,783,850	77.0	138	14	0.23	38	5.7	0.24	Vertical
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	464,709	4,783,863	74.3	138	17	0.18	38	3.0E-04	7.6E-06	Capped
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	464,687	4,783,880	58.0	138	20	0.08	66	18	8.2E-02	Vertical
U-ANNE1	00189	1	464 Tray Style/Coil Anneal Entry Exhaust	464,468	4,784,007	162	138	11	0.23	38	5.7	0.24	Vertical
U-ANNE1	00190	1	464 Tray Style/Coil Anneal Exit Exhaust	464,452	4,784,028	180	138	13	0.23	38	5.7	0.24	Vertical
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	464,315	4,784,074	117	139	15	1.2	93	15	17	Vertical
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	464,282	4,784,024	95.5	139	15	1.2	93	15	18	Vertical
U-CAST1	00602	21	Central Vacuum Exhaust	464,338	4,784,083	128	139	5.5	0.15	27	36	0.66	Vertical
U-FURN1	00041	51	Walking Beam Furnace Exhaust	464,737	4,783,786	3.00	138	18	1.3	266	13	17	Vertical
U-OVER1	00031	51	1715 Overhauler Exhaust	464,775	4,783,875	24.5	138	11	1.2	21	16	18	Vertical
U-ROLL1	00025	51	1724 Z-Mill Exhaust	464,655	4,783,842	69.0	138	13	1.1	66	16	14	Capped
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	464,707	4,783,903	31.1	138	17	0.91	21	17	11	Vertical
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	464,761	4,783,889	23.4	138	18	1.8	21	11	29	Vertical
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	464,770	4,783,822	1.37	138	24	0.76	46	21	9.4	Vertical
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	464,634	4,783,899	49.1	138	14	0.46	21	1.8	0.29	Capped
U-SOLV1	FUG01	51	Solvent Degreaser Exhaust	464,755	4,783,912	9.35	138	14	196	21	3.0E-04	6.0E-03	Horizontal
U-COMB1	00004	14	Boilers 1 & 2	464,492	4,784,078	147	138	46	2.1	93	2.2	7.9	Vertical
U-COMB1	00003	14	Boiler 3	464,490	4,784,069	154	138	18	1.3	199	2.9	3.6	Capped
U-GALV1	00600	51	02587 Acid Tank	464,624	4,783,941	22.4	138	13	0.61	21	23	6.6	Capped
U-GALV1	00601	51	02587 Molten Metal Tank	464,631	4,783,954	7.75	138	14	0.56	21	19	4.7	Capped
3 3/12 1	00001	0 1	02007 Motter Metal Tarix	100,001	1,700,704	7.75	100	17	0.50	۷.	1 /	7.7	опррси

(a) Stack parameters are based on information provided by Revere.

Table 4 Modeled Particulate Matter Emission Rates

			Modeled Emission	Modeled Emission
	Sources and Pollutants	CAS Number	Rate ^(a)	Rate ^(a)
LL 040T4 ((lb/hr)	(g/s)
	EP00039) - Casting Furnaces To B	<u> </u>	2.405.01	2.025.02
PM ₁₀		NY075-00-5 NY075-02-5	2.40E-01 1.45E-01	3.02E-02 1.83E-02
PM _{2.5}		141075-02-5	1.45E-01	1.03E-02
U-CAST1 (EP00040) - Casting Furnaces To B	aghouse		
PM ₁₀		NY075-00-5	9.80E-01	1.23E-01
$PM_{2.5}$		NY075-02-5	2.92E-01	3.68E-02
U-CAST1 (EP00602) - Central Vacuum			
PM ₁₀		NY075-00-5	3.60E-02	4.54E-03
$PM_{2.5}$		NY075-02-5	3.60E-02	4.54E-03
U-ROLL1 (EP00036) - Bliss Mill			
PM ₁₀		NY075-00-5	5.00E-03	6.30E-04
$PM_{2.5}$		NY075-02-5	5.00E-03	6.30E-04
U-ROLL1 (EP00030) - Hot Mill			
PM ₁₀		NY075-00-5	2.70E-01	3.40E-02
$PM_{2.5}$		NY075-02-5	2.70E-01	3.40E-02
U-ROLL1 (EP00029) - First Run Down Mill			
PM ₁₀	•	NY075-00-5	8.00E-01	1.01E-01
$PM_{2.5}$		NY075-02-5	6.90E-01	8.69E-02
U-ROLL1 (EP00026) - Reversing Mill			
PM ₁₀	<u> </u>	NY075-00-5	3.50E-01	4.41E-02
$PM_{2.5}$		NY075-02-5	2.86E-01	3.60E-02
U-ROLL1 (EP00025) - Z-Mill			
PM ₁₀		NY075-00-5	1.11E+00	1.40E-01
$PM_{2.5}$		NY075-02-5	1.11E+00	1.40E-01

Table 4 Modeled Particulate Matter Emission Rates

	Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
W OVER A			(lb/hr)	(g/s)
	EP00031) - Overhauler	NIVOZE OO E	7 205 01	0.075.03
PM ₁₀		NY075-00-5 NY075-02-5	7.20E-01 6.60E-01	9.07E-02 8.32E-02
PM _{2.5}		111075-02-5	0.00E-01	6.32E-02
U-ANNE1 (EP00362) - Bright Anneal Exit			
PM ₁₀		NY075-00-5	5.52E-03	6.95E-04
$PM_{2.5}$		NY075-02-5	5.52E-03	6.95E-04
	EP00367) - Bright Anneal Entry			
PM_{10}		NY075-00-5	6.13E-04	7.73E-05
PM _{2.5}		NY075-02-5	6.13E-04	7.73E-05
U-ANNE1 (I	EP00369) - Lee Wilson Anneal			
PM ₁₀		NY075-00-5	9.50E-03	1.20E-03
PM _{2.5}		NY075-02-5	9.50E-03	1.20E-03
U-ANNE1 (EP 00189) - 464 Tray Style/Coil	Anneal Entry		
PM ₁₀		NY075-00-5	1.66E-03	2.10E-04
PM _{2.5}		NY075-02-5	1.66E-03	2.10E-04
U-ANNE1 (I	EP 00190) - 464 Tray Style/Coil <i>i</i>	Anneal Exit		
PM ₁₀		NY075-00-5	1.50E-02	1.89E-03
PM _{2.5}		NY075-02-5	1.50E-02	1.89E-03
U-ANNE1 (EP00027) - Strand Anneal			
PM ₁₀		NY075-00-5	2.62E-02	3.30E-03
PM _{2.5}		NY075-02-5	2.62E-02	3.30E-03
1740 Heavy	y Gauge Cleaning (EP 00028)			
PM ₁₀		NY075-00-5	1.66E-01	2.10E-02
$PM_{2.5}$		NY075-02-5	1.66E-01	2.10E-02

Table 4 Modeled Particulate Matter Emission Rates

Revere Copper Products, Inc Rome, NY

Sources and Poll	lutants	CAS Number	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
			(lb/hr)	(g/s)
U-GALV1 Molten Metal Tank (El	P 00601)			
PM ₁₀		NY075-00-5	2.09E-02	2.63E-03
PM _{2.5}		NY075-02-5	2.09E-02	2.63E-03
U-GALV1 Acid Tank (EP 00600)				
PM ₁₀		NY075-00-5	1.77E-02	2.23E-03
PM _{2.5}		NY075-02-5	1.77E-02	2.23E-03
U-COMB1 Boiler #3 (EP 00003)				
PM ₁₀		NY075-00-5	4.26E-01	5.37E-02
PM _{2.5}		NY075-02-5	4.26E-01	5.37E-02
U-COMB1 Boilers #1 & 2 (EP 00	0004)			
PM ₁₀		NY075-00-5	6.26E-01	7.89E-02
PM _{2.5}		NY075-02-5	6.26E-01	7.89E-02
U-FURN1 Walking Beam Furnac	ce (EP 00041)			
PM ₁₀		NY075-00-5	3.86E-01	4.86E-02
PM _{2.5}		NY075-02-5	3.86E-01	4.86E-02

Notes:

(a) The modeled emission rates reflect post-control emission rates where a control device is in use.

Table 5 Modeled Toxics Emission Rates (Permit Application - 1-Hour)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
osai oss ana i onatants	O/IO ITAIIIDOI	(lb/hr)	(g/s)
U-CAST1 (EP00039) - Casting Furnaces To Baghe	ouse		
Iron oxide	01309-37-1	3.00E-02	3.77E-03
Copper oxide	01317-38-0	1.01E-01	1.27E-02
Graphite	07782-42-5	1.32E-01	1.66E-02
U-CAST1 (EP00040) - Casting Furnaces To Bagho			
Iron oxide	01309-37-1	1.82E-01	2.29E-02
Copper oxide	01317-38-0	6.11E-01	7.70E-02
Graphite	07782-42-5	8.00E-01	1.01E-01
U-CAST1 (EP00602) - Central Vacuum			
Iron oxide	01309-37-1	3.27E-03	4.12E-04
Copper oxide	01317-38-0	1.10E-02	1.39E-03
Graphite	07782-42-5	1.44E-02	1.81E-03
U-ROLL1 (EP00036) - Bliss Mill			
2-Aminoethanol	00141-43-5	5.37E-05	6.76E-06
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	1.42E-03	1.79E-04
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	4.42E-04	5.57E-05
U-ROLL1 (EP00030) - Hot Mill			
Alkanolamine	00141-43-5	5.40E-02	6.80E-03
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	5.40E-02	6.80E-03
Nonylphenol, ethoxylated	09016-45-9	5.40E-02	6.80E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	5.40E-02	6.80E-03
Base oil	Trade Secret #3	5.40E-02	6.80E-03
U-ROLL1 (EP00029) - First Run Down Mill			
Propane-1,2-diol	00057-55-6	1.90E-02	2.39E-03
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	1.90E-02	2.39E-03
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(92	•	2.475.00	2.005.00
octadecen-1-yloxy]- Amines, tallow alkyl, ethoxylated	57635-48-0	3.17E-02	3.99E-03
Amines, taliow alkyl, ethoxylated	61791-26-2	1.90E-02	2.39E-03

Table 5 Modeled Toxics Emission Rates (Permit Application - 1-Hour)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.90E-02	2.39E-03
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	5.70E-01	7.18E-02
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	1.90E-02	2.39E-03
Trade Secret	Trade Secret #8	6.33E-02	7.98E-03
U-ROLL1 (EP00026) - Reversing Mill			
2-Aminoethanol	00141-43-5	7.97E-04	1.00E-04
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol	04719-04-4	2.09E-02	2.63E-03
Hydrotreated heavy naphthenic petroleum distillate	64742-52-5	1.47E-01	1.86E-02
U-ROLL1 (EP00025) - Z-Mill			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	8.33E-01	1.05E-01
U-OVER1 (EP00031) - Overhauler			
Copper	07440-50-8	3.71E-01	4.67E-02
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	2.55E-01	3.21E-02
Proprietary emulsifier	Trade Secret #6	5.20E-03	6.55E-04
U-ANNE1 (EP00362) - Bright Anneal Exit			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.11E-02	1.40E-03
U-ANNE1 (EP00367) - Bright Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.23E-03	1.55E-04
U-ANNE1 (EP00369) - Lee Wilson Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	5.21E-03	6.56E-04
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal E			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.23E-03	1.55E-04
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal E			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.11E-02	1.40E-03

Table 5 Modeled Toxics Emission Rates (Permit Application - 1-Hour)

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
II ANNEL (EDOOCT) Strond Annual			
U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.32E-02	1.66E-03
U-ANNE1 (EP00440) - Ebner Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.92E-03	2.42E-04
1740 Heavy Gauge Cleaning (EP 00028)			
Sulfuric acid	07664-93-9	1.46E-01	1.84E-02
U-SOLV1 - Parts Washer (Fugitive)			
Distillates, petroleum, hydrotreated light	64742-47-8	4.95E-02	6.24E-03

Notes:

(a) The modeled emission rates reflect post-control emission rates where a control device is in use.

Table 6 Modeled Toxics Emission Rates (Permit Application - Annual)

Courses and Ballistant	00011	Modeled Emission	Modeled Emission
Sources and Pollutants	CAS Number	Rate ^(a)	Rate ^(a)
U-CAST1 (EP00039) - Casting Furnaces To Bagho	auco.	(lb/hr)	(g/s)
Iron oxide	01309-37-1	3.00E-02	3.77E-03
Copper oxide	01317-38-0	1.01E-01	1.27E-02
Graphite	07782-42-5	1.32E-01	1.66E-02
U-CAST1 (EP00040) - Casting Furnaces To Bagho	ouse		
Iron oxide	01309-37-1	1.82E-01	2.29E-02
Copper oxide	01317-38-0	6.11E-01	7.70E-02
Graphite	07782-42-5	8.00E-01	1.01E-01
U-CAST1 (EP00602) - Central Vacuum	01200 27 1	2 275 22	4 125 04
Iron oxide	01309-37-1	3.27E-03	4.12E-04
Copper oxide Graphite	01317-38-0 07782-42-5	1.10E-02 1.44E-02	1.39E-03 1.81E-03
Grapriite	07782-42-5	1.44E-U2	1.81E-U3
U-ROLL1 (EP00036) - Bliss Mill			
2-Aminoethanol	00141-43-5	5.37E-05	6.76E-06
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	1.42E-03	1.79E-04
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	4.42E-04	5.57E-05
H BOLLA (EDOCOCC) H LAND			
U-ROLL1 (EP00030) - Hot Mill Alkanolamine	00141-43-5	5.40E-02	6.80E-03
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	5.40E-02 5.40E-02	6.80E-03
Nonylphenol, ethoxylated	09016-45-9	5.40E-02	6.80E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	5.40E-02	6.80E-03
Base oil	Trade Secret #3	5.40E-02	6.80E-03
	Trade desiret # c	0.102 02	0.002 00
U-ROLL1 (EP00029) - First Run Down Mill			
Propane-1,2-diol	00057-55-6	1.90E-02	2.39E-03
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	1.90E-02	2.39E-03
Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(92	•		
octadecen-1-yloxy]-	57635-48-0	3.17E-02	3.99E-03
Amines, tallow alkyl, ethoxylated	61791-26-2	1.90E-02	2.39E-03

Table 6 Modeled Toxics Emission Rates (Permit Application - Annual)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.90E-02	2.39E-03
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	5.70E-01	7.18E-02
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	1.90E-02	2.39E-03
Trade Secret	Trade Secret #8	6.33E-02	7.98E-03
U-ROLL1 (EP00026) - Reversing Mill ^(b)			
2-Aminoethanol	00141-43-5	7.15E-04	9.01E-05
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol	04719-04-4	1.87E-02	2.36E-03
Hydrotreated heavy naphthenic petroleum distillate	64742-52-5	1.32E-01	1.67E-02
U-ROLL1 (EP00025) - Z-Mill			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	8.33E-01	1.05E-01
U-OVER1 (EP00031) - Overhauler (c)			
Copper	07440-50-8	2.82E-01	3.55E-02
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	1.94E-01	2.44E-02
Proprietary emulsifier	Trade Secret #6	3.95E-03	4.98E-04
U-ANNE1 (EP00362) - Bright Anneal Exit			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.11E-02	1.40E-03
U-ANNE1 (EP00367) - Bright Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.23E-03	1.55E-04
U-ANNE1 (EP00369) - Lee Wilson Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	5.21E-03	6.56E-04
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal E			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.23E-03	1.55E-04
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal E	xit		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.11E-02	1.40E-03

Table 6 Modeled Toxics Emission Rates (Permit Application - Annual)

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
II ANINE1 (EDOCO27) Strond Annual			
U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.32E-02	1.66E-03
U-ANNE1 (EP00440) - Ebner Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.92E-03	2.42E-04
1740 Heavy Gauge Cleaning (EP 00028)			
Sulfuric acid	07664-93-9	1.46E-01	1.84E-02
U-SOLV1 - Parts Washer (Fugitive)			
Distillates, petroleum, hydrotreated light	64742-47-8	4.95E-02	6.24E-03

Notes:

- (a) The modeled emission rates reflect post-control emission rates where a control device is in use.
- (b) The modeled emission rates for the Reversing Mill incorporate the proposed annual hourly operating cap of 7,858 hours.
- (c) The modeled emission rates for the Overhauler incorporate the proposed annual hourly operating cap of 6,658 hours.

Table 7 Sensitive Receptors (a)

	Receptor Location	Receptor Location
Location Name	X-Coordinate	Y-Coordinate
	(meters)	(meters)
Schools		·
Bellamy Elementary	465,720	4,783,850
Boces Consortium Continuing Ed	462,528	4,784,566
Central New York Academy Of Dance	460,703	4,785,892
Gansevoort Elementary School	461,577	4,785,376
George R Staley Elementary School ^(b)	464,091	4,784,259
Griffiss Child Development Center	466,431	4,784,586
John E Joy Elementary School	462,632	4,789,581
Kings Kids Christian Pre Sch	462,782	4,788,475
Louis V Denti Elementary School	462,396	4,786,724
Lyndon Strough Middle School	462,419	4,786,361
Mohawk Valley Community Action	456,820	4,789,491
New York State School for the Deaf	462,903	4,785,755
Nursery School of First Presbyterian Church	462,965	4,784,642
Oriskany High School	472,341	4,778,864
Ridge Mills Elementary School	464,380	4,787,712
Rome Catholic School	463,198	4,787,436
Rome Early Childhood Program	465,282	4,785,572
Rome Free Academy	466,258	4,784,343
Rome Refugee Services English School	463,345	4,784,544
Hospitals		
Rome Memorial Hospital: Prenatal Care	462,726	4,784,371
Rome Health General Hospital	464,043	4,786,362
Rome Memorial Hospital: Outpatient	462,936	4,788,048
Rome Memorial Hospital Diagnostic	464,184	4,786,658
Nursing Homes		
Rome Health Residential Health Care Facility	464,082	4,786,357
Colonial Park Rehabilitation & Nursing Center	464,827	4,785,055
The Grand Rehabilitation and Nursing at Rome	463,374	4,785,477
Betsy Ross Nursing Facility	462,159	4,786,848
Bethany Gardens	463,285	4,787,249
Nascentia Health	463,165	4,788,233
Terrace at Woodland	462,247	4,790,234
Eastern Star Home	472,341	4,778,994
Pounder Hall Inc	472,253	4,778,932
New Burton Homestead	463,373	4,784,596
Central Ny Ddso-Rome	459,846	4,781,187
Daylagrag		
Daycares Eastern Star Day Care Center Inc	472,319	4,779,065
Jesus Brethren Christian Schools	472,319 462,667	4,779,065 4,786,400
	462,607 464,609	
Peek-A-Boo Place Daycare		4,776,669 4,785,803
Little Folks Daycare Home Grown Tots Daycare	462,655 462,945	4,785,803 4,785,413
•	462,945 463,138	4,785,413 4,786,461
Loving Hands Daycare Cottage Hill Daycare	463,128 462,363	4,786,461 4,790,293
Cottage IIII Daycare	402,303	4,170,273

Table 7 Sensitive Receptors (a)

Revere Copper Products, Inc Rome, NY

Location Name	Receptor Location X-Coordinate	Receptor Location Y-Coordinate
	(meters)	(meters)
Something New Daycare	461,726	4,791,057
Little Brook Daycare LLC	464,832	4,784,404
Here We Grow Again Creative Learning Center	464,557	4,783,770
Griffiss Child Development Center	466,431	4,784,586
Rebecca France's Family WeeCare	464,484	4,776,959
Ava Dorfman Adult Day Care Center	463,946	4,785,636
Wild Things Child Care	464,605	4,781,966
Children's Dyslexia Center of Central New York	472,319	4,779,229
Mid York Child Care	470,136	4,777,410

Notes:

- (a) Sensitive receptors were identified using Google Maps to identify the schools, hospitals, nursing homes, and daycares located within a 10 kilometer radius from the facility, and Google Earth for receptor coordinates.
- (b) Note that this school is permanently closed due to flooding conditions. No receptor was added to the modeling for this location.

Table 8 NAAQS Modeling Results

Revere Copper Products, Inc Rome, NY

Pollutants	Predicted Maximum Averaging Period Concentration ^(a) (µg/m³)		Background Concentration ^(b) (µg/m³)	Predicted Concentration ^(c) (µg/m³)	NAAQS Standard ^(d) (µg/m³)	Percent of NAAQS Standard (%)
PM2.5	0.4.11	45.4	45.5	24.4	05.0	
	24-Hour	15.6	15.5	31.1	35.0	89
	Annual (Primary)	6.0	5.00	11.0	12.0	92
	Annual (Secondary)	6.0	5.00	11.0	15.0	73
PM10						
	24-Hour	18.9	24.0	42.9	150	29

Notes:

(a) PM_{2.5} 24-Hour Predicted Maximum Concentration is the AERMOD 8th highest result.

PM10 24-Hour Predicted Maximum Concentration is the AERMOD 6th highest result.

- (b) $PM_{2.5}$ background concentrations represents the 3-year average, provided by NYSDEC Region 6 Utica Station for Calendar Year 2022. PM_{10} background concentration represents the 2nd maximum 24-hour concentration, provided by NYSDEC Region 8 Rochester Station for Calendar Year 2022.
- (c) Predicted Concentration (μ g/m³) = Predicted Maximum Concentration (μ g/m³) + Background Concentration (μ g/m³).
- (d) 24-hour $PM_{2.5}$ NAAQS standard is based on annual 98th percentile, averaged over 3 years.

Annual $PM_{2.5}$ NAAQS standard is based on the annual mean, averaged over 3 years.

24-hour PM_{10} NAAQS standard is not to be exceeded more than once per year on average over 3 years.

Table 9
Permit Application Air Toxics Modeling Results Run - with Multi-Chem

Pollutants	CAS Number	Averaging Period	Predicted Concentration (µg/m³)	SGC/AGC ^(a) (µg/m³)	Percent of SGC/AGC (%)
Propane-1,2-diol	00057-55-6	1-Hour	0.5	36,850	<1
		Annual	0.025	2,000	<1
Alkanolamine ^(b)	00141-43-5	1-Hour	0.98	1,500	<1
		Annual	0.027	18	<1
Iron oxide	01309-37-1	1-Hour	1.73		
		Annual	0.101	12	<1
Sulfuric acid	07664-93-9	1-Hour	4.44	120	4
		Annual	0.473	1.0	47
Graphite	07782-42-5	1-Hour	7.6		
		Annual	0.44	4.8	9
(Z)-9-Octadecen-1-ol ethoxylated ^(c)	09004-98-2	1-Hour	0.49		
		Annual	0.025	0.10	25
Nonylphenol, ethoxylated ^(c)	09016-45-9	1-Hour	0.98	93	1
		Annual	0.0266	20	<1
Amines, tallow alkyl, ethoxylated ^(c)	61791-26-2	1-Hour	0.49		
		Annual	0.025	0.10	25
Distillates, petroleum, hydrotreated					
light	64742-47-8	1-Hour	26.4		
		Annual	1.00	900	<1
Hydrotreated heavy naphthenic					
petroleum oil ^{(b)(c)}	64742-52-5	1-Hour	4	380	1
		Annual	0.32	12	3

Table 9 Permit Application Air Toxics Modeling Results Run - with Multi-Chem

Revere Copper Products, Inc Rome, NY

	380 14
	14
Annual 2.80	12 23
Sulfonic acid, petroleum, sodium	
salts ^(c) 68608-26-4 1-Hour 1.11	
Annual 0.043 0	.10 43
Base oil (c) Trade Secret #3 1-Hour 0.98	380 <1
Annual 0.0266	12 <1
Highly refined, low viscosity mineral	
(b)(c)	880 6
Annual 1.08	12 9
Proprietary emulsifier ^{(b)(c)} Trade Secret #6 1-Hour 0.254	
	.10 6

Notes:

- (a) Annual and short-term guideline concentrations (AGCs and SGCs, respectively) are based on NYSDEC's DAR-1, Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212 issued February 12, 2021 unless otherwise noted.
- (b) For modeling against the annual averaging period, the emission rates for these contaminants factored in the proposed annual operating caps for the Reversing Mill and the Overhauler, depending on the contaminant.
- (c) NYSDEC has provided interim AGCs and SGCs for these contaminants based on toxicological reviews.

Table 10 Permit Application Air Toxics Modeling Results Run - Without Multi-Chem

Revere Copper Products, Inc Rome, NY

Pollutants	CAS Number	Averaging Period	Predicted Concentration (µg/m³)	SGC/AGC ^(a) (µg/m³)	Percent of SGC/AGC (%)
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol ^{(c)(d)}	04719-04-4	1-Hour Annual	1.0 0.06	30 0.06	3 95
Copper and Copper oxide, combined ^(b)	07440-50-8/01317-38-0	1-Hour Annual	18.1 0.762	100 0.48	18 159
Poly(oxy-1,2-ethanediyl), a-(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- $^{(d)}$	57635-48-0	1-Hour Annual	0.8 0.042	 0.01	 424
Fatty acids, C18-unsaturated phosphates ^(d)	Trade Secret #5	1-Hour Annual	0.49 0.025	 0.01	 254
Trade Secret ^(d)	Trade Secret #8	1-Hour Annual	1.62 0.08	0.001	 8481

Notes:

- (a) Annual and short-term guideline concentrations (AGCs and SGCs, respectively) are based on NYSDEC's DAR-1, Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212 issued February 12, 2021 unless otherwise noted.
- (b) As requested by NYSDEC on July 20, 2023, emissions of copper and copper oxide are modeled together and compared to the SGC/AGC for copper. Revere will restrict public access to the portion of the parking lot as needed to demonstrate acceptable
- (c) For modeling against the annual averaging period, the emission rates for these contaminants factored in the proposed annual operating caps for the Reversing Mill and the Overhauler, depending on the contaminant.
- (d) NYSDEC has provided interim AGCs and SGCs for these contaminants based on toxicological reviews.

EXHIBITS

REVERE COPPER PRODUCTS, INC. MODELING PROTOCOL

Project name	Revere Copper Products,	Inc Air State	Facility Permit	Renewal

Project no. 1087689\1940103004

Recipient NYSDEC Air Dispersion Modeling Group

Document type Modeling Protocol

Version 1

Date December 1, 2022
Prepared by Steven Miraglia
Checked by Helena Kubarycz
Approved by Cris Hine

CONTENTS

1.	Project Discussion	2
2.	Site Location and Description	2
3.	Stack Parameters and Buildings	2
4.	Emission Rates	2
5.	Urban/Rural Classification	2
6.	Good Engineering Practice Stack Height Analysis	3
7.	Meteorological Data	3
8.	Receptor Locations	3
9.	Lakes Environmental Software – Multi-Chem Use	3
10.	Modeling Results	4

LIST OF TABLES

- 1 Summary of Part 212 Evaluation
- 2 Summary of Stack Parameters (English Units)
- 3 Summary of Stack Parameters (Metric Units)

LIST OF FIGURES

1 Site Location Map

1. Project Discussion

Revere Copper Products, Inc. (Revere) is renewing and modifying the Air State Facility (ASF) Permit, ID 6-3013-00091/00039, for their manufacturing facility located at 1 Revere Park in Rome, New York. As a part of the renewal/modification process, the facility is required to perform air dispersion modeling to demonstrate compliance with the air toxics requirements in Title 6 of the New York Code of Rules and Regulations (6 NYCRR) Part 212. A summary of the Part 212 evaluation is provided in **Table 1**.

Air dispersion modeling will be performed using the United States Environmental Protection Agency (USEPA) AERMOD (Version 21112) model. This protocol was developed to satisfy the New York State Department of Environmental Conservation's (NYSDEC's) requirement for submittal of a modeling protocol prior to performing refined air dispersion modeling.

2. Site Location and Description

The facility is located at 1 Revere Park in Rome, NY within Oneida county. A site location map is provided in **Figure 1**. The site is bounded by mixed residential and commercial development to the north, east, and south and by a public park and elementary school to the east.

The primary manufacturing operations at the Revere facility consist of induction furnaces used for copper casting operations, annealing units, rolling mills, and a copper galvanizing line. Emissions from these processes, except for the galvanizing line, require air dispersion modeling to demonstrate compliance with Part 212. The emissions of criteria pollutants are capped to below the major source thresholds; therefore, no modeling of criteria pollutants will be performed.

3. Stack Parameters and Buildings

Stack parameters for the emission points that are expected to be included in the refined modeling analysis are provided in **Table 2** (English Units) and **Table 3** (Metric Units). Note that some of the stack parameters are currently being collected or confirmed by Revere; the modeling report will include complete stack parameter tables. Additionally, the building heights and locations of each stack are also being confirmed by Revere; the modeling report will include a site layout map with the building heights and stack locations.

4. Emission Rates

Emission rates that will require modeling are in the process of being finalized and will be included in the modeling report.

5. Urban/Rural Classification

In accordance with Section 2.3 of NYSDEC's DAR-10 air dispersion modeling guidance document: "Only facilities located in the New York City metro area may have sufficiently high population density and urban heat island effects to justify the use of urban dispersion coefficients." The site is not located in the New York City metro area; therefore, rural dispersion coefficients will be used in the analysis.

6. Good Engineering Practice Stack Height Analysis

USEPA provides specific guidance for calculating Good Engineering Practice (GEP) stack height and for evaluating whether building downwash will occur (USEPA, 2003). GEP stack height is defined by USEPA as the height of the structure plus 1.5 times the lesser of the structure height or projected width. If the stack height for a source is less than the height identified using GEP guidelines, based on the dimensions of nearby buildings, then the potential for building downwash to occur exists and is to be considered in the modeling analysis.

The stacks to be modeled in this analysis will be less than GEP stack height. Therefore, 36 directional building heights and widths data will be estimated using the USEPA Building Profile Input Program, PRIME version (BPIP-PRIME) and incorporated into the AERMOD model.

7. Meteorological Data

The closest National Weather Service (NWS) station to the facility that has the appropriate available data for AERMOD is located in Rome, New York. The Rome NWS station is located approximately 3 kilometers to the Northeast of the facility. Therefore, the Rome, New York NWS station will be utilized for the surface data for this analysis. Upper-air data from Albany, New York will also be used. NYSDEC will provide the necessary pre-processed data for use in the analysis. Data for years 2017-2021 will be used.

8. Receptor Locations

The modeling analysis utilized a set of nested Cartesian grids of receptors with a spacing of 70, 100, and 250 meters extending to a distance of 1, 2, and 5 kilometers, respectively, from the facility. The facility has restricted access with a fence that encloses the entire property; therefore, fence line receptors will be included at a spacing of 25 meters. On-site receptors inside the fence line will be excluded. If maximum impacts occur beyond 1 km from the facility, an additional grid will be placed around the maximum impacts with grid points 70 meters apart.

The current version of AERMAP will be used to calculate the receptor elevations and appropriate hill height values. Ten-meter resolution National Elevation Dataset (NED) data will be used in the analysis.

9. Lakes Environmental Software - Multi-Chem Use

As shown in **Table 1**, it is anticipated that more than 20 different contaminants will need to be included in the modeling. Due to the large number of contaminants, the analysis will be performed using the multichemical (multi-chem) utility of the AERMOD View program by Lakes Environmental SoftwareTM. The purpose of the utility is to streamline the modeling of multiple contaminants by avoiding having to set up separate project files for each contaminant in the analysis.

For each emission source in the analysis, multi-chem creates an AERMOD input file using a normalized emission rate of 1.0 gram per second. The input files are run with AERMOD and produce post files containing the normalized predicted concentrations for each averaging period at each receptor. For example, if the model is run for the 1-hour averaging period, then the post file will contain the normalized 1-hour predicted concentrations for each hour in the meteorological dataset at each receptor. Next, multi-chem takes the source-specific contaminant emission rates, multiplies by the normalized predicted

concentrations in the respective post files, and cumulatively adds the values paired in time and location. The results of the calculations are summarized in contaminant-specific plot files. At the bottom of the plot files will be a summary of the source IDs and emission rates used to generate the plot files.

If the maximum impacts of any of the modeled contaminants are 90% or higher of the respective short-term or annual guideline concentration (SGCs and AGCs, respectively) then those contaminants will be run in AERMOD outside of the multi-chem utility.

10. Modeling Results

A modeling report will be submitted to NYSDEC as part of the facility's ASF permit renewal/modification application. The modeling analysis will provide a comparison of the maximum predicted concentrations to the SGC and AGC values provided in the DAR-1 guidance.

Electronic copies of AERMOD input and output files, BPIP input and output files, AERMAP input and output files, and meteorological data files will be submitted to the modeling group in NYSDEC's Central Office.

TABLES

Table 1 Summary of Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Emissions (lb/yr)	Mass Emission Limit ^(b)	Modeling Required (Yes/No)
Propane-1,2-diol	00057-55-6	N	N	605	100	YES
Hexylene glycol	00107-41-5	N	N	216	100	YES
Diethylene glycol	00111-46-6	N	N	7.8	100	NO
2-Butoxyethanol	00111-76-2	N	N	10	100	NO
2-Amino-2-methyl-1-propanol	00124-68-1	N	N	2.3E-02	100	NO
Alkanolamine	00141-43-5	N	N	331	100	YES
Barium oxide	01304-28-5	N	N	33	100	NO
Iron oxide	01309-37-1	N	N	659	100	YES
Magnesium oxide	01309-48-4	N	N	329	100	YES
Nickel oxide	01313-99-1	Y	N	33	10	YES
Zinc oxide	01314-13-2	N	N	1,647	100	YES
Lead oxide	01314-41-6	Y	Y	66	5	YES
Copper oxide	01317-38-0	N	N	4,941	100	YES
Aluminum oxide	01344-28-1	N	N	659	100	YES
1,2-Benzisothiazol-3(2H)-one	02634-33-5	N	N	12	100	NO
2-Methyl-4-isothiazolin-3-one	02682-20-4	N	N	216	100	YES
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	N	N	3,588	100	YES
Sodium metasilicate	06834-92-0	N	N	48	100	NO
Silicon	07440-21-3	N	N	165	100	YES
Silver	07440-22-4	N	N	2.7	100	NO
Tin	07440-31-5	N	N	5.7	100	NO
Copper	07440-50-8	N	N	2,650	100	YES
Zinc	07440-66-6	N	N	1.7	100	NO
Zinc chloride	07646-85-7	N	N	3.9	100	NO
Hydrogen chloride	07647-01-0	N	N	39	100	NO
Sulfuric acid	07664-93-9	N	N	4,548	100	YES
Hydrogen peroxide	07722-84-1	N	N	97	100	NO
Phosphorus	07723-14-0	N	N	1.1	100	NO
Graphite	07782-42-5	N	N	13,175	100	YES
Magnesium chloride	07786-30-3	N	N	431	100	YES
Petroleum distillates (mineral oil)	08042-47-5	N	N	2.0	100	NO
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	N	N	605	100	YES
Nonylphenol, ethoxylated	09016-45-9	N	N	202	100	YES
Sodium phosphate, tribasic	10101-89-0	N	N	19	100	NO
Barium chloride	10361-37-2	N	N	3.9	100	NO
Magnesium dinitrate	10377-60-3	N	N	906	100	YES
Ammonium chloride	12125-02-9	N	N	3.9	100	NO
Tellurium	13494-80-9	N	N	1.3	100	NO
Polyethylene glycol	25322-68-3	N	N	11	100	NO
Fatty alcohol alkoxylate	37335-03-8	N	N	0.11	100	NO
Amines, tallow alkyl, ethoxylated	61791-26-2	N	N	605	100	YES
Distillates, petroleum, hydrotreated light	64742-47-8	N	N	181	100	YES
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	N	N	3,668	100	YES
Hydrotreated light naphthenic petroleum oil	64742-53-6	N	N	0.60	100	NO
Distillates (petroleum), solvent-dewaxed light						
paraffinic	64742-56-9	N	N	973	100	YES
Sulfonic acid, petroleum, sodium salts	68608-26-4	N	N	806	100	YES
Petroleum distillates	Trade Secret #1	N	N	17	100	NO
Petroleum distillates (mineral oil)	Trade Secret #2	N	N	297	100	YES
Base oil Highly refined, low viscosity mineral	Trade Secret #3	N	N	202	100	YES
oils/hydrocarbons	Trade Secret #4	N	N	9,675	100	YES
Alkyl ether carboxylic acid	Trade Secret #5	N	N	605	100	YES
Proprietary emulsifier	Trade Secret #6	N	N	295	100	YES
Azole derivative	Trade Secret #7	N	N	11	100	NO

Table 1

Summary of Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status

Revere Copper Products, Inc Rome, NY

Facility-Wide Mass PB Annual Emission Modeli Contaminants CAS Number HTAC ^(a) Trigger ^(a) Emissions Limit ^(b) Requir (Y/N) (Y/N) (Ib/yr) (Yes/N	uired
---	-------

Notes:

- (a) HTAC and PB Trigger status as provided in 6 NYCRR Part 212-2.2 Table 2.
- (b) Mass Emission Limit (MEL) is based on 6 NYCRR Part 212-2.2 Table 2. For non-HTACs a limit of 100 lb/yr is listed.

Table 2
Summary of Stack Parameters (English Units)

Revere Copper Products, Inc Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate (meters)	Stack Location Y-Coordinate (meters)	Base Elevation (ft)	Stack Height (ft)	Stack Diameter (inches)	Stack Diameter (ft)	Exit Temperature (°F)	Exit Velocity (ft/sec)	Exit Flowrate (acfm)	Stack Orientation
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	(2)	(5)	445	82	36	3.0	(2)	(2)	(5)	(5)
				(a)	(a)					(a)	(a)	(a)	(a)
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	(a)	(a)	445	88	19	1.6	(a)	(a)	(a)	(a)
U-ANNE1	00367	51	1154 Bright Anneal Exhaust	(a)	(a)	445	30	12	1.0	(a)	(a)	(a)	(a)
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	(a)	(a)	445	30	7	0.6	(a)	(a)	(a)	(a)
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	(a)	(a)	445	30	3	0.3	(a)	(a)	(a)	(a)
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	(a)	(a)	445	50	48	4.0	200	60	45,000	(a)
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	(a)	(a)	445	50	48	4.0	200	60	45,000	(a)
U-CAST1	00602	21	Central Vacuum Exhaust	(a)	(a)	445	18	6	0.5	(a)	(a)	(a)	(a)
U-OVER1	00031	51	1715 Overhauler Exhaust	(a)	(a)	445	44	48	4.0	70	40	30,000	(a)
U-ROLL1	00025	51	1724 Z-Mill Exhaust	(a)	(a)	445	44	42	3.5	150	53	30,600	(a)
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	(a)	(a)	445	30	36	3.0	70	53	22,500	(a)
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	(a)	(a)	445	60	72	6.0	70	8	13,000	(a)
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	(a)	(a)	445	80	30	2.5	115	68	20,000	(a)
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	(a)	(a)	445	45	18	1.5	70	6	620	(a)
U-SOLV1	Fugitive	51	Solvent Degreaser Exhaust	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)

Notes:

(a) Stack parameters and locations are currently being collected by Revere.

Table 3 Summary of Stack Parameters (Metric Units) Revere Copper Products, Inc Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate (meters)	Stack Location Y-Coordinate (meters)	Base Elevation (m)	Stack Height (m)	Stack Diameter (m)	Exit Temperature (°C)	Exit Velocity (m/sec)	Exit Flowrate (m³/sec)	Stack Orientation
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	(a)	(a)	136	25	0.91	(a)	(a)	(a)	(a)
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	(a)	(a)	136	27	0.48	(a)	(a)	(a)	(a)
U-ANNE1	00367	51	1154 Bright Anneal Exhaust	(a)	(a)	136	9	0.30	(a)	(a)	(a)	(a)
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	(a)	(a)	136	9	0.18	(a)	(a)	(a)	(a)
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	(a)	(a)	136	9	0.08	(a)	(a)	(a)	(a)
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	(a)	(a)	136	15	1.22	93	18	21	(a)
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	(a)	(a)	136	15	1.22	93	18	21	(a)
U-CAST1	00602	21	Central Vacuum Exhaust	(a)	(a)	136	5	0.15	(a)	(a)	(a)	(a)
U-OVER1	00031	51	1715 Overhauler Exhaust	(a)	(a)	136	13	1.22	21	12	14	(a)
U-ROLL1	00025	51	1724 Z-Mill Exhaust	(a)	(a)	136	13	1.07	66	16	14	(a)
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	(a)	(a)	136	9	0.91	21	16	11	(a)
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	(a)	(a)	136	18	1.83	21	2	6	(a)
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	(a)	(a)	136	24	0.76	46	21	9	(a)
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	(a)	(a)	136	14	0.46	21	2	0	(a)
U-SOLV1	Fugitive	51	Solvent Degreaser Exhaust	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)

Notes:

(a) Stack parameters and locations are currently being collected by Revere.

FIGURES

SITE LOCATION MAP

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY

Revere Copper Products, Inc. 1 Revere Park Rome, NY 13440

RAMBOLL

July 18, 2023

David Ozog Environmental Manager Revere Copper Products Inc. One Revere Park Rome, NY 13440 315-338-2160 (direct) DOzog@reverecopper.com

RE: Investigative Testing
Five (5) Process Exhausts
Alliance Project No. 2023-2747

Dear Mr. Ozog,

Alliance Technical Group, LLC (Alliance) conducted investigative testing at the Revere Copper Products facility located in Rome, New York. Testing concluded of determining the emission rates of filterable and condensable particulate matter (PM) for five (5) process exhausts, with additional copper (Cu) testing at the exhaust of the 1515 Overhauler, at the facility.

Please find attached summaries of the testing results along with a copy of the field data collected during the testing. Please contact me at (315) 289-9433 or via email at jeff.gorman@alliancetg.com if you have any questions or need additional information.

Sincerely,

Alliance Technical Group, LLC

Jeff Gorman, OSTI

Operations Manager- New York

Enclosure

Laboratory Reports can be found in the full test report in Exhibit 3 of the Renewal Application

Table 1
Summary of Results – 2056 Melting Furnace

Run Number	Run 1	Run 2	Run 3	Average
Date	6/1/23	6/2/23	6/2/23	
Volumetric Flow Rate				
Stack Conditions, acfm	37,889	37,403	37,572	37,621
Stack Conditions dscfm	34,603	34,469	34,238	34,437
Filterable Particulate Matter Data				
Concentration, grain/dscf	0.0022	0.0039	0.0030	0.0030
Emission Rate, lb/hr	0.64	1.2	0.88	0.89
Condensable Particulate Matter Data				
Concentration, grain/dscf	2.7E-04	5.3E-04	3.2E-04	3.7E-04
Emission Rate, lb/hr	0.079	0.16	0.095	0.11

Table 2
Summary of Results – 2443 Melting Furnace

Run Number	Run 1	Run 2	Run 3	Average
Date	6/2/23	6/2/23	6/2/23	
Volumetric Flow Rate				
Stack Conditions, acfm	36,188	36,524	36,786	36,499
Stack Conditions dscfm	33,277	33,054	33,130	33,154
Filterable Particulate Matter Data				
Concentration, grain/dscf	8.8E-04	7.6E-04	4.8E-04	7.1E-04
Emission Rate, lb/hr	0.25	0.22	0.14	0.20
Condensable Particulate Matter Data				
Concentration, grain/dscf	4.8E-04	4.3E-04	4.8E-04	4.7E-04
Emission Rate, lb/hr	0.14	0.12	0.14	0.13

Table 3
Summary of Results – 1715 Overhauler

Run Number	Run 1	Run 2	Run 3	Average
Date	5/30/23	5/31/23	5/31/23	
Volumetric Flow Rate				
Stack Conditions, acfm	39,813	39,971	36,697	38,827
Stack Conditions dscfm	39,075	38,880	35,533	37,829
Filterable Particulate Matter Data				
Concentration, grain/dscf	0.0035	0.013	0.0064	0.0075
Emission Rate, lb/hr	1.2	4.2	1.9	2.4
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0022	0.0017	7.9E-04	0.0016
Emission Rate, lb/hr	0.75	0.55	0.24	0.52
Copper Data				
Concentration, ug/dscm	2,538			2,538
Emission Rate, lb/hr	0.37			0.37

Table 4
Summary of Results – 1723 Reversing Mill

Run Number	Run 1	Run 2	Run 3	Average
Date	5/31/23	6/1/23	6/1/23	
Volumetric Flow Rate				
Stack Conditions, acfm	25,441	23,155	22,064	23,554
Stack Conditions dscfm	24,404	21,982	20,736	22,374
Filterable Particulate Matter Data				
Concentration, grain/dscf	8.7E-04	9.5E-04	6.4E-04	8.2E-04
Emission Rate, lb/hr	0.18	0.18	0.11	0.16
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0011	0.0012	9.0E-04	0.0011
Emission Rate, lb/hr	0.23	0.22	0.16	0.20

Table 5
Summary of Results – 1721 First Run Down Mill

Run Number	Run 1	Run 2	Run 3	Average
Date	5/31/23	6/1/23	6/1/23	
Volumetric Flow Rate				
Stack Conditions, acfm	60,905	61,226	61,870	61,334
Stack Conditions dscfm	57,917	58,539	58,671	58,376
Filterable Particulate Matter Data				
Concentration, grain/dscf	6.6E-04	5.4E-04	3.7E-04	5.2E-04
Emission Rate, lb/hr	0.33	0.27	0.19	0.26
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0018	0.0010	6.5E-04	0.0011
Emission Rate, lb/hr	0.88	0.51	0.33	0.57

Location Revere Copper - Rome, NY

Source 2443 Metling Furnace
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/2/23	6/2/23	6/2/23	
Start Time		7:50	9:42	11:39	
Stop Time		8:20	11:12	13:09	
Run Time, min	(θ)	90.0	90.0	90.0	90.0
	INPUT DATA	١			
Barometric Pressure, in. Hg	(Pb)	30.01	29.99	30.00	30.00
Meter Correction Factor	(Y)	1.003	1.003	1.003	1.003
Orifice Calibration Value	(ΔH @)	1.850	1.850	1.850	1.850
Meter Volume, ft ³	(Vm)	57.339	57.472	59.538	58.116
Meter Temperature, °F	(Tm)	69.2	78.5	92.1	79.9
Meter Temperature, °R	(Tm)	528.9	538.2	551.8	539.6
Meter Orifice Pressure, in. WC	(ΔΗ)	1.333	1.350	1.400	1.361
Volume H ₂ O Collected, mL	(Vlc)	19.1	20.4	24.7	21.4
Nozzle Diameter, in	(Dn)	0.212	0.212	0.212	0.212
Area of Nozzle, ft ²	(An)	0.0002	0.0002	0.0002	0.0002
Filterable PM Mass, mg	(Mn)	3.3	<u>2.8</u>	<u>1.8</u>	2.6
Condensable PM Mass, mg	(M_{CPM})	1.8	1.6	1.8	1.7
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	57.740	56.839	57.459	57.346
Standard Water Volume, ft ³	(Vwstd)	0.901	0.962	1.165	1.009
Moisture Fraction Measured	(BWSmsd)	0.015	0.017	0.020	0.017
Moisture Fraction @ Saturation	(BWSsat)	0.080	0.100	0.103	0.094
Moisture Fraction	(BWS)	0.015	0.017	0.020	0.017
Meter Pressure, in Hg	(Pm)	30.11	30.09	30.10	30.10
Volume at Nozzle, ft ³	(Vn)	62.789	62.805	63.797	63.13
sokinetic Sampling Rate, (%)	(I)	98.8	97.9	98.8	98.5
OGM Calibration Check Value, (+/- 5%)	(Y_{qa})	0.8	-0.4	0.0	0.1
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	8.8E-04	7.6E-04	4.8E-04	7.1E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.25	0.22	0.14	0.20
Condensable PM Concentration, grain/dscf	(C_{CPM})	4.8E-04	4.3E-04	4.8E-04	4.7E-04
Condensable PM Emission Rate, lb/hr	(ER _{CPM})	0.14	0.12	0.14	0.13
Total PM Concentration, grain/dscf	(C _{TPM})	0.0014	0.0012	9.7E-04	0.0012
Total PM Emission Rate, lb/hr	(ER _{TPM})	0.39	0.34	0.27	0.33

Underlined values contain one or more fractions below MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY

Source 2443 Metling Furnace

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/2/23	6/2/23	6/2/23	
Start Time		7:50	9:42	11:39	
Stop Time		8:20	11:12	13:09	
Run Time, min		90.0	90.0	90.0	90.0
,	VELOCITY	HEAD, in.	WC		
Point 1		0.70	0.58	0.64	0.64
Point 2		0.69	0.66	0.66	0.67
Point 3		0.68	0.69	0.69	0.69
Point 4		0.68	0.72	0.72	0.71
Point 5		0.68	0.78	0.78	0.75
Point 6		0.68	0.84	0.84	0.79
Point 7		0.68	0.78	0.78	0.75
Point 8		0.68	0.70	0.70	0.69
Point 9		0.68	0.54	0.54	0.59
Point 10		0.54	0.54	0.54	0.54
Point 11		0.70	0.70	0.70	0.70
Point 12		0.76	0.70	0.70	0.72
Point 13		0.62	0.62	0.62	0.62
Point 14		0.64	0.64	0.64	0.64
Point 15		0.72	0.72	0.72	0.72
Point 16		0.76	0.76	0.76	0.76
Point 17		0.80	0.80	0.80	0.80
Point 18		0.80	0.80	0.80	0.80
Point 19		0.76	0.76	0.76	0.76
Point 20		0.68	0.68	0.68	0.68
Point 21		0.56	0.56	0.68	0.60
Point 22		0.58	0.58	0.58	0.58
Point 23		0.66	0.68	0.68	0.67
Point 24		0.70	0.68	0.68	0.69
	CALCUL	ATED DAT			0.00
Square Root of ΔP, (in. WC) ^{1/2}	(ΔP)	0.826	0.828	0.833	0.829
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.01	29.99	30.00	30.00
Static Pressure, in. WC	(Pg)	0.21	0.21	0.21	0.21
Stack Pressure, in. Hg	(Ps)	30.03	30.01	30.02	30.02
Stack Cross-sectional Area, ft ²	(As)	12.57	12.57	12.57	12.57
Temperature, °F	(Ts)	107.3	115.3	116.4	113.0
Temperature, °R	(Ts)	567.0	575.0	576.1	572.698
Moisture Fraction Measured	(BWSmsd)	0.015	0.017	0.020	0.017
Moisture Fraction @ Saturation	(BWSsat)	0.080	0.100	0.103	0.094
Moisture Fraction	(BWS)	0.015	0.017	0.020	0.017
O ₂ Concentration, %	(O_2)	18.1	18.1	18.1	18.1
CO ₂ Concentration, %	(CO_2)	2.0	2.0	2.0	2.0
Molecular Weight, lb/lb-mole (dry)	(Md)	29.04	29.04	29.04	29.04
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.87	28.86	28.82	28.85
Velocity, ft/sec	(Vs)	48.0	48.4	48.8	48.4
, ·-	VOLUMETR				
At Stack Conditions, acfm	(Qa)	36,188	36,524	36,786	36,499
At Standard Conditions, dscfm	(Qs)	33,277	33,054	33,130	33,154

Condensable PM Emission Rate, lb/hr

Total PM Concentration, grain/dscf

Total PM Emission Rate, lb/hr

Emission Calculations

Location Revere Copper - Rome, NY
Source 2056 Metling Furnace

Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/1/23	6/2/23	6/2/23	
Start Time		13:54	8:10	13:35	
Stop Time		18:04	13:12	17:46	
Run Time, min	(θ)	240.0	240.0	240.0	240.0
	INPUT DATA	A			
Barometric Pressure, in. Hg	(Pb)	30.11	29.93	29.93	29.99
Meter Correction Factor	(Y)	0.983	0.983	0.983	0.983
Orifice Calibration Value	(ΔH @)	1.866	1.866	1.866	1.866
Meter Volume, ft ³	(Vm)	184.136	181.174	183.960	183.090
Meter Temperature, °F	(Tm)	96.5	87.1	97.7	93.8
Meter Temperature, °R	(Tm)	556.2	546.8	557.3	553.4
Meter Orifice Pressure, in. WC	(ΔH)	1.794	1.773	1.782	1.783
Volume H ₂ O Collected, mL	(Vlc)	34.6	46.6	51.5	44.2
Nozzle Diameter, in	(Dn)	0.220	0.220	0.220	0.220
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	24.2	44.0	33.6	33.9
Condensable PM Mass, mg	(M_{CPM})	3.0	5.9	3.6	4.2
	ISOKINETIC D.	ATA			
Standard Meter Volume, ft ³	(Vmstd)	173.571	172.671	172.014	172.752
Standard Water Volume, ft ³	(Vwstd)	1.632	2.198	2.429	2.086
Moisture Fraction Measured	(BWSmsd)	0.009	0.013	0.014	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.105	0.078	0.092	0.092
Moisture Fraction	(BWS)	0.009	0.013	0.014	0.012
Meter Pressure, in Hg	(Pm)	30.24	30.06	30.06	30.12
Volume at Nozzle, ft ³	(Vn)	190.051	187.363	188.760	188.72
Isokinetic Sampling Rate, (%)	(I)	97.4	97.3	97.6	97.4
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	0.6	0.2	0.4	0.4
	EMISSION CALCUI	LATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	0.0022	0.0039	0.0030	0.0030
Filterable PM Emission Rate, lb/hr	(PMR)	0.64	1.2	0.88	0.89
Condensable PM Concentration, grain/dscf	(C_{CPM})	2.7E-04	5.3E-04	3.2E-04	3.7E-04

 (ER_{CPM})

 (C_{TPM})

 (ER_{TPM})

0.079

0.0024

0.72

0.16

0.0045

1.3

0.095

0.0033

1.0

0.11

0.0034

1.0

Location Revere Copper - Rome, NY

Source 2056 Metling Furnace

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average					
Date		6/1/23	6/2/23	6/2/23						
Start Time		13:54	8:10	13:35						
Stop Time		18:04	13:12	17:46						
Run Time, min		240.0	240.0	240.0	240.0					
VELOCITY HEAD, in. WC										
Point 1		0.72	0.70	0.73	0.72					
Point 2		0.72	0.70	0.73	0.72					
Point 3		0.71	0.69	0.74	0.71					
Point 4		0.71	0.70	0.74	0.72					
Point 5		0.75	0.69	0.73	0.72					
Point 6		0.69	0.67	0.73	0.70					
Point 7		0.70	0.69	0.71	0.70					
Point 8		0.72	0.65	0.73	0.70					
Point 9		0.76	0.70	0.74	0.73					
Point 10		0.76	0.70	0.73	0.73					
Point 11		0.78	0.75	0.75	0.76					
Point 12		0.79	0.77	0.74	0.77					
Point 13		0.85	0.78	0.72	0.78					
Point 14		0.83	0.78	0.71	0.77					
Point 15		0.88	0.82	0.78	0.83					
Point 16		0.85	0.80	0.79	0.81					
Point 17		0.85	0.83	0.80	0.83					
Point 18		0.85	0.85	0.83	0.84					
Point 19		0.85	0.85	0.85	0.85					
Point 20		0.88	0.85	0.87	0.87					
Point 21		0.86	0.85	0.88	0.86					
Point 22		0.86	0.84	0.84	0.85					
Point 23		0.83	0.85	0.85	0.84					
Point 24		0.84	0.86	0.85	0.85					
1 0 m 2 i	CALCUL	ATED DATA		0.02	0.02					
Square Root of ΔP, (in. WC) ^{1/2}	(ΔP)	0.879	0.873	0.872	0.875					
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840					
Barometric Pressure, in. Hg	(Pb)	30.11	29.93	29.93	29.99					
Static Pressure, in. WC	(Pg)	0.60	0.55	0.60	0.58					
Stack Pressure, in. Hg	(Ps)	30.15	29.97	29.97	30.03					
Stack Cross-sectional Area, ft ²	(As)	12.31	12.31	12.31	12.31					
Temperature, °F	(Ts)	117.2	106.7	112.4	112.1					
Temperature, °R	(Ts)	576.9	566.3	572.0	571.746					
Moisture Fraction Measured	(BWSmsd)	0.009	0.013	0.014	0.012					
Moisture Fraction @ Saturation	(BWSsat)	0.105	0.078	0.092	0.092					
Moisture Fraction	(BWS)	0.009	0.013	0.014	0.012					
O ₂ Concentration, %	(O_2)	18.7	18.7	18.8	18.7					
CO ₂ Concentration, %	(CO_2)	2.0	2.0	2.0	2.0					
Molecular Weight, lb/lb-mole (dry)	(Md)	29.07	29.07	29.07	29.07					
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.97	28.93	28.92	28.94					
Velocity, ft/sec	(Vs)	51.3	50.7	50.9	51.0					
releasing, to see	VOLUMETR			50.7	51.0					
At Stack Conditions, acfm	(Qa)	37,889	37,403	37,572	37,621					
At Standard Conditions, dscfm	(Qa) (Qs)	34,603	34,469	34,238	34,437					

Location Revere Copper - Rome, NY
Source 1721 First Run Down Mill
Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		14:35	7:50	9:50	
Stop Time		16:03	9:15	11:15	
Run Time, min	(θ)	80.0	80.0	80.0	80.0
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.15	30.10	30.10	30.12
Meter Correction Factor	(Y)	1.003	1.003	1.003	1.003
Orifice Calibration Value	(ΔH @)	1.850	1.850	1.850	1.850
Meter Volume, ft ³	(Vm)	55.620	53.918	55.245	54.928
Meter Temperature, °F	(Tm)	91.7	70.4	82.0	81.4
Meter Temperature, °R	(Tm)	551.4	530.0	541.7	541.0
Meter Orifice Pressure, in. WC	(ΔH)	1.503	1.503	1.541	1.516
Volume H ₂ O Collected, mL	(Vlc)	7.4	18.1	17.5	14.3
Nozzle Diameter, in	(Dn)	0.247	0.247	0.247	0.247
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	<u>2.3</u>	<u>1.9</u>	<u>1.3</u>	1.8
Condensable PM Mass, mg	(M_{CPM})	6.2	3.6	2.3	4.0
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	53.998	54.360	54.508	54.288
Standard Water Volume, ft ³	(Vwstd)	0.349	0.854	0.825	0.676
Moisture Fraction Measured	(BWSmsd)	0.006	0.015	0.015	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.056	0.042	0.049	0.049
Moisture Fraction	(BWS)	0.006	0.015	0.015	0.012
Meter Pressure, in Hg	(Pm)	30.26	30.21	30.21	30.23
Volume at Nozzle, ft ³	(Vn)	56.783	56.853	57.478	57.04
Isokinetic Sampling Rate, (%)	(I)	99.0	98.6	98.7	98.8
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	1.2	0.1	0.2	0.5
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	6.6E-04	5.4E-04	3.7E-04	5.2E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.33	0.27	0.19	0.26
Condensable PM Concentration, grain/dscf	(C_{CPM})	0.0018	0.0010	6.5E-04	0.0011
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.88	0.51	0.33	0.57
Total PM Concentration, grain/dscf	(C_{TPM})	0.0024	0.0016	0.0010	0.0017
Total PM Emission Rate, lb/hr	(ER_{TPM})	1.2	0.78	0.51	0.83

Location Revere Copper - Rome, NY
Source 1721 First Run Down Mill

Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average					
Date		5/31/23	6/1/23	6/1/23						
Start Time		14:35	7:50	9:50						
Stop Time		16:03	9:15	11:15						
Run Time, min		80.0	80.0	80.0	80.0					
VELOCITY HEAD, in. WC										
Point 1		0.39	0.47	0.48	0.45					
Point 2		0.40	0.47	0.48	0.45					
Point 3		0.38	0.49	0.48	0.45					
Point 4		0.39	0.45	0.45	0.43					
Point 5		0.39	0.43	0.44	0.42					
Point 6		0.38	0.39	0.41	0.39					
Point 7		0.38	0.36	0.37	0.37					
Point 8		0.36	0.36	0.34	0.35					
Point 9		0.44	0.35	0.38	0.39					
Point 10		0.45	0.38	0.39	0.41					
Point 11		0.42	0.39	0.39	0.40					
Point 12		0.40	0.40	0.39	0.40					
Point 13		0.39	0.38	0.40	0.39					
Point 14		0.37	0.38	0.39	0.38					
Point 15		0.36	0.36	0.35	0.36					
Point 16		0.35	0.34	0.34	0.34					
	CALCUL	ATED DAT								
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.625	0.631	0.635	0.630					
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840					
Barometric Pressure, in. Hg	(Pb)	30.15	30.10	30.10	30.12					
Static Pressure, in. WC	(Pg)	-0.20	-0.20	-0.20	-0.20					
Stack Pressure, in. Hg	(Ps)	30.14	30.09	30.09	30.10					
Stack Cross-sectional Area, ft ²	(As)	28.27	28.27	28.27	28.27					
Temperature, °F	(Ts)	95.6	86.7	91.5	91.3					
Temperature, °R	(Ts)	555.3	546.4	551.2	550.941					
Moisture Fraction Measured	(BWSmsd)	0.006	0.015	0.015	0.012					
Moisture Fraction @ Saturation	(BWSsat)	0.056	0.042	0.049	0.049					
Moisture Fraction	(BWS)	0.006	0.015	0.015	0.012					
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9					
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0					
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84					
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.77	28.67	28.67	28.70					
Velocity, ft/sec	(Vs)	35.9	36.1	36.5	36.2					
	VOLUMETR									
At Stack Conditions, acfm	(Qa)	60,905	61,226	61,870	61,334					
At Standard Conditions, dscfm	(Qs)	57,917	58,539	58,671	58,376					

Location Revere Copper - Rome, NY
Source 1723 Reversing Mill
Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		10:40	12:55	15:58	
Stop Time		12:17	14:05	17:05	
Run Time, min	(θ)	60.0	60.0	57.5	59.2
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.20	30.12	30.05	30.12
Meter Correction Factor	(Y)	0.997	0.997	0.997	0.997
Orifice Calibration Value	(ΔH @)	1.568	1.568	1.568	1.568
Meter Volume, ft ³	(Vm)	51.374	47.447	43.281	47.367
Meter Temperature, °F	(Tm)	89.5	94.9	96.9	93.8
Meter Temperature, °R	(Tm)	549.1	554.6	556.6	553.4
Meter Orifice Pressure, in. WC	(ΔH)	2.046	1.683	1.504	1.745
Volume H ₂ O Collected, mL	(Vlc)	18.5	14.4	13.3	15.4
Nozzle Diameter, in	(Dn)	0.215	0.215	0.215	0.215
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	<u>2.8</u>	<u>2.8</u>	<u>1.7</u>	2.4
Condensable PM Mass, mg	(M_{CPM})	3.5	3.5	2.4	3.1
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	49.926	45.496	41.238	45.554
Standard Water Volume, ft ³	(Vwstd)	0.872	0.679	0.627	0.726
Moisture Fraction Measured	(BWSmsd)	0.017	0.015	0.015	0.016
Moisture Fraction @ Saturation	(BWSsat)	0.041	0.050	0.057	0.049
Moisture Fraction	(BWS)	0.017	0.015	0.015	0.016
Meter Pressure, in Hg	(Pm)	30.35	30.24	30.16	30.25
Volume at Nozzle, ft ³	(Vn)	52.047	47.924	43.878	47.95
Isokinetic Sampling Rate, (%)	(I)	95.6	96.7	97.0	96.4
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	-1.8	-0.5	0.1	-0.7
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	8.7E-04	9.5E-04	6.4E-04	8.2E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.18	0.18	0.11	0.16
Condensable PM Concentration, grain/dscf	(C _{CPM})	0.0011	0.0012	9.0E-04	0.0011
Condensable PM Emission Rate, lb/hr	(ER _{CPM})	0.23	0.22	0.16	0.20
Total PM Concentration, grain/dscf	(C _{TPM})	0.0019	0.0021	0.0015	0.0019
Total PM Emission Rate, lb/hr	(ER _{TPM})	0.41	0.40	0.27	0.36

Underlined values contain one or more fractions below MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY

Source 1723 Reversing Mill

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		10:40	12:55	15:58	
Stop Time		12:17	14:05	17:05	
Run Time, min		60.0	60.0	57.5	59.2
,	VELOCITY		WC		
Point 1		1.30	1.10	1.10	1.17
Point 2		1.30	1.10	1.10	1.17
Point 3		1.30	1.10	1.10	1.17
Point 4		1.30	1.10	1.10	1.17
Point 5		1.10	1.10	1.10	1.10
Point 6		1.10	1.10	1.10	1.10
Point 7		1.10	1.10	0.86	1.02
Point 8		1.10	1.10	0.87	1.02
Point 9		1.10	1.10	0.87	1.02
Point 10		0.85	0.79	0.87	0.84
Point 11		0.85	0.79	0.74	0.79
Point 12		0.85	0.80	0.71	0.79
Point 13		1.20	0.80	0.74	0.91
Point 14		1.20	0.81	0.72	0.91
Point 15		1.20	0.80	0.68	0.89
Point 16		1.20	0.80	0.66	0.89
Point 17		1.10	0.80	0.67	0.86
Point 18		1.20	0.80	0.67	0.89
Point 19		1.10	0.80	0.67	0.86
Point 20		1.10	0.80	0.67	0.86
Point 21		1.05	0.78	0.67	0.83
Point 22		1.05	0.80	0.61	0.82
Point 23		1.00	0.80	0.66	0.82
Point 24		1.00	0.80		0.90
	CALCUL	ATED DAT			0.50
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	1.052	0.952	0.902	0.969
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.20	30.12	30.05	30.12
Static Pressure, in. WC	(Pg)	0.16	0.16	0.16	0.16
Stack Pressure, in. Hg	(Ps)	30.21	30.13	30.06	30.14
Stack Cross-sectional Area, ft ²	(As)	7.07	7.07	7.07	7.07
Temperature, °F	(Ts)	86.3	91.9	96.0	91.4
Temperature, °R	(Ts)	545.9	551.5	555.7	551.045
Moisture Fraction Measured	(BWSmsd)	0.017	0.015	0.015	0.016
Moisture Fraction @ Saturation	(BWSsat)	0.041	0.050	0.057	0.049
Moisture Fraction	(BWS)	0.017	0.015	0.015	0.016
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.65	28.68	28.67	28.67
Velocity, ft/sec	(Vs)	60.0	54.6	52.0	55.5
, , , , , , , , , , , , , , , , , , ,	VOLUMETR				
At Stack Conditions, acfm	(Qa)	25,441	23,155	22,064	23,554
At Standard Conditions, dscfm	(Qs)	24,404	21,982	20,736	22,374

Location Revere Copper - Rome, NY
Source 1715 Overhauler
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/30/23	5/31/23	5/31/23	
Start Time		14:41	10:21	12:19	
Stop Time		9:55	11:36	13:24	
Run Time, min	(θ)	60.0	60.0	60.0	60.0
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.16	30.15	30.15	30.15
Meter Correction Factor	(Y)	0.983	0.983	0.983	0.983
Orifice Calibration Value	(ΔH @)	1.866	1.866	1.866	1.866
Meter Volume, ft ³	(Vm)	62.536	64.137	59.104	61.926
Meter Temperature, °F	(Tm)	79.0	84.1	88.7	84.0
Meter Temperature, °R	(Tm)	538.7	543.8	548.4	543.6
Meter Orifice Pressure, in. WC	(ΔH)	3.613	3.612	3.133	3.453
Volume H ₂ O Collected, mL	(Vlc)	35.5	35.2	36.1	35.6
Nozzle Diameter, in	(Dn)	0.250	0.250	0.250	0.250
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	14.0	50.8	23.5	29.4
Condensable PM Mass, mg	(M_{CPM})	8.9	6.7	2.9	6.2
Copper Mass, ug	(M_{Cu})	4,400.0			4,400.0
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	61.230	62.190	56.765	60.062
Standard Water Volume, ft ³	(Vwstd)	1.676	1.660	1.702	1.680
Moisture Fraction Measured	(BWSmsd)	0.027	0.026	0.029	0.027
Moisture Fraction @ Saturation	(BWSsat)	0.023	0.026	0.027	0.026
Moisture Fraction	(BWS)	0.023	0.026	0.027	0.026
Meter Pressure, in Hg	(Pm)	30.43	30.42	30.38	30.41
Volume at Nozzle, ft ³	(Vn)	62.592	63.934	58.726	61.75
Isokinetic Sampling Rate, (%)	(I)	96.3	98.3	98.1	97.6
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	-1.6	-0.1	-0.1	-0.6
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	0.0035	0.013	0.0064	0.0075
Filterable PM Emission Rate, lb/hr	(PMR)	1.2	4.2	1.9	2.4
Condensable PM Concentration, grain/dscf	(C_{CPM})	0.0022	0.0017	7.9E-04	0.0016
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.75	0.55	0.24	0.52
Total PM Concentration, grain/dscf	(C_{TPM})	0.0058	0.014	0.0072	0.0091
Total PM Emission Rate, lb/hr	(ER_{TPM})	1.9	4.8	2.2	3.0
Copper Concentration, ug/dscm	(C_{Cu})	2,538			2,538
Copper Emission Rate, lb/hr	(ER_{Cu})	0.37			0.37

Location Revere Copper - Rome, NY

Source 1715 Overhauler
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/30/23	5/31/23	5/31/23	
Start Time		14:41	10:21	12:19	
Stop Time		9:55	11:36	13:24	
Run Time, min		60.0	60.0	60.0	60.0
11110, 11111	VELOCITY	HEAD, in. V			00.0
Point 1		0.94	0.86	1.10	0.97
Point 2		0.96	0.79	1.10	0.95
Point 3		0.68	0.77	1.00	0.82
Point 4		0.83	0.77	1.00	0.87
Point 5		0.86	0.77	1.05	0.89
Point 6		0.78	0.80	1.05	0.88
Point 7		1.00	0.77	1.00	0.92
Point 8		1.00	0.75	0.55	0.77
Point 9		1.00	0.90	0.59	0.83
Point 10		0.95	0.90	0.59	0.83
Point 11		1.00	0.88	0.56	
					0.78
Point 12		1.05	0.80	0.50	0.78
Point 13		0.50	0.80	1.05	0.78
Point 14		0.56	0.79	1.05	0.80
Point 15		0.50	1.00	1.00	0.83
Point 16		0.48	1.05	1.00	0.84
Point 17		1.00	1.00	1.05	1.02
Point 18		1.10	1.10	0.52	0.91
Point 19		1.10	1.10	0.42	0.87
Point 20		1.00	0.95	0.46	0.80
Point 21		1.05	0.95	0.45	0.82
Point 22		1.00	0.90	0.46	0.79
Point 23		1.05	0.95	0.46	0.82
Point 24		1.05	1.00	0.46	0.84
	CALCUL	ATED DATA			
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.938	0.939	0.860	0.912
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.16	30.15	30.15	30.15
Static Pressure, in. WC	(Pg)	-0.50	-0.60	-0.65	-0.58
Stack Pressure, in. Hg	(Ps)	30.12	30.11	30.10	30.11
Stack Cross-sectional Area, ft ²	(As)	12.57	12.57	12.57	12.57
Temperature, °F	(Ts)	69.0	72.0	73.6	71.5
Temperature, °R	(Ts)	528.6	531.7	533.3	531.184
Moisture Fraction Measured	(BWSmsd)	0.027	0.026	0.029	0.027
Moisture Fraction @ Saturation	(BWSsat)	0.027	0.026	0.029	0.027
Moisture Fraction	(BWS)	0.023	0.026	0.027	0.026
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0
	` =/				
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.58	28.56	28.54	28.56
Velocity, ft/sec	(Vs)	52.8	53.0	48.7	51.5
At Stools Conditions of	VOLUMETR			27,707	20.027
At Stack Conditions, acfm	(Qa)	39,813	39,971	36,697	38,827
At Standard Conditions, dscfm	(Qs)	39,075	38,880	35,533	37,829

ATTACHMENT F
TOXIC – BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS

Intended for

Revere Copper Products Inc. Rome, New York

Document type

Report

Date

July 2023

PART 212 T-BACT EVALUATION EMISSION POINT 00029 OF EMISSION UNIT U-ROLL1

PART 212 T-BACT EVALUATION EMISSION POINT 00029 OF EMISSION UNIT U-ROLL1

Project name Part 212 T-BACT EVALUATION

Project no. 1087689/1940103004

Recipient New York State Department of Environmental Conservation (NYSDEC)

Document type Report Version Draft

Date July 21, 2023 Prepared by
Approved by
Approved by
Approved by
Atthew Traister, P.E.

CONTENTS

1.	Executive Summary	4
2.	Introduction	6
2.1	Need for T-BACT analysis	6
2.2	General facility description	7
2.3	Emission source description	7
3.	T-BACT Methodology	8
3.1	Approach	8
4.	Baseline Emissions	9
5.	Control Options Considered	10
5.1	Process changes	10
5.2	Material substitution and reformulation	10
5.3	Stack modifications	12
5.4	Add-on controls	13
5.4.1	Exhaust and emission profile	14
5.4.2	Cost of controls	14
6.	Residual Risk Evaluation	15
7.	Conclusions and Recommendations	17
7.1	Conclusions	17
7.2	T-BACT recommendation	17

1. EXECUTIVE SUMMARY

Revere Copper Products Inc. (Revere) operates boilers, furnaces, and metal working equipment that are authorized by an Air State Facility (ASF) Permit (Permit Number 6-3013-00091/00039), which was last modified effective March 24, 2015. A renewal application was submitted to New York State Department of Environmental Conservation (NYSDEC) on February 8, 2023, thereby meeting the requirement to submit a renewal application no less than 180 days (May 4, 2023) and no more than 18 months prior to the expiration date. The renewal application also included a proposed modification involving the replacement of a casting furnace with a new furnace.

A revised ASF Permit application is being submitted to address comments of the NYSDEC. Since many of the Revere operations are subject to Title 6 of the New York Codes, Rules and Regulations (6 NYCRR) Part 212, the renewal application includes an updated evaluation of Part 212 requirements for subject emission points. The updated Part 212 evaluation identified three non-criteria air contaminants that could not be shown to meet the degree of air cleaning required in Table 4 of Subpart 212-2.3(b). The three contaminants, which are potentially emitted from the 1721 First Run Down Mill (Emission Source 01721, Mist Eliminator 00C29, Emission Point (EP) 00029), are:

- Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- (CAS No. 57635-48-0)
- Fatty acids, C18-unsaturated phosphates (identified as Trade Secret #5 in the Emission Inventory)
- Confidential ingredient (identified as Trade Secret #8 in the Emission Inventory).

All three are associated with QH Everoll A 9883, which is a coolant used in the 1721 First Run Down Mill. These three contaminants are not listed in NYSDEC's DAR-1: *Guidelines for the Evaluation and Control of Ambient Air Contaminants Under 6NYCRR Part 212*. As a result, NYSDEC's Air Toxics Section (ATS) performed toxicity reviews for the three contaminants. The first two contaminants were given an interim Annual Guideline Concentration (AGC) of 0.01 micrograms per cubic meter (μ g/m³), as a "Moderate Toxicity *de minimis* with a Safety Factor of 10X applied due to uncertainties in the toxicological database." The third contaminant was given an interim AGC of 0.001 μ g/m³, as a "Moderate Toxicity *de minimis* with a Safety Factor of 100X applied due to the lack of information in the toxicological database."

In accordance with Subpart 212-1.5(d) and guidance in NYSDEC's DAR-1: *Guidelines for the Evaluation and Control of Ambient Air Contaminants Under 6NYCRR Part 212*, Revere submits this Toxic – Best Achievable Control Technology (T-BACT) analysis and requests that a less restrictive permissible emission rate be specified for the above three contaminants.

Process changes, material substitution, stack changes, and add-on control options were considered as possible means of reducing emissions. For reasons discussed in this document, process changes and material replacement are not considered technically feasible at this time. Installation of a stack reducer may be technically feasible; however, evaluation of the stack structure would be required to confirm it can accommodate an additional section of stack. The

¹ It cannot be determined if any of these contaminants actually are emitted because they are not detectable in any testing that could be performed.

use of a coalescing fiberbed system is potentially a technically feasible add-on control device solution for the First Run Down Mill and existing demister system and is being investigated further. However, the estimated cost-effectiveness of this add-on control option ranges from \$1.3 to \$1.8 million per ton of contaminant removed.

In summary, the following factors impact the assessment of T-BACT for the First Run Down Mill:

- Revere has instituted effective process controls to the extent practical
- Revere has conducted initial evaluations of coolant alternatives, and each presents challenges
 that would need to be further evaluated before any product trials could occur. Machine trials
 of a coolant last 4-6 months for a full cycle.
- The First Run Down Mill is equipped with a mist eliminator to minimize emissions
- The three target constituents have low volatility and, therefore, estimated emissions may be overly conservative (on the high side)
- There is a lack of specific sampling and analytical methods for the target constituents
- The interim AGCs assigned by NYSDEC have built-in safety factors of 10x and 100x due to a lack of available toxicological information and, thus, are overly conservative
- Predicted impacts of the three target constituents are less than NYSDEC's published de mimimis AGC of 0.1 µg/m³
- It is doubtful that an air pollution control manufacturer will provide a removal efficiency guarantee for the target compounds given the lack of information on these chemicals and the inability to quantify their physical state (e.g., aerosol, solid) or their present concentration/mass
- The estimated cost of removing approximately 665 combined pounds per year of the three target contaminants (540 pounds for the Commissioning Plan operating scenario) is \$1.3 to \$1.8 million per ton of contaminant removed.

For these reasons, this evaluation concludes that the 1721 First Run Down Mill has T-BACT for emissions of the three specified contaminants, since no other alternatives could be demonstrated as feasible. Considered alternatives were either not technically feasible or not economically feasible.

2. INTRODUCTION

2.1 Need for T-BACT analysis

Table 4 in Part 212-2.3(b) requires various levels of control for air emissions that are non-criteria air contaminant gases and liquid particulate emissions, regardless of the Environmental Rating (ER), and solid particulate emissions with an ER of A or D based on the Emission Rate Potentials (ERPs) and ERs of the compounds emitted. As an alternative to the specified levels of control, Part 212 allows the emission source to apply T-BACT.

For the First Run Down Mill, Part 212 requires the following levels of control, or T-BACT, for each of the listed contaminants.

Table 1. Summary of Contaminate ERP (lb/hr), Environmental Rating, & Part 212 Control Requirement

Contaminant	CAS No.	ERP (lb/hr)	Actual Hourly Emission Rate (lb/hr)	Proposed Environmental Rating	Part 212 Control Requirement
Emission Unit U-ROLL1, First R	un Down Mill,	Emission P	oint 00029		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	0.633	0.570	В	Guideline Concentration*
Poly(oxy-1,2-ethanediyl), a- (carboxymethyl)-\omega-[(9Z)-9- octadecen-1-yloxy]-	57635-48-0	0.0352	0.0317	В	Guideline Concentration*
Amines, tallow alkyl, ethoxylated	61791-26-2	0.0211	0.0190	В	Guideline Concentration*
Propane-1,2-diol	00057-55-6	0.0211	0.0190	В	Guideline Concentration*
Sulfonic acids, petroleum, sodium salts	68608-26-4	0.0211	0.0190	В	Guideline Concentration*
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	0.0211	0.0190	В	Guideline Concentration*
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	0.0211	0.0190	В	Guideline Concentration*
1,2-Benzisothiazol-3(2H)- one	02634-33-5	0.00211	0.00190	В	Facility-wide annual emissions are below the non- HTAC 100 lb/yr threshold
Confidential Ingredient	Trade Secret #8	0.0704	0.0633	В	Guideline Concentration*

^{*} Use air dispersion modeling to demonstrate that the maximum offsite air concentration is less than the applicable short-term and/or annual guideline concentration (SGC and AGC, respectively).

For the contaminants subject to Guideline Concentration as the control requirement, air dispersion modeling was conducted in accordance with a modeling protocol approved by NYSDEC. As discussed in the modeling report for the permit application (see Attachment E in the renewal application) all but three of the First Run Down Mill contaminants have modeled impacts that are less than their respective SGCs and AGCs. The three contaminants with modeled impacts that exceed the conservative interim AGCs assigned by NYSDEC are shown in the following table. Since these contaminants do not currently have the specified levels of control, a T-BACT review is required. Note that, based on modeling performed for the Commissioning Plan, only two contaminants have modeled impacts that are above their respective SGCs and AGCs.

Table 2. Summary of Dispersion Modeling Results for the First Run Down Mill Contaminants with an Exceedance

Actual Hourly Emis (lb/hr)				NYSDEC- Assigned	Predicted Concentration (µg/m³) / % of SGC/AGC		
Contaminant	CAS No.	Updated Permit Application	Commissioning Averaging Plan Period		Interim SGC/AGC (µg/m³)	Updated Permit Application	Commissioning Plan
Emission Unit U-ROLL1, Emission Point 00029							
Poly(oxy-1,2- ethanediyl), a-			0.0171	1-Hour		0.812 /	0.812 /
(carboxymethyl)- ω-[(9Ζ)-9- octadecen-1- yloxy]-	57635 -48-0	0.0317		Annual	0.01	0.0424 / 424 %	0.0230 / 230 %
Fatty acids, C18-	Trade	0.0100	Modeling Not	1-Hour		0.486 /	/
unsaturated phosphates	Secret #5	0.0190	Required	Annual	0.01	0.0254 / 254 %	/
Confidential	Trade	0.0422		1-Hour		1.62 /	1.62 /
Ingredient	Secret #8	0.0633	0.0343	Annual	0.001	0.0848 / 8,481 %	0.0459 / 4,591 %

Process changes, material substitution, stack changes, and add-on control options were considered as possible means of reducing emissions and evaluated for technical and economic feasibility. This document summarizes the results of these analyses and recommends T-BACT for the First Run Down Mill, EP 00029.

2.2 General facility description

The Revere facility occupies approximately 77.7 acres of land in Rome, New York. The plant is located within a diverse area and borders other manufacturing, commercial, and residential properties. Key process operations at the facility are copper melting, rolling, cutting/shaving, annealing, and galvanizing.

2.3 Emission source description

High-grade post-consumer copper is melted in casting furnaces to produce copper ingots and cakes, which are rolled in five rolling mills. The First Run Down Mill is a cold rolling mill that receives copper coils from approximately 3/8 inches in thickness to approximately 0.090 inches. There is no heat input to this process; however, the rolling process increases the copper coil's temperature to approximately 300 °F via friction with the roller. The mill uses a coolant that is a mixture of Rodshield 68 (QH Everoll A 9883) and water. The coolant is sprayed onto the copper during the rolling process. Aerosolized coolant is captured and routed to a Steinhorst Mist Eliminator and then to EP 00029.

3. T-BACT METHODOLOGY

This section describes the general methodology used to identify T-BACT for the First Run Down Mill FP.

3.1 Approach

The first step in the T-BACT evaluation was to quantify the emissions from the First Run Down Mill. Details are discussed in Section 4.

Next, potential emission control alternatives were identified. The types of control alternatives considered included:

- · Changes to the process generating the air emissions
- · Reformulation using lesser amounts of the coolant currently in use or different coolants
- · Stack modifications to improve dispersion
- Use of add-on control devices.

The strategy was to first consider process change alternatives. Process changes were given the highest priority because they may prevent the emissions from occurring in the first place.

After process changes were evaluated, material substitution and add-on control alternatives were evaluated. It is important to note that substitution of another material, even if deemed technically feasible without substantial disruption or modification to the process, may not significantly reduce overall emissions. Also, add-on control devices typically consume energy and generate waste streams that are ultimately released to the environment or must be further treated prior to release.

Emission reductions, costs, and other factors as noted above were evaluated for each technically feasible control option to identify T-BACT for the First Run Down Mill. For each alternative, an overall cost per ton of emissions controlled was estimated by dividing the estimated annualized cost of that control by the total controlled annual emissions of the specific contaminants requiring T-BACT. The annualized costs account for the operating, maintenance, utility, and capital recovery costs for each particular control option.

Following the evaluation of emission control alternatives, a quantitative residual risk evaluation was performed in accordance with DAR-1.

4. BASELINE EMISSIONS

Emission factors used in the past to estimate emissions from the First Run Down Mill were based on particulate matter (PM) testing conducted in 2001 and that testing did not include particle size distribution (PSD) analysis. As a result, Revere initiated source testing (for engineering purposes) in May 2023 to develop updated emission rates for five emission sources including the First Run Down Mill. The First Run Down Mill's post-control condensable PM emission rate from the May 2023 test program was used to develop updated emission rates for the individual constituents contained in the coolant used in the mill, based on their relative concentrations in the raw material.

It is important to note that the three constituents for which this T-BACT analysis has been developed are not standard analytes using traditional environmental sampling and analytical methods. In other words, without significant method development efforts, first-level approximations (*i.e.*., using the constituent concentrations of the coolant based on the Safety Data Sheet, multiplied by the condensable fraction of PM test results) were necessary to estimate emissions of these potential air contaminants.

It is also worth noting that these three constituents are high molecular weight compounds and are unlikely to be particularly volatile and potentially less likely to become aerosolized in comparison to more volatile constituents in the coolant. Furthermore, these materials are used in dilute concentrations within the mill coolant. Thus, annual emissions of these constituents are limited and possibly overstated, as shown in Table 3 below.

Table 3. Summary of Estimated Emissions for the First Run Down Mill Contaminants with an Exceedance

Contaminant	CAS No.	Actual Hourly Emission Rate (lb/hr)	Actual Annual Emissions ^(a) (lb/yr)	Potential Annual Emissions (lb/yr)
Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω- [(9Z)-9-octadecen-1-yloxy]-	57635-48-0	0.0317	186 / 150	277
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	0.0190	111 / 90	166
Confidential Ingredient	Trade Secret #8	0.0633	371 / 300	555
Total:			668 / 540	998

Notes:

(a) Actual annual emissions shown reflect two operating scenarios: future operations once the new permit is issued followed by estimated actual emissions for the Commissioning Plan.

5. CONTROL OPTIONS CONSIDERED

5.1 Process changes

In the First Run Down Mill, the coolant mixture is sprayed onto the copper that is moved through the mill. The spray methodology currently in use prevents heat generation, which is essential to the rolling process. Revere has not identified different methodologies for applying the coolant onto the copper that will meet the process cooling demands. Therefore, a change to the coolant delivery system is not technically feasible.

Revere has considered whether the coolant could be used in a more dilute solution. The concentration currently in use is only 1.5% in a 7,000-gallon tank (105 gallons mixed with City water). Any further dilution would not provide an effective level of cooling and, therefore, is not technically feasible.

Revere is investigating with the vendor (Quaker Houghton) as to whether the formulation can be changed such that the concentrations of the constituents with modeled exceedances are reduced in the product. A response to this inquiry is still pending. However, any change to the formulation, including changing relative concentrations of ingredients in the mixture, would need to be evaluated by Revere to confirm the change allows the facility to meet its product quality requirements. The change of a coolant formulation must be carefully considered. Changeout of the coolant costs \$40,000, and different/reformulated coolant can result in staining or corrosion on the copper, and it also has potential to ruin the surface of the rolling coils.

Based on Revere's evaluation of potential process changes, none are considered by Revere to be technically feasible at this time.

5.2 Material substitution and reformulation

Coolant selection is based on review of the product with the supplier and their recommendations for application, and, ideally, results of the product's use at other metal rolling facilities. Stain testing can be performed with base copper samples to confirm that staining of finished material is not a concern, but rolling lubrication performance cannot be tested until the coolant is trialed in the machine. The cost of a coolant change is approximately \$40,000 including cost of products and services.

Revere has conducted only one product trial in the last 7 years. This trial was completed by consulting heavily with Houghton (prior to Quaker Houghton merger), whose chemists in Spain conducted research. Following several months of formulation work and stain testing with a product similar to the QH Everoll, Revere conducted a trial in the 1723 Reversing mill. Revere experienced a premature failure due to a buildup on the shapemeter and rolls that transferred to the copper strip. Therefore, the Houghton product was not further considered.

The following products are considered by Revere to be possible alternatives to QH Everall 9883:

<u>Chemetall 4020EB</u> – This is a fully synthetic rolling oil that is to be used with antimicrobial agents/measures

Benefits:

- Composition of the product is stated on the Safety Data Sheet (SDS) (*i.e.*, no proprietary ingredients)
- Product contains benzisothiazolinone (an isothiazolinone derivative), which is present in the Kathon additive and, therefore, it may have some level of biostability
- Contains a surfactant/lubricant additive/corrosion inhibitor (CAS 4500-29-2) that is not listed in the DAR-1 tables but does not have any hazard indicators.

Challenges:

- · Fully synthetic oils tend to see more fungal growth than other types of oils
- · When heated via mechanical rolling, may release toxic nitrous oxides
- may release toxic nitrous oxides
- Contains constituents that are not listed in the DAR-1 tables, including a benzisothiazolinone, and isothiasolinones are known to be hazardous

Unknowns:

- Revere does not know how much antimicrobial agent is needed to keep the system stable, the life cycle of the coolant, and what/if how much staining might occur on the copper surface, thereby resulting in poor quality products
- 35052PK A Semi-synthetic rolling oil used with antimicrobial agents/measures
 Benefits:
 - Contains a vegetable oil derived polymer that is used in metalworking fluids as an antimist. This might help reduce particulate matter emissions.
 - Vegetable oils are more environmentally friendly than mineral oils

Challenges:

• Contains diethanolamine, a hazardous air pollutant (HAP)

Unknowns:

- Revere does not know how much antimicrobial additive is needed to keep the system stable, the life cycle of the coolant, and what/if how much staining might occur on the copper surface, thereby resulting in poor quality products
- Quaker-Houghton Everoll C 2923 A soluble oil that would need antimicrobial agents/measures

Benefits:

Mainly contains a petroleum derivative that is not listed in DAR-1

Challenges:

 No other ingredients are listed, so we do not know what other constituents might be included. Manufacturer did not provide a complete composition list of constituents.

Unknowns:

 Revere does not know how much antimicrobial additive is needed to keep the system stable, the life cycle of the coolant, and what/if how much staining might occur on the copper surface, thereby resulting in poor quality products

In summary, for each of the potential alternative products under consideration, Revere has identified possible benefits and challenges. Provided one or more of the alternative products is not found to contain unlisted constituents that would be considered equally or more toxic than the constituents in QH Everall 9883, Revere would need to evaluate the technical feasibility of replacing QH Everall 9883 in the First Run Down Mill by conducting lab-scale and then full-scale

trials to assess antimicrobial additive requirements, coolant life cycle, and quality concerns such as staining.

These efforts are not guaranteed to result in acceptable air quality impacts in accordance with DAR-1 requirements and Revere estimates they would cost at least \$40,000. Therefore, the use of alternative products is not considered technically feasible at this time.

5.3 Stack modifications

Modifications to the First Run Down Mill stack, EP 00029, to improve dispersion were considered. The outlet of EP 00029 is approximately 60 feet above ground level and 6 feet in diameter and has an exhaust velocity of 36 feet per second (fps). Most of the other rolling mills at the facility have exhaust velocities closer to 60 fps. Therefore, two options were considered that would increase the First Run Down Mill exhaust velocity to approximately 60 fps: installing a larger fan to increase the exhaust flow rate and reducing the outlet diameter.

A larger fan would increase the volume of air moving through the mist eliminator. An increase in exit velocity from 36 to 60 fps equates to an increase in exhaust flow rate of from approximately 61,000 cubic feet per minute (cfm) to over 100,000 cfm, and this higher air flow rate likely would exceed the mist eliminator's inlet design capacity. For this reason, installation of a larger fan is not considered a technically feasible option.

Installation of a stack reducer may be technically feasible. However, evaluation of the stack structure would be required to confirm it can accommodate the weight of an additional section of stack. Another potential challenge is that the existing stack has a device on top to collect liquids along with heat-traced drain piping. While a detailed drawing of the stack is not currently available, it appears it may be complicated to add to the existing stack configuration, especially given that the work would be done at 60 feet above grade level.

Modeling was performed to evaluate the extent to which an increase in exhaust velocity to 60 fps would reduce predicted impacts from the First Run Down Mill stack. The annual modeled impacts using the Commissioning Plan emission rates and stack changes are presented in Table 4. The Stack Extender increased the stack exhaust velocity from 36 fps to 60 fps and increased the stack height by 1 foot. As shown, there is small improvement especially given the remaining uncertainty in the technical feasibility of a stack reducer. For these reasons, stack modifications are not considered materially feasible.

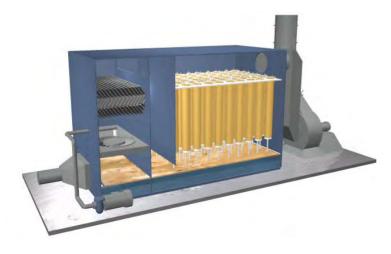
Table 4. Summary of Percent of AGC Exceedance for the First Run Down Mill Contaminants with and without a Stack Extender.

Contaminant	CAS No.	Predicted Concentration (µg/m³) / Percent of AGC without Stack Extender (Commissioning Plan Emission Rates)	Predicted Concentration (µg/m³) / Percent of AGC with Stack Extender (Commissioning Plan Emission Rates)
Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9- octadecen-1-yloxy]-	57635-48-0	0.0232 / 232%	0.0207 / 207%
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	0.0140 / 140%	0.0125 / 125%
Confidential Ingredient	Trade Secret #8	0.0465 / 4,645%	0.0414 / 4,143%

5.4 Add-on controls

An initial add-on control screening was performed to identify potentially feasible and demonstrated technologies. This screening was intended to eliminate technologies that were clearly inappropriate for the emission source of interest. Potential technologies for screening were derived from available references, including:

- Handbook on Control Technologies for Hazardous Air Pollutants, U.S. Environmental Protection Agency (EPA/625/6-91/014), June 1991
- Office of Air Quality Planning and Standards (OAQPS) Control Costs Manual, EPA, Sixth Edition, January 2002
- Control equipment manufacturers
- · Technical journals, reports, newsletters, and air pollution control seminars


Potential add-on air pollution control device options were evaluated to identify control options that would be technically feasible for the First Run Down Mill. Based on the outlet emissions test data and air dispersion modeling results, and since the emissions result from metal-working fluids, a wet control solution is preferred. The wet control solutions considered as potential options for the First Run Down Mill are:

- Venturi scrubber
- Coalescing fiberbed filter
- Wet electrostatic precipitator

Venturi scrubbers are not typically used for strictly aerosol removal.

The use of a coalescing fiberbed system (see below figure) as a potentially technically feasible add-on control device solution for the First Run Down Mill and existing demister system is being investigated further. The coalescing fiberbed system is highly efficient at capturing aerosol particles with some vendors publishing 99.5% removal of particles larger than 5 microns. Additional evaluation of this technology and specific emissions profile with vendors would be needed to validate the technical feasibility of this control device option.

As noted earlier, there are not prescribed sampling or analytical methods for the three constituents under investigation. Thus, equipment manufacturer performance guarantees would be limited to surrogate air contaminants (e.g., liquid aerosols) and may not represent the true control of the target air contaminants.

A wet electrostatic precipitator is considered a technically feasible alternative but will have a higher capital expenditure and higher operating expenses than the coalescing fiberbed system.

5.4.1 Exhaust and emission profile

First Run Down Mill Exhaust and Emission Profile is shown below:

- Exhaust flow Approximately 63,000 actual cubic feet per minute (acfm)
- Estimated delta pressure (dp) 15" water column (subject to engineering)
- Emission Profile see Table 3

5.4.2 Cost of controls

Order of magnitude cost estimates for a coalescing fiberbed system are as follows:

Capital Cost Range: \$350,000 - \$450,000 (subject to design)

Capital Cost Range, ID Fan: \$100,000 - \$150,000 (subject to design)

Operating Costs: Approximately \$30 – \$40/hr in utilities (subject to final design)

Considering the potential capital costs alone for a coalescing fiberbed system, and assuming 99.5% removal efficiency, the cost-effectiveness of this add-on control option ranges from \$1.3 to \$1.8 million per ton of contaminant removed.

As noted previously, a wet electrostatic precipitator is considered a technically feasible alternative but will have a higher capital expenditure and higher operating expenses than a coalescing fiberbed system.

RESIDUAL RISK EVALUATION

The qualitative residual risk was calculated for the First Run Down Mill for the sum of T-BACT subject air contaminant emissions. The approach to the residual risk evaluation depends on whether subject air contaminants are carcinogenic or noncarcinogenic; however, given that limited toxicology information was found to be available for the three T-BACT subject contaminants, their carcinogenicity is unknown.

For carcinogenic contaminants, the residual cancer risk is the summation of the risk estimate for each individual air contaminant. The risk estimate for each air contaminant is calculated by dividing the annual maximum predicted concentration (from AERMOD) by the contaminant specific AGC. For non-carcinogenic contaminants, the residual non-cancer risk, or hazard index (HI), is the summation of the hazard quotient (HQ) for each individual air contaminant. The HQ for each air contaminant is calculated by dividing the annual maximum predicted concentration (from AERMOD) by the contaminant specific AGC.

The residual risk for the three T-BACT subject contaminants is calculated as follows:

 $Risk_T = Risk_1 + Risk_2 + Risk_3$

 $Risk_T = Total Risk$

Risk₁ = annual maximum predicted concentration for the Poly(oxy-1,2-ethanediyl) compound ÷ Poly(oxy-1,2-ethanediyl) compound AGC

Risk₂ = annual maximum predicted concentration for Fatty acids, C18-unsaturated phosphates ÷ Fatty acids, C18-unsaturated phosphates AGC

Risk₃ = annual maximum predicted concentration for Trade Secret #8 ÷ Trade Secret #8 AGC

The residual risk calculations are provided in the table below.

Table 5. Summary of Residual Cancer Risk from First Run Down Mill

Individual Contaminant	CAS No.	Carcinogen/ Non-carcinogen	Maximum Annual Impact (µg/m³)	ACG ^(a) (μg/m³)	Risk _i ^(b)	Risk _T ^(c)
Poly(oxy-1,2- ethanediyl), α- (carboxymethyl)-ω- [(9Z)-9-octadecen-1- yloxy]-	57635-48-0	Unknown	0.0424	0.01	4.24	01.6
Fatty acids, C18- unsaturated phosphates	Trade Secret #5	Unknown	0.0254	0.01	2.54	· 91.6
Trade Secret	Trade Secret #8	Unknown	0.0848	0.001	84.8	
Notes: (a) The AGCs ref	lect interim AGCs ass	igned by NYSDEC ATS				

- Risk_i = Individual risk
- $Risk_T = Total \ risk$, sum of individual risks

The total risk (Risk_T) is greater than 10, which is the acceptable residual risk management value for carcinogens, and it also is greater than 2, which is the acceptable residual risk management value for non-carcinogens. However, as explained by NYSDEC ATS in its communication of the interim AGCs for these constituents, there was limited to essentially no toxicological information available for these constituents; therefore, the interim AGCs assigned by NYSDEC are considered highly conservative ².

For the calculation of residual cancer risk to yield an acceptable result where the interim AGC is $0.01~\mu g/m^3$, the maximum annual predicted impact of that constituent would need to be less than $0.1~\mu g/m^3$. For the calculation of residual cancer risk to yield an acceptable result where the interim AGC is $0.001~\mu g/m^3$, the maximum annual predicted impact of that constituent would need to be less than $0.01~\mu g/m^3$.

For the calculation of residual non-carcinogen risk to yield an acceptable result where the interim AGC is 0.01 $\mu g/m^3$, the maximum annual predicted impact of that constituent would need to be less than 0.02 $\mu g/m^3$. For the calculation of residual non-carcinogen risk to yield an acceptable result where the interim AGC is 0.001 $\mu g/m^3$, the maximum annual predicted impact of that constituent would need to be less than 0.002 $\mu g/m^3$. NYSDEC's assignment of 10X and 100X safety factors applied to the de minimis AGC due to "uncertainties in the toxicological database" and "lack of information in the toxicological database", respectively, makes the possibility of a successful residual risk demonstration highly unlikely.

 $^{^2}$ The Kathon SDS indicates an Oral LD50 value for Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- (CAS 57635-48-0) of > 2,000 mg/kg (Rat). We request that NYSDEC consider this information if it hasn't already as part of its toxicological review.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Process changes, reformulation, stack modifications, and add-on control alternatives were evaluated as potential T-BACT options for the First Run Down Mill. Process changes and material substitution and reformulation were not feasible for reasons described in Section 5. A coalescing fiberbed system and wet electrostatic precipitator were found to be technically feasible add-on control options; however, the cost-effectiveness of the least costly add-on control option ranges from \$1.3 to \$1.8 million per ton of contaminant removed.

7.2 T-BACT recommendation

The following factors impact the assessment of T-BACT for the First Run Down Mill:

- · Revere has instituted effective process controls to the extent practical
- Revere has conducted initial evaluations of coolant alternatives, and each has challenges that would need to be vetted with further evaluation before they could be trialed at the facility
- The First Run Down Mill is equipped with a mist eliminator to minimize emissions
- The three target constituents have low volatility and, therefore, estimated emissions may be overly conservative (on the high side)
- There is a lack of specific sampling and analytical methods for the target constituents
- The interim AGCs assigned by NYSDEC have built-in safety factors of 10x and 100x due to a lack of available toxicological information and, thus, are overly conservative
- Predicted impacts of the three target constituents are less than NYSDEC's published de mimimis AGC of 0.1 $\mu g/m3$
- It is doubtful that an air pollution control manufacturer will provide a removal efficiency
 guarantee for the target compounds given the lack of information on these chemicals and the
 inability to quantify their physical state (e.g., aerosol, solid) or their present
 concentration/mass
- The estimated cost of removing approximately 665 combined pounds per year of the three target contaminants (540 pounds for the Commissioning Plan operating scenario) is \$1.3 to \$1.8 million per ton of contaminant removed.

For these reasons, this evaluation concludes that the 1721 First Run Down Mill has T-BACT for emissions of the three specified contaminants, since no other alternatives could be demonstrated as feasible. Considered alternatives were either not technically feasible or not economically feasible.

ATTACHMENT G FULL ENVIRONMENTAL ASSESSMENT FORM

Full Environmental Assessment Form Part 1 - Project and Setting

Instructions for Completing Part 1

Part 1 is to be completed by the applicant or project sponsor. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A & B. In Sections C, D & E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section G requires the name and signature of the applicant or project sponsor to verify that the information contained in Part 1 is accurate and complete.

A. Project and Applicant/Sponsor Information.

Name of Action or Project:				
Air State Facility Permit renewal, boiler fuel oil conversion project (i.e., #6 fuel oil to #2 fuel oil) and furnace replacement				
DEC ID 6-3013-00091) for the rage Tank Registration, Site N	Rome, NY facility. In addition o. 6-129550 has been modified			
ing from these changes do not	trigger New Source Review			
Name of Applicant/Sponsor: Telephone: 315-338-2160				
E-Mail: dozog@reverecopper.com				
State: NY	Zip Code: 13440			
Telephone:	-			
E-Mail:				
State:	Zip Code:			
Telephone:	l			
E-Mail:				
State:	Zip Code:			
,	DEC ID 6-3013-00091) for the orage Tank Registration, Site Norage Tank Registration, Site Nor			

B. Government Approvals

B. Government Approvals, Funding assistance.)	, or Spon	sorship. ("Funding" includes grants, loans, ta	ax relief, and any other	r forms of financial
Government Entity		If Yes: Identify Agency and Approval(s) Required	Applicati (Actual or)	
a. City Counsel, Town Board, ☐Yes or Village Board of Trustees	s Z No			
b. City, Town or Village Yes Planning Board or Commission	s☑No			
c. City, Town or ☐Yes Village Zoning Board of Appeals	s☑No			
d. Other local agencies ☐Yes	s Z No			
	s☑No			
f. Regional agencies Yes	s N o			
g. State agencies	s□No	New York State Department of Environmental Conservation - see Attachment A	2/8/2023 (air permit)	
_	S☑No			
i. Coastal Resources.i. Is the project site within a Coasta	al Area, o	r the waterfront area of a Designated Inland W	Vaterway?	□Yes ☑ No
ii. Is the project site located in a coniii. Is the project site within a Coasta		with an approved Local Waterfront Revitalizate Hazard Area?	tion Program?	☐ Yes ☑ No ☐ Yes ☑ No
C. Planning and Zoning				
C.1. Planning and zoning actions.				
only approval(s) which must be grante • If Yes, complete sections C, I	ed to enab F and G.	mendment of a plan, local law, ordinance, rule ele the proposed action to proceed? Inplete all remaining sections and questions in I		□Yes ☑ No
C.2. Adopted land use plans.				
where the proposed action would be If Yes, does the comprehensive plan in	located?	age or county) comprehensive land use plan(s) cific recommendations for the site where the pd action will occur in the interior of existing	proposed action	☑Yes□No ☑Yes□No chment A.
b. Is the site of the proposed action within any local or regional special planning district (for example: Greenway; Brownfield Opportunity Area (BOA); designated State or Federal heritage area; watershed management plan; or other?) If Yes, identify the plan(s): Remediaton Sites:633007, Remediaton Sites:633008, NYS Heritage Areas:Mohawk Valley Heritage Corridor				
c. Is the proposed action located whole or an adopted municipal farmland proposed in the plan(s):		ally within an area listed in an adopted munici plan?	ipal open space plan,	□Yes☑No

C.3. Zoning	
a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. If Yes, what is the zoning classification(s) including any applicable overlay district? I-G General Industrial, R-2 Single Family Residential, and NA Natural Areas	✓ Yes □ No
b. Is the use permitted or allowed by a special or conditional use permit? Not Applicable	☐ Yes No
c. Is a zoning change requested as part of the proposed action? If Yes, i. What is the proposed new zoning for the site?	☐ Yes Z No
C.4. Existing community services.	
a. In what school district is the project site located? Rome City School District	
b. What police or other public protection forces serve the project site? City of Rome Police Department, New York State Police Department - Troop D-Zone 1, Oneida County Sheriffs Department	
c. Which fire protection and emergency medical services serve the project site? City of Rome Fire Department	
d. What parks serve the project site? Riverside Park is nearby as well as an adjacent_park (Pinti Field) that includes a baseball field, swimming pool, outdoor track, ar	d skatepark.
D. Project Details	
D.1. Proposed and Potential Development	
a. What is the general nature of the proposed action (e.g., residential, industrial, commercial, recreational; if mixed components)? Industrial.	, include all
b. a. Total acreage of the site of the proposed action? b. Total acreage to be physically disturbed? c. Total acreage (project site and any contiguous properties) owned or controlled by the applicant or project sponsor? 77.7 acres The proposed occur in the integration of the proposed action? 77.7 acres The proposed occur in the integration of the proposed action? 77.7 acres	erior of
c. Is the proposed action an expansion of an existing project or use? i. If Yes, what is the approximate percentage of the proposed expansion and identify the units (e.g., acres, miles, square feet)? % Units:	☐ Yes No housing units,
d. Is the proposed action a subdivision, or does it include a subdivision?	□Yes Z No
If Yes, <i>i</i> . Purpose or type of subdivision? (e.g., residential, industrial, commercial; if mixed, specify types)	
ii. Is a cluster/conservation layout proposed?iii. Number of lots proposed?	□Yes□No
e. Will the proposed action be constructed in multiple phases? i. If No, anticipated period of construction: months ii. If Yes: • Total number of phases anticipated • Anticipated commencement date of phase 1 (including demolition) month year • Anticipated completion date of final phase month year • Generally describe connections or relationships among phases, including any contingencies where progress determine timing or duration of future phases:	

	et include new resid				☐Yes Z No	
If Yes, show num	bers of units propo					
	One Family	Two Family	Three Family	Multiple Family (four or more)		
Initial Phase						
At completion						
of all phases						
a Doos the muone	and nation include	marri man masidantia	l construction (inclu	ding armonoiona)?	☐Yes Z No	
If Yes,	sed action include	new non-residentia	i construction (men	iding expansions):	I i es MINO	
,	of structures					
ii. Dimensions (in feet) of largest p	roposed structure:	height;	width; andlength		
iii. Approximate	extent of building	space to be heated	or cooled:	square feet		
h Does the propo	sed action include	construction or oth	er activities that wil	l result in the impoundment of any	☐ Yes Z No	
				agoon or other storage?	105	
If Yes,			F,			
	impoundment:					
ii. If a water imp	oundment, the prin	cipal source of the	water:	Ground water Surface water strea	ms Other specify:	
						
iii. If other than w	vater, identify the ty	ype of impounded/o	contained liquids an	d their source.		
iv Approximate	size of the propose	d impoundment	Volume	million gallons; surface area: _	acres	
				height; length	deres	
				ructure (e.g., earth fill, rock, wood, con	crete):	
·					<u> </u>	
D.2. Project Op	erations					
a. Does the propo	sed action include	any excavation, mi	ning, or dredging, d	uring construction, operations, or both?	Yes√No	
	(Not including general site preparation, grading or installation of utilities or foundations where all excavated					
	materials will remain onsite) The proposed action will occur in the interior of existing buildings.					
	If Yes:					
i. What is the pu	rpose of the excava	ation or dredging?		1. 16 4 4 4		
				o be removed from the site?		
	• Over what duration of time?					
iii. Describe natur	re and characteristi	es of materials to b	c excavated of dred;	ged, and plans to use, manage of dispos	c of them.	
		or processing of ex			☐Yes ☐No	
If yes, descri	be					
	. 1 . 1 1 1	1				
v. What is the to	tal area to be dredg	ged or excavated?	·····	acres		
				acres		
	oe the maximum de avation require blas		or dredging?	feet	□Yes□No	
ix. Summarize sit	e reclamation goals	s and plan.				
b. Would the prot	oosed action cause	or result in alteration	on of, increase or de	crease in size of, or encroachment	∏Yes √ No	
into any existi	ng wetland, waterb	ody, shoreline, bea	ch or adjacent area?	The proposed action will occur in the	ne interior of	
If Yes:				existing buildings.		
				vater index number, wetland map numb	er or geographic	
description):						

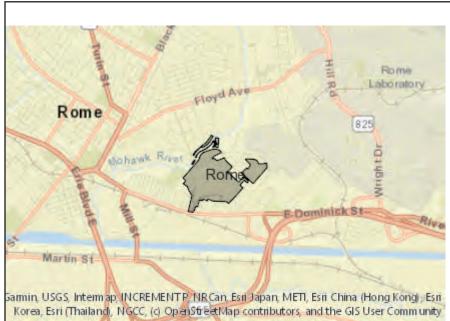
<i>ii.</i> Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placeme alteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in squ	
iii. Will the proposed action cause or result in disturbance to bottom sediments? If Yes, describe:	□Yes□No
If Yes, describe:	☐ Yes ☐ No
acres of aquatic vegetation proposed to be removed:	
expected acreage of aquatic vegetation remaining after project completion:	
• purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):	
proposed method of plant removal:	
if chemical/herbicide treatment will be used, specify product(s):	
v. Describe any proposed reclamation/mitigation following disturbance:	
c. Will the proposed action use, or create a new demand for water?	Z Yes □No
If Yes: See Attachment A	
 i. Total anticipated water usage/demand per day: 400 gallons/day ii. Will the proposed action obtain water from an existing public water supply? If Yes: 	Z Yes □No
Name of district or service area: City of Rome	
Does the existing public water supply have capacity to serve the proposal?	✓ Yes No
• Is the project site in the existing district?	Z Yes □ No
• Is expansion of the district needed?	☐ Yes ✓ No
• Do existing lines serve the project site?	✓ Yes No
iii. Will line extension within an existing district be necessary to supply the project? f Yes:	□Yes ∠ No
Describe extensions or capacity expansions proposed to serve this project:	
Source(s) of supply for the district:	
<i>iv</i> . Is a new water supply district or service area proposed to be formed to serve the project site? If, Yes:	☐ Yes Z No
Applicant/sponsor for new district:	
Date application submitted or anticipated:	
Proposed source(s) of supply for new district:	
v. If a public water supply will not be used, describe plans to provide water supply for the project:	
vi. If water supply will be from wells (public or private), what is the maximum pumping capacity:	gallons/minute.
d. Will the proposed action generate liquid wastes? See Attachment A If Yes:	✓ Yes □No
i. Total anticipated liquid waste generation per day:400 gallons/day	
ii. Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe all	components and
approximate volumes or proportions of each):	
See Attachment A	
ii. Will the proposed action use any existing public wastewater treatment facilities? If Yes:	✓ Yes □ No
Name of wastewater treatment plant to be used: The City of Rome Water Pollution Control Facility	
Name of district: <u>City of Rome</u>	
Does the existing wastewater treatment plant have capacity to serve the project?	Z Yes □No
Is the project site in the existing district? In the project site in the existing district?	✓ Yes □No
• Is expansion of the district needed?	☐ Yes Z No

 Do existing sewer lines serve the project site? Will a line extension within an existing district be necessary to serve the project? 	⊘ Yes □ No □ Yes ⊘ No
If Yes: • Describe extensions or capacity expansions proposed to serve this project:	
<i>iv.</i> Will a new wastewater (sewage) treatment district be formed to serve the project site? If Yes:	☐ Yes Z No
 Applicant/sponsor for new district: Date application submitted or anticipated: 	
 What is the receiving water for the wastewater discharge? v. If public facilities will not be used, describe plans to provide wastewater treatment for the receiving water (name and classification if surface discharge or describe subsurface dispose Attachment A 	project, including specifying proposed
vi. Describe any plans or designs to capture, recycle or reuse liquid waste: See Attachment A	
e. Will the proposed action disturb more than one acre and create stormwater runoff, either fr sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater source (i.e. sheet flow) during construction or post construction? If Yes:	
 i. How much impervious surface will the project create in relation to total size of project par Square feet or acres (impervious surface) Square feet or acres (parcel size) ii. Describe types of new point sources 	
iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facilit groundwater, on-site surface water or off-site surface waters)?	y/structures, adjacent properties,
If to surface waters, identify receiving water bodies or wetlands:	
• Will stormwater runoff flow to adjacent properties? iv. Does the proposed plan minimize impervious surfaces, use pervious materials or collect a	☐ Yes☐ No nd re-use stormwater? ☐ Yes☐ No
f. Does the proposed action include, or will it use on-site, one or more sources of air emissio combustion, waste incineration, or other processes or operations? See Attachmen	
 If Yes, identify: i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicle The facility will continue to operate site vehicles such as trucks and forklifts, and delivery/shipping vel ii. Stationary sources during construction (e.g., power generation, structural heating, batch p 	nicles will continue to serve the facility.
The proposed action does not involve construction. iii. Stationary sources during operations (e.g., process emissions, large boilers, electric gener Revere seeks to replace a casting furnace and change the boiler backup fuel from #6 fuel oil to #2 fue	
g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration or Federal Clean Air Act Title IV or Title V Permit?	, Air Facility Permit, ✓Yes ☐No
 If Yes: i. Is the project site located in an Air quality non-attainment area? (Area routinely or period ambient air quality standards for all or some parts of the year) iii Is addition to project site of the period and the project will properly a standard or some parts of the year) 	ically fails to meet ☐Yes ☑No
 ii. In addition to emissions as calculated in the application, the project will generate: Tons/year (short tons) of Carbon Dioxide (CO₂) Tons/year (short tons) of Nitrous Oxide (N₂O) Tons/year (short tons) of Perfluorocarbons (PFCs) Tons/year (short tons) of Sulfur Hexafluoride (SF₆) 	No additional emissions anticipated
 Tons/year (short tons) of Carbon Dioxide equivalent of Hydroflouroca Tons/year (short tons) of Hazardous Air Pollutants (HAPs) 	rbons (HFCs)

h. Will the proposed action generate or emit methane (included landfills, composting facilities)? If Yes: i. Estimate methane generation in tons/year (metric):		Z Yes□No
ii. Describe any methane capture, control or elimination me electricity, flaring): None	easures included in project design (e.g., combustion to g	generate heat or
Will the proposed action result in the release of air polluta quarry or landfill operations? If Yes: Describe operations and nature of emissions (e.g., di		□Yes ☑ No
j. Will the proposed action result in a substantial increase in new demand for transportation facilities or services? If Yes: i. When is the peak traffic expected (Check all that apply) Randomly between hours of to to ii. For commercial activities only, projected number of true.	ee Attachment A :	Yes
 iii. Parking spaces: Existing	sting roads, creation of new roads or change in existing available within ½ mile of the proposed site? ortation or accommodations for use of hybrid, electric	□Yes□No
k. Will the proposed action (for commercial or industrial profor energy? If Yes: i. Estimate annual electricity demand during operation of the Additional demand is estimated to be a 16.2% increase for the faction. Anticipated sources/suppliers of electricity for the project other): Grid/local utility (National Grid) iii. Will the proposed action require a new, or an upgrade, to	he proposed action:acility overall in comparison to 2022 use. ct (e.g., on-site combustion, on-site renewable, via grid/	✓Yes No
Not applicable Saturday: Holidays: Hours of operation. Answer all items which apply. Not applicable Saturday: Sunday: Holidays:	 ii. During Operations: Monday - Friday:	on needs

m. Will the proposed action produce noise that will exceed existing ambient noise levels during construction, operation, or both?	☐ Yes Z No
If yes:	
i. Provide details including sources, time of day and duration:	
ii. Will the proposed action remove existing natural barriers that could act as a noise barrier or screen?	□Yes□No
Describe:	
n. Will the proposed action have outdoor lighting?	☐ Yes Z No
If yes:	
i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures:	
ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen?	□Yes□No
Describe:	
o. Does the proposed action have the potential to produce odors for more than one hour per day?	☐ Yes ☑ No
If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest	
occupied structures:	
Will do a sound of the first bound of the first bou	
p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons) or chemical products 185 gallons in above ground storage or any amount in underground storage? See Attack	✓ Yes □No
If Yes:	nment A
i. Product(s) to be stored No. 2 fuel oil ii. Volume(s) per unit time (e.g., month, year)	
iii. Generally, describe the proposed storage facilities:	
No new storage facilities. Two existing 40,000-gallon aboveground No. 6 fuel oil storage tanks have been converted to No. 2 fu	uel oil storage.
q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides,	☐ Yes ☑ No
insecticides) during construction or operation? If Yes:	
i. Describe proposed treatment(s):	
ii. Will the proposed action use Integrated Pest Management Practices? The Will the proposed action (commercial or industrial projects only) involve or require the management or disposal.	☐ Yes ☐ No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal	☐ Yes ☐No ✓ Yes ☐No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes:	
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility:	
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time)	
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid wasters.	✓ Yes □No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time)	✓ Yes □No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waster. • Construction: Not Applicable	✓ Yes □No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waster. • Construction: Not Applicable • Operation: Revere uses scrap copper (non-consumer) as feedstock for the manufacturing process. Copper pieces gemanufacturing process is returned to the casting furnaces for re-melt.	✓ Yes □No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waster. • Construction: Not Applicable • Operation: Revere uses scrap copper (non-consumer) as feedstock for the manufacturing process. Copper pieces geomanufacturing process is returned to the casting furnaces for re-melt. iii. Proposed disposal methods/facilities for solid waste generated on-site:	✓ Yes □No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waster. • Construction: Not Applicable • Operation: Revere uses scrap copper (non-consumer) as feedstock for the manufacturing process. Copper pieces gemanufacturing process is returned to the casting furnaces for re-melt.	✓ Yes □No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)? See Attachment A If Yes: i. Describe any solid waste(s) to be generated during construction or operation of the facility: • Construction: Not Applicable tons per (unit of time) • Operation: tons per (unit of time) ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waster. • Construction: Not Applicable • Operation: Revere uses scrap copper (non-consumer) as feedstock for the manufacturing process. Copper pieces geomanufacturing process is returned to the casting furnaces for re-melt. iii. Proposed disposal methods/facilities for solid waste generated on-site:	Yes No

If Y i. ii.	Type of management or handling of waste proposed	for the site (e.g., recycling ombustion/thermal treatmereatment	or transfer station, composting	☐ Yes ☑ No g, landfill, or	
t W	Vill the proposed action at the site involve the commer	cial generation treatment	storage or disposal of hazard	ous TVes 7No	
	vaste?	ciai generation, treatment,	storage, or disposar or nazard	ous [] Tes [] No	
If Y					
i.	Name(s) of all hazardous wastes or constituents to be	generated, handled or mar	naged at facility:		
ii.	Generally describe processes or activities involving h	azardous wastes or constitu	uents:		
iii.	Specify amount to be handled or generated to	ons/month			
	Describe any proposals for on-site minimization, recy		is constituents:		
v.	Will any hazardous wastes be disposed at an existing	offsite hazardous waste fa	cility?	□Yes□No	
	es: provide name and location of facility:				
If N	o: describe proposed management of any hazardous v	vastas which will not be so	ent to a hazardous wasta facilit	***	
11 11	o. describe proposed management of any nazardous v	vastes which will not be se	in to a nazardous waste facilit	y.	
т. (Star and Cattley of December 1 Anti-				
E. 3	Site and Setting of Proposed Action				
E. 1	1. Land uses on and surrounding the project site				
a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. ☐ Urban ☑ Industrial ☐ Commercial ☑ Residential (suburban) ☐ Rural (non-farm) ☐ Forest ☐ Agriculture ☐ Aquatic ☐ Other (specify):					
h I	and uses and covertypes on the project site.				
U. L	Land use or	Current	Acreage After	Change	
	Covertype	Acreage	Project Completion	(Acres +/-)	
•	Roads, buildings, and other paved or impervious surfaces	Approx. 48.9	48.9	0	
•	Forested	19.2	19.2	0	
•	Meadows, grasslands or brushlands (non-	7.6	7.6	0	
	agricultural, including abandoned agricultural)	7.0	7.0	0	
•	Agricultural				
•	(includes active orchards, field, greenhouse etc.) • Surface water features				
	(lakes, ponds, streams, rivers, etc.)	2	2	0	
•	Wetlands (freshwater or tidal)				
•	Non-vegetated (bare rock, earth or fill)				
•	• Other				
	Describe:				


c. Is the project site presently used by members of the community for public recreation? i. If Yes: explain:	□Yes☑No
d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site? If Yes, i. Identify Facilities:	✓ Yes No
Here We Grow Again Creative Learning Center.	
e. Does the project site contain an existing dam? See Attachment A If Yes:	✓ Yes No
<i>i.</i> Dimensions of the dam and impoundment:	
• Dam height:	
• Dam length:	
• Surface area: 2 acres	
 Volume impounded: <u>2.6069 million (4 ft average depth)</u> gallons OR acre-feet 	
ii. Dam's existing hazard classification: Not Known	
iii. Provide date and summarize results of last inspection:	
Not a public dam - Revere inspects it visually and implements repairs as needed	
f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility, or does the project site adjoin property which is now, or was at one time, used as a solid waste management facili	☐Yes Z No
If Yes:	cy.
i. Has the facility been formally closed?	☐Yes☐ No
If yes, cite sources/documentation:	
ii. Describe the location of the project site relative to the boundaries of the solid waste management facility:	
iii. Describe any development constraints due to the prior solid waste activities:	
None	
	✓ Yes No
g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste?	Y res_no
If Yes:	
i. Describe waste(s) handled and waste management activities, including approximate time when activities occurre	d:
The facility is a large-quantity generator of hazardous waste, which is shipped off-site by authorized transporters to authorized	treatment, storage,
and disposal facilities.	
h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any	✓ Yes No
remedial actions been conducted at or adjacent to the proposed site?	
If Yes:	✓ Yes No
 i. Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply: 	V ies_ino
✓ Yes – Spills Incidents database Provide DEC ID number(s): 2203682	
✓ Yes – Environmental Site Remediation database Provide DEC ID number(s): 633007, 633008	
Neither database	
ii. If site has been subject of RCRA corrective activities, describe control measures:	
633007: An on-site lagoon that was historically used to store acid wastes was lined with 30 mil hypalon liner and was closed in 1	980. The area is now
filled and capped. (Closed)	
iii. Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database? If yes, provide DEC ID number(s): V00077, 633037, B00023, B00010, E633060, E63306	✓ Yes N o
iv. If yes to (i), (ii) or (iii) above, describe current status of site(s):	
2203682: A 10-gallon hydraulic oil spill occured on 7/27/2022 and the spill is currently not closed. 633007: The area is filled and capp	ed, no environmental
problems expected, 633008: The site is abandoned - No environmental stress was noted, V00077, 633037, B00023, and B00010: All been remediated and no further action is required. F633060: The site is capped with a two foot soil cover system meeting Restricted	l effected media has

v. Is the project site subject to an institutional control		□Yes☑No		
If yes, DEC site ID number:	 If yes, DEC site ID number:			
Describe any use limitations:Describe any engineering controls:				
Will the project affect the institutional or engineering		☐ Yes ☐ No		
Explain:				
E.2. Natural Resources On or Near Project Site	The proposed action will occur in th	<u> </u>		
a. What is the average depth to bedrock on the project		et		
b. Are there bedrock outcroppings on the project site?		☐ Yes Z No		
If Yes, what proportion of the site is comprised of bed	rock outcroppings?	%		
c. Predominant soil type(s) present on project site:	Urban land	58.8_%		
	Alton-Urban land complex	1 <u>9.8</u> %		
	Alton gravelly loam			
d. What is the average depth to the water table on the	project site? Average:>6.56 feet			
e. Drainage status of project site soils: Well Draine				
	Well Drained:% of site			
f. Approximate proportion of proposed action site with	1 slopes: 2 0-10%: <u>10</u>	0_% of site		
	n slopes: ☐ 0-10%:	% of site		
		% of site		
g. Are there any unique geologic features on the proje If Yes, describe:		☐ Yes ✓ No		
ii i'es, describe.				
The proposed action wi	Il occur in the interior of existing build	inge		
h. Surface water features.i. Does any portion of the project site contain wetland		-		
ponds or lakes)? See Attachm	ient A	5, 11, 615,		
ii. Do any wetlands or other waterbodies adjoin the pr	roject site?	✓ Yes No		
If Yes to either <i>i</i> or <i>ii</i> , continue. If No, skip to E.2.i.				
iii. Are any of the wetlands or waterbodies within or a	adjoining the project site regulated by any	federal,		
state or local agency? iv. For each identified regulated wetland and waterbo	dy on the project site provide the following	ng information:		
<u> </u>	Clas	_		
Lakes or Ponds: NameWetlands: Name Federal Waters, NYS	Wetland, Federal Waters, Fe App.	proximate Size NYS Wetland (in a		
• Wetland No. (if regulated by DEC) RO-8				
v. Are any of the above water bodies listed in the mos waterbodies?	t recent compilation of NYS water qualit	y-impaired ☐ Yes ☑ No		
If yes, name of impaired water body/bodies and basis	for listing as impaired:			
i. Is the project site in a designated Floodway?		Z Yes N o		
j. Is the project site in the 100-year Floodplain?		✓ Yes □No		
k. Is the project site in the 500-year Floodplain?		Z Yes □No		
l. Is the project site located over, or immediately adjoints.	ning, a primary, principal or sole source a	aquifer?		
If Yes: i. Name of aquifer: Principal Aquifer				
a riamo or aquiror.				

	The proposed action will	occur in the interior of existir	ng buildings.
m. Identify the predominant wildlife species that small mammals bir	occupy or use the project site:	amphibians	
n. Does the project site contain a designated sign: If Yes: i. Describe the habitat/community (composition)	·	tion):	☐ Yes Z No
 ii. Source(s) of description or evaluation:	or animal that is listed by the federal areas identified as habitat for an	acres acres acres eral government or NYS as n endangered or threatened spec	☐ Yes ☑ No sies?
p. Does the project site contain any species of pl special concern? If Yes: i. Species and listing:	·	-	□Yes √ No
q. Is the project site or adjoining area currently us. If yes, give a brief description of how the propose Tributary of the Mohawk River is adjoining the prope	ed action may affect that use:		Z Yes□No
E.3. Designated Public Resources On or Near	Project Site		
a. Is the project site, or any portion of it, located Agriculture and Markets Law, Article 25-AA, If Yes, provide county plus district name/numbe	in a designated agricultural district. Section 303 and 304?	ct certified pursuant to	∐Yes ∏ No
b. Are agricultural lands consisting of highly proci. If Yes: acreage(s) on project site?	-		∐Yes √ No
 c. Does the project site contain all or part of, or in Natural Landmark? If Yes: i. Nature of the natural landmark: ☐ Biomiliar Distriction ii. Provide brief description of landmark, including 	ological Community Ging values behind designation ar	eological Feature nd approximate size/extent:	
d. Is the project site located in or does it adjoin a If Yes: i. CEA name:		al Area?	□Yes √ No

ii. Basis for designation: ____iii. Designating agency and date: _

e. Does the project site contain, or is it substantially contiguous to, a but which is listed on the National or State Register of Historic Places, of Office of Parks, Recreation and Historic Preservation to be eligible for If Yes:	r that has been determined by the Commission	
i. Nature of historic/archaeological resource: ☐ Archaeological Site ii. Name: Eligible property:NOLAN CORP. (NOLAN-JAMPOL, INC.)	☐ Historic Building or District	
iii. Brief description of attributes on which listing is based:		
f. Is the project site, or any portion of it, located in or adjacent to an archaeological sites on the NY State Historic Preservation Office (SF		Z Yes □No
g. Have additional archaeological or historic site(s) or resources been in If Yes:i. Describe possible resource(s):		∏Yes Z No
ii. Basis for identification:		·
h. Is the project site within fives miles of any officially designated and scenic or aesthetic resource? If Yes: i. Identify resource: North Country Trail The proposed action will on will not be negatively impact	ccur in the interior of the buildings. The N	☑Yes ☐No lorth County Trail
 ii. Nature of, or basis for, designation (e.g., established highway overletc.): National scenic trail iii. Distance between project and resource:	-	scenic byway,
i. Is the project site located within a designated river corridor under the Program 6 NYCRR 666? If Yes: I destify the page of the river and its designation.		☐ Yes ☑ No
i. Identify the name of the river and its designation:ii. Is the activity consistent with development restrictions contained in		□Yes □No
F. Additional Information Attach any additional information which may be needed to clarify you If you have identified any adverse impacts which could be associated measures which you propose to avoid or minimize them.		npacts plus any
G. Verification I certify that the information provided is true to the best of my knowled	edge.	
Applicant/Sponsor Name David Ozog	Date	
Signature	Title_Lead Env Operation & Facilities Engineer	r

Disclaimer: The EAF Mapper is a screening tool intended to assist project sponsors and reviewing agencies in preparing an environmental assessment form (EAF). Not all questions asked in the EAF are answered by the EAF Mapper. Additional information on any EAF question can be obtained by consulting the EAF Workbooks. Although the EAF Mapper provides the most up-to-date digital data available to DEC, you may also need to contact local or other data sources in order to obtain data not provided by the Mapper. Digital data is not a substitute for agency determinations.

B.i.i [Coastal or Waterfront Area]	No
B.i.ii [Local Waterfront Revitalization Area]	No
C.2.b. [Special Planning District]	Yes - Digital mapping data are not available for all Special Planning Districts. Refer to EAF Workbook.
C.2.b. [Special Planning District - Name]	Remediaton Sites:633007, Remediaton Sites:633008, NYS Heritage Areas:Mohawk Valley Heritage Corridor
E.1.h [DEC Spills or Remediation Site - Potential Contamination History]	Yes - Digital mapping data for Spills Incidents are not available for this location. Refer to EAF Workbook.
E.1.h.i [DEC Spills or Remediation Site - Listed]	Yes
E.1.h.i [DEC Spills or Remediation Site - Environmental Site Remediation Database]	Yes
E.1.h.i [DEC Spills or Remediation Site - DEC ID Number]	633007, 633008
E.1.h.iii [Within 2,000' of DEC Remediation Site]	Yes
E.1.h.iii [Within 2,000' of DEC Remediation Site - DEC ID]	V00077, 633037, B00023, B00010, E633060, E633064, E633065, 633007, 633008
E.2.g [Unique Geologic Features]	No
E.2.h.i [Surface Water Features]	Yes
E.2.h.ii [Surface Water Features]	Yes
E.2.h.iii [Surface Water Features]	Yes - Digital mapping information on local and federal wetlands and waterbodies is known to be incomplete. Refer to EAF Workbook.
E.2.h.iv [Surface Water Features - Stream Name]	877-1
E.2.h.iv [Surface Water Features - Stream Classification]	С

E.2.h.iv [Surface Water Features - Wetlands Name]	Federal Waters, NYS Wetland
E.2.h.iv [Surface Water Features - Wetlands Size]	NYS Wetland (in acres):38.2
E.2.h.iv [Surface Water Features - DEC Wetlands Number]	RO-8
E.2.h.v [Impaired Water Bodies]	No
E.2.i. [Floodway]	Yes
E.2.j. [100 Year Floodplain]	Yes
E.2.k. [500 Year Floodplain]	Yes
E.2.I. [Aquifers]	Yes
E.2.I. [Aquifer Names]	Principal Aquifer
E.2.n. [Natural Communities]	No
E.2.o. [Endangered or Threatened Species]	No
E.2.p. [Rare Plants or Animals]	No
E.3.a. [Agricultural District]	No
E.3.c. [National Natural Landmark]	No
E.3.d [Critical Environmental Area]	No
E.3.e. [National or State Register of Historic Places or State Eligible Sites]	Yes - Digital mapping data for archaeological site boundaries are not available. Refer to EAF Workbook.
E.3.e.ii [National or State Register of Historic Places or State Eligible Sites - Name]	Eligible property:NOLAN CORP. (NOLAN-JAMPOL, INC.)
E.3.f. [Archeological Sites]	Yes
E.3.i. [Designated River Corridor]	No

Environmental Remediation Databases Details

Site Record

Document Repository

Site-related documents are available for review through the DECInfo Locator on line at DECInfoLocator

Administrative Information

Site Name: Revere Copper and Brass, Inc.

Site Code: 633007

Program: Resource Conservation and Recovery

Classification: A **EPA ID Number**:

Location

DEC Region: 6

Address: Sixth Street **City:**Rome Zip: 13440

County: Oneida

Latitude: 43.2080681 Longitude: -75.436983194

Site Type: LAGOON
Estimated Size: 0.2 Acres

Site Owner(s) and Operator(s)

Current Owner Name: REVERE COOPER AND BRASS, INC.

Current Owner(s) Address: PO BOX 151

ROME, NY, 13440

Current Owner Name: Revere Copper and Brass, Inc.

Current Owner(s) Address: PO BOX 151

ROME, NY, 13440

Owner(s) during disposal: REVERE COOPER AND BRASS, INC.

Hazardous Waste Disposal Period

Site Description

Location and Past Use of the Site: This lined lagoon was built in 1971 with a capacity of 125,000 gallons. The lagoon was used to store acid wastes, and was periodically pumped out by a waste hauler. The Mohawk River is about 800 feet downgradient. The lagoon has been closed since 1980.

The area is now filled and capped. Since the lagoon was lined with a 30 mil hypalon liner environmental problems were not expected.

Contaminants of Concern (Including Materials Disposed)

Contaminant Name/Type

H2SO4, H2O2

Site Environmental Assessment

Nature and extent of Contamination: No environmental problems are known or suspected since this lagoon had a synthetic liner, and has since been closed.

For more Information: E-mail Us

Refine Current Search

Environmental Remediation Databases Details

Site Record

Document Repository

Site-related documents are available for review through the DECInfo Locator on line at DECInfoLocator

Administrative Information

Site Name: Revere Copper and Brass, Inc.

Site Code: 633008

Program: State Superfund Program

Classification: N * **EPA ID Number**:

Location

DEC Region: 6

Address: Culverton and Mayberry Road

City:Rome Zip: **County:**Oneida

Latitude: 43.208931706 Longitude: -75.431260284

Site Type:

Estimated Size: 9 Acres

Site Owner(s) and Operator(s)

Current Owner Name: REVERE COOPER AND BRASS, INC.

Current Owner(s) Address: PO BOX 151

ROME, NY, 13440

Current Owner Name: Revere Copper and Brass, Inc.

Current Owner(s) Address: PO BOX 151

ROME, NY, 13440

Owner(s) during disposal: REVERE COOPER AND BRASS, INC.

Current On-Site Operator: Revere Copper & Brass, Inc.

Stated Operator(s) Address: P.O. BOX 151

ROME, NY 13440

Site Description

This site is an abandoned landfill in a residential area. The nearest residence is approximately 100 feet away. The landfill is not fenced or posted. No environmental stress was noted during the

inspection. A Company representative stated that the area was used for the disposal of demolition debris. Residents are served by the City water supply. No documentation was found to indicate that hazardous waste disposed at this site.

Contaminants of Concern (Including Materials Disposed)

Contaminant Name/Type

WASTE FROM COPPER SMELTING OPERATION

Site Environmental Assessment

Based on the site visit there are no known environmental problems at this site.

For more Information: E-mail Us

Refine Current Search

^{*} Class N Sites: "DEC offers this information with the caution that the amount of information provided for Class N sites is highly variable, not necessarily based on any DEC investigation, sometimes of unknown origin, and sometimes is many years old. Due to the preliminary nature of this information, significant conclusions or decisions should not be based solely upon this summary."

SITE LOCATION MAP

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY

Revere Copper Products, Inc. 1 Revere Park Rome, NY 13440

RAMBOLL

ATTACHMENT A

B. Government Approvals

g. State agencies

New York State Department of Environmental Conservation:

- Air State Facility (ASF) Permit, Permit ID 6-3013-00091/00039 (application submitted 02/08/2023)
- Petroleum Bulk Storage (PBS) Registration, Site No. 6-129550 (Registration merely updated to account for the change in tank service from No. 6 to No. 2 fuel oil)

C.2. Adopted land use plans

a. Land use plans. The site is currently zoned industrial and is occupied by an industrial use. The proposed action is consistent with industrial use.

D. Project Details

- D.2. Project Operations
- c. Water Demand. Revere anticipates hiring approximately 40 additional workers in connection with the Project. Therefore, the amount of potable water, which is provided by the City of Rome, used may increase. An estimate of 10 gallons/day per person¹ was used to estimate new demand for employee potable water use.
- d. Wastewater. Sanitary wastewater may increase as a result of approximately 40 additional workers; the additional wastewater generated by new workers is assumed to equal the estimated new water demand.
- f. Air emissions. Sources of air emissions at the facility are discussed in the Air State Facility Permit application, and emissions are estimated in the application based on operating the proposed new casting furnace and the resulting estimated increase in production.
- j. Traffic increase. There may be some additional traffic related to additional employees, raw material deliveries, and product shipments but it will not meet the threshold level of trips as described in the workbook.
- k. To accommodate the new furnace, two 3805 KVA transformers that are supplied by existing equipment on Revere's island substation were installed at the Cast Shop.
- p. Once Revere transitions the No. 6 fuel oil tanks to No. 2 fuel oil, the 3 boilers will fire natural gas as the primary fuel and No. 2 fuel oil will only be fired during natural gas curtailment events and up to 100 hours per year for the purpose of boiler tune-ups and maintenance. No. 2 fuel oil will be stored in two existing aboveground storage tanks. The Petroleum Bulk Storage (PBS) Registration (6-129550) has been updated for this change in tank service.
- r. Operation of the casting furnaces results in emissions of particulates that are routed to a baghouse to minimize air emissions. Material captured by the baghouse is shipped offsite as a waste. There will be no change in how the waste is managed.

¹ U.S. EPA Lean & Water Toolkit: Appendix C

E. Site and Setting of Proposed Action

- E.1. Land uses on and surrounding the project site
- e. Private existing dam. Revere operates a dam to facilitate the water withdrawal from a Mohawk tributary for process and cooling water use at the facility. No additional water withdrawal is expected.
- h. Surface water features. A portion of the Mohawk River tributary and associated wetlands are located on the northwest section of the property.

ATTACHMENT H
COMMISSIONING PLAN

Attachment H Commissioning Plan Revere Copper Products, Inc.

Revere has developed a plan for commissioning the new 2728 Melting Furnace. The detailed plan is provided in Exhibit H-1 at the end of this attachment. An overview of the commissioning plan, estimated commissioning emissions, and results of air dispersion modeling are provided in this attachment.

Background

In accordance with the Schedule of Compliance issued by New York State Department of Environmental Conservation (NYSDEC), should Revere propose to commission or otherwise initiate the new 2728 Melting Furnace prior to receipt of the Air State Facility (ASF) Permit Modification, Revere is to include for NYSDEC review and approval a temporary commissioning and/or operation plan, which includes sufficient detail to confirm the facility will be in compliance with applicable regulations during operation of the furnace.

Summary of Commissioning Plan

Commissioning of the 2728 Melting Furnace will require close coordination with and involvement of the furnace vendor (Inductotherm), installation vendor (EMSCO), refractory supplier (St. Gobain), and furnace liner vendor (Gradmatic). Commissioning will involve preliminary testing of the furnace to observe functionality, lining the furnace, charging the furnace with copper, and evaluating equipment, software, and refractory functionality. Subsequently, a complete site acceptance test will be performed to ensure every part of the system has been received, installed, and is functioning correctly in accordance with the contract. The duration of furnace commissioning is estimated to be 60 days. Details of the commissioning plan can be found in Exhibit H-1.

Impact on Downstream Processes

Revere has indicated that the lots produced by the 2728 Melting Furnace during the commissioning will only impact certain production machines in the downstream processes. The lots will be directed to the Bar Mill Value Stream and will impact the following operations:

- U-CAST1- 2728 Melting Furnace Vented to Cyclone and Baghouse (EP 00040)
- U-ROLL1 Hot Mill Vented to Mist Eliminator (EP 00030)
- U-ROLL1 First Run Down mill to Mist Eliminator (EP 00029)
- U-OVER1 Overhauler Vented to Wet Scrubber (EP 00031)
- U-ANNE1 Tray Style/coil Anneal (EP 00180/00190)
- U-FURN1 Walking Beam (Cake Heat) Furnace Natural Gas Emissions Only

The estimated operating hours of the above equipment that will result from the lots produced by the 2728 Melting Furnace are provided in Exhibit H-1.

Estimated Emissions

A facility-wide emission inventory that reflects annual facility operations including the operations directly related to the 60-day commissioning plan is presented in Tables 1 – 16 at the end of this Attachment. This emission inventory is a duplicate of the emission inventory provided in Attachment C of the ASF Permit renewal application with the exception that actual annual operating hours for the equipment are estimated as follows:

- Actual 2023 operating hours recorded by Revere for each emission source are used for the months
 of January through June
- For the first 30 days of commissioning, the 2728 Melting Furnace will produce an estimated 7 lots of melted copper per week for a total of 28 lots. For the second 30 days of commissioning, the 2728 Melting Furnace will produce an estimated 26 lots of melted copper per week for a total of 104 lots. Revere uses an estimate of 1.35 hours of operating time per lot based on historical operating information. Total operating time for the 2728 Melting Furnace during the 60-day commissioning period is 178.2 hours.
 - The hourly PM emission factors used to estimate emissions from the 2728 and 2056 Melting Furnaces (i.e., EP 00040) reflect both furnaces operating simultaneously. Therefore, the maximum operating hours between the two furnaces is used to calculate emissions. Since the 2056 Melting Furnace is projected to operate for more hours during the 60-day commissioning period than the 2728 Melting Furnace, the operating hours for the 2056 Melting Furnace are applied to the emission factor to estimate emissions for EP 00040. This is consistent with Revere's current emissions tracking approach, which is reported annually to NYSDEC.
- For equipment that will process the lots produced by the 2728 Melting Furnace, operating hours during each 30-day commissioning period are estimated as the sum of the June 2023 operating hours and the additional operating hours from processing the new furnace lots
- For equipment that will not process the lots produced by the 2728 Melting Furnace, operating hours during each 30-day commissioning period are estimated to be equivalent to the June 2023 operating hours
- For the remaining 4 months of 2023, operating hours for each emission source are based the maximum monthly hours the source operated during the other eight months of 2023.
- Natural gas use is based on 2022 fuel use with the following unit-specific increases:
 - o Cake furnace 23.3%
 - o 1738 Strand Anneal 23.3%
 - o Lee Wilson Bell Anneal 23.3%
 - o Ebner Anneal 23.3%
 - 1154 Bright Anneal 4.9%
 - o 2587 Galvanizing 4.9%

A tabulation of these month-by-month operating hour assumptions for the process operations is provided in Table 17 at the end of this Attachment.

Part 212 Evaluation

Title 6 of the New York Codes, Rules and Regulations (6 NYCRR) Part 212 applies to emission sources and/or emission points associated with a process operation. Upon issuance of a renewal for an existing

permit or registration, facilities must evaluate emissions from processes with respect to Part 212. In accordance with 212-1.2(b)(18), combustion installations are not a process operation and are not subject to Part 212. Therefore, combustion sources at the Revere facility have not been included in the Part 212 evaluation. In addition, in accordance with 212-1.4(a) process emission sources that are exempt or trivial under Section 201-3.2 and 201-3.3 are exempt from Part 212 and have not been included in the evaluation.

Process operations at the facility that are subject to Subparts 212-1 and 212-2 include casting furnaces, rolling mills, annealing furnaces, a pickling line, and a zinc/tin galvanizing line. These sources and their associated key parameters pertinent to the Part 212 evaluation are summarized in **Tables 18** and **19** at the end of this Attachment. Contaminants with high, medium, and low toxicity were assigned an initial Environmental Rating (ER) of A, B, and C, respectively. Contaminants that did not have a toxicity provided in NYSDEC's *DAR-1 Guidelines for the Evaluation and Control of Ambient Air Contaminants under Part 212* (issued February 2021) were assigned an initial ER of B. Refer to Attachment D of the renewal application for additional discussion regarding the evaluation of air toxics requirements.

Air Dispersion Modeling

The facility has performed a Part 212 air dispersion modeling evaluation of commissioning emissions and has included the evaluation in Appendix H-1 to this Attachment. The modeling evaluation includes the modeling protocol submitted to NYSDEC on December 1, 2022 and approved with comments via email received on January 9, 2023; NYSDEC's comments on the modeling protocol were incorporated into the modeling performed and are addressed in the modeling report provided in Appendix H-1.

As discussed in the model report, the modeled impacts for PM_{10} and $PM_{2.5}$ are below the respective NAAQS. The results of the air toxics modeling indicate that the maximum predicted concentrations of three of the modeled air contaminants exceed the Annual Guideline Concentrations (AGC) provided by the NYSDEC Air Toxics Section (ATS). None of the modeled air contaminants exceed the Short-term Guideline Concentration (SGC) values in the NYSDEC DAR-1 AGC/SGC tables.

Three contaminants that exceed their respective AGCs are as follows:

- Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- (CAS# 57635-48-0)
- Fatty acids, C18-unsaturated phosphates (CAS# Trade Secret #6)
- Trade Secret (CAS# Trade Secret #8)

All three of these contaminants are emitted from the First Run Down Mill. None of these contaminants are listed in NYSDEC's DAR-1 AGC/SGC tables, so the ATS provided interim AGC values based on toxicological reviews. The information regarding the toxicities of these contaminants that the ATS was able to find was extremely limited, which resulted in NYSDEC assigning very conservative interim AGC values to these contaminants.

A Toxic – Best Achievable Control Technology (T-BACT) analysis has been included in **Attachment F** of the air permit application for the three air toxics with modeled exceedances.

TABLES

TABLES 1 - 16 EMISSION INVENTORY

Emission Unit	Building / Location		Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements	
U-COMB1	15 Boiler Room	00004	BR1 Boiler 1	G01 Combustion - Natural gas F01 Combustion - Fuel oil (back-up)	42.0 million Btu per hour (MMBtu/hr)	Natural gas (primary fuel) No. 2 fuel oil (back-up fuel) ^(a)	6 NYCRR 225-1.2(a)(2) 6 NYCRR 227-1.3(a)	
		00004	BR2 Boiler 2	G01 Combustion - Natural gas F01 Combustion - Fuel oil (back-up)	42.0 MMBtu/hr	Natural gas (primary fuel) No. 2 fuel oil (back-up fuel) ^(a)	6 NYCRR 225-1.2(a)(2) 6 NYCRR 227-1.3(a)	
		00003	BR3 Boiler 3	G01 Combustion - Natural gas F01 Combustion - Fuel oil (back-up)	57.2 MMBtu/hr	Natural gas (primary fuel) No. 2 fuel oil (back-up fuel) ^(a)	6 NYCRR 225-1.2(a)(2) 6 NYCRR 227-1.3(a)	
U-CAST1	21 Cast Shop	00039	1799 Holding Furnace	BH1 Process (Baghouse) BP1 Process (By-pass)		Copper	6 NYCRR 212	
		00039	2443 Melting Furnace	BH1 Process (Baghouse)		Copper	6 NYCRR 212	
		00040	2056 Melting Furnace	BP1 Process (By-pass) BH2 Process (Baghouse)		Copper	6 NYCRR 212	
		00040	New 2728 Melting Furnace	BP2 Process (By-pass) BH2 Process (Baghouse) BP2 Process (By-pass)		Copper	6 NYCRR 212	
		00040	2057 Melting Furnace	BH1 Process (Baghouse) BP2 Process (By-pass)	_	Copper	6 NYCRR 212	
		00602	Central Vacuum System	VAC Process		Fugitive Dust	6 NYCRR 212	
U-FURN1	51 Rolling Mill	00041	1701 Walking Beam Furnace	G02 Combustion	51.8 MMBtu/hr	Natural gas	6 NYCRR 227-1.3(a)	
J-OVER1	51 Rolling Mill	00031	1715 Overhauler	OVR Process		Copper sheet	6 NYCRR 212	
J-ROLL1	51 Rolling Mill	00036	1176 Bliss Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212	
		00030	1706 Hot Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212	
		00029	1721 First Run Down Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212	
		00026	1723 Reversing Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212	

Emission Unit	Building / Location		Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
		00025	1724 Z-Mill	ROL Process		Copper sheet and metalworking fluid	6 NYCRR 212
J-ANNE1	51 Rolling Mill	00369	1729 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1730 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1731 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1732 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1733 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00369	1734 Lee Wilson Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212
		00440	2383 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen atmosphere	6 NYCRR 212
		00440	2384 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen atmosphere	6 NYCRR 212
		00440	2385 Ebner Anneal	FLD Process		Copper sheet, metalworking fluid, and hydrogen/nitrogen	6 NYCRR 212
		00440	2386 Ebner Anneal	FLD Process		atmosphere Copper sheet, metalworking fluid, and hydrogen/nitrogen	6 NYCRR 212
		00367/ 00362	1154 Bright Anneal (Entry and Exit)	DXG Process, FLD Process		atmosphere Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212

Emission Unit	Building / Location		Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements	
	00027		1738 Strand Anneal	DXG Process, FLD Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212	
		00028	1740 Heavy Gauge Cleaning - Entry	PCK Process		Copper sheet and sulfuric acid	6 NYCRR 212	
		00028	1740 Heavy Gauge Cleaning - Exit	PCK Process		Copper sheet and sulfuric acid	6 NYCRR 212	
		00027	1738 Strand Anneal Cleaning	Cleaning		Cleaning solutions	6 NYCRR 212	
		00028	1740 Heavy Gauge Cleaning - Entry	Cleaning		Cleaning solutions	6 NYCRR 212	
		00028	1740 Heavy Gauge Cleaning - Exit	Cleaning		Cleaning solutions	6 NYCRR 212	
	1 Bar Mill	00189/ 00190	464 Tray Style/Coil Anneal (Entry and Exit)	DXG Process		Copper sheet, metalworking fluid, and DX gas	6 NYCRR 212	
U-GALV1	51 Rolling Mill	00600	02587 - Muriatic Acid Pickling Tank	PIC Process		Copper sheet, muriatic acid, and flux	6 NYCRR 212	
		00601	02587 - Galvanizing Kettle	GAL Process		Copper sheet, molten tin and zinc, and flux	6 NYCRR 212	
			Galvanizing Furnace	Combustion	9.7 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)	
U-SOLV1	51 Rolling Mill	Fugitive	Degreaser	SOL Process	550 Gallons	226-1 Compliant Solvent	6 NYCRR 226-1; 6 NYCRR 212	
Exempt	51 Rolling Mill	00335	1727 Lee Wilson Anneal	Combustion	1.2 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	
		00335	1728 Lee Wilson Anneal	Combustion	1.2 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	
		00334	2381 Ebner Anneal	Combustion	1.6 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	
		00334	2382 Ebner Anneal	Combustion	1.6 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	
		00366	1154 Bright Anneal	Combustion	1.5 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	
		00358	1738 Strand Anneal	Combustion	4.2 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	
	1 Bar Mill	00202	464 Tray Style/Coil Anneal	Combustion	1.5 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)	

Emission Unit	Building / Location	Emission Point	Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
	Main Office Bldg.		2 Building Heaters	Combustion	2 MMBtu/hr Each	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Maint. Storage Bldg.		Building Heater	Combustion	0.074 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Operations Bldg.		Building Heater	Combustion	0.491 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Maint. Office Bldg.		Building Heater	Combustion	0.225 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Cast Shop Office Bldg.		Building Heater	Combustion	0.113 MMBtu/hr	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Facility		22 Unit Heaters	Combustion	1 MMBtu/hr Each	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Facility		10 Water Heaters	Combustion	0.25 MMBtu/hr Each	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(1)(i)
	Cast Shop		Emergency Generator	Combustion	94-hp	Natural gas	Exempt - 6 NYCRR 201- 3.2(c)(6)
	Powerhouse		Emergency Generator	Combustion	168-hp	Diesel	Exempt - 6 NYCRR 201- 3.2(c)(6)
	Soap House		Emergency Generator	Combustion	2680-hp	Diesel	Exempt - 6 NYCRR 201- 3.2(c)(6)
	Main Office		Emergency Generator	Combustion	34-hp	Natural gas	Exempt - 6 NYCRR 201 3.2(c)(6)
	Cast Shop		Emergency Generator - Coreless Furnace	Combustion	335-hp	Natural gas	Exempt - 6 NYCRR 201 3.2(c)(6); 40 CFR 60 Subpart JJJJ
	1 Bar Mill Area		Sodium Hydroxide Storage Tank		6,000 gallon		Exempt - 6 NYCRR 201- 3.2(c)(25)
	1 Bar Mill Area		Grinders for Maintenance				Trivial - 6 NYCRR 201- 3.3(c)(52)
	1 Bar Mill Area		Bar Mill Tanks (Degreasing Units)			non-HAP acids / caustics	Trivial - 6 NYCRR 201- 3.3(c)(47) and 6 NYCR 201-3.3(c)(48)
	1 Bar Mill Area		Silver Plating Line (Silver Cyanide and Potassium Cyanide)			Cyanide compounds	(b)
	Facility		Degreaser (Simple Green)			Caustics	Trivial - 6 NYCRR 201- 3.3(c)(48)

Revere Copper Products, Inc Rome, NY

Emission Unit	Building / Emission Location Point	Emission Source	Emission Process	Capacity	Fuel / Material Processed	Key Applicable Requirements
Unit	Location Point	Emission Source	Emission Process	Сарасіту	Processed	Requirements

Notes:

- (a) Revere has switched the oil fired by the boilers from No. 6 to No. 2 fuel oil.
- (b) The silver plating line had internal worker exposure testing performed in the past, which showed that the only exposures to workers were particulate matter when mixing the solution. As this is not exhausted to atmosphere, this operation not considered an air emissions source and emissions were not quantified.

Table 2 Summary of Facility Total Actual Commissioning Plan Emissions

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
U-COMB1 Natural Gas Combustion (Table	3)				
Carbon Monoxide	00630-08-0	7,938	4.0		
Nitrogen Oxides	NY210-00-0	9,450	4.7		
Sulfur Dioxide	07446-09-5	57	2.8E-02		
Total Particulate Matter	NY075-00-0	718	0.36		
PM ₁₀	NY075-00-5	718	0.36		
PM _{2.5}	NY075-02-5	718	0.36		
Volatile Organic Compounds	NY998-00-0	520	0.26		
Carbon Dioxide	00124-38-9	11,275,324	5,638		
Methane	00074-82-8	213	0.11		
Nitrous Oxide	10024-97-2	21	1.1E-02		
Carbon Dioxide Equivalents	CO2e	11,299,507	5,650		
Total HAPs	NY100-00-0	178	8.9E-02		
Arsenic	07440-38-2	1.9E-02	9.5E-06		
Benzene	00071-43-2	0.20	9.9E-05		
Beryllium	07440-41-7	1.1E-03	5.7E-07		
Cadmium	07440-43-9	0.10	5.2E-05		
Chromium	07440-47-3	0.13	6.6E-05		
Cobalt	07440-48-4	7.9E-03	4.0E-06		
Dichlorobenzene	25321-22-6	0.11	5.7E-05		
Formaldehyde	00050-00-0	7.1	3.5E-03		
Hexane	00110-54-3	170	8.5E-02		
Lead	07439-92-1	4.7E-02	2.4E-05		
Manganese	07439-96-5	3.6E-02	1.8E-05		
Mercury	07439-97-6	2.5E-02	1.2E-05		
Naphthalene	00091-20-3	5.8E-02	2.9E-05		
Nickel	07440-02-0	0.20	9.9E-05		
Polycyclic Organic Matter	POM	8.3E-03	4.2E-06		
Selenium	07782-49-2	2.3E-03	1.1E-06		
Toluene	00108-88-3	0.32	1.6E-04		
Missallaneous Facility Wide Natural Cas C	ombustion (Table	2)			
Miscellaneous Facility-Wide Natural Gas C Carbon Monoxide	00630-08-0	36,491	18		
Nitrogen Oxides	NY210-00-0	43,442	22		
Sulfur Dioxide	07446-09-5	43,442 261	0.13		
Total Particulate Matter	NY075-00-0	3,302	1.7		
PM ₁₀	NY075-00-5	3,302	1.7		
PM _{2.5}	NY075-02-5	3,302	1.7		
			1.7		
Volatile Organic Compounds Carbon Dioxide	NY998-00-0	2,389			
	00124-38-9	51,832,501	25,916		
Methane Nitrous Ovido	00074-82-8	977	0.49 4.9E-02		
Nitrous Oxide Carbon Dioxide Equivalents	10024-97-2	98 51 042 440			
Carbon Dioxide Equivalents	CO2e	51,943,669	25,972		
Total HAPs	NY100-00-0	820	0.41		
Arsenic	07440-38-2	8.7E-02	4.3E-05		
Benzene	00071-43-2	0.91	4.6E-04		

Table 2 Summary of Facility Total Actual Commissioning Plan Emissions

		Actual Annual Emissions		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Beryllium	07440-41-7	5.2E-03	2.6E-06		
Cadmium	07440-43-9	0.48	2.4E-04		
Chromium	07440-47-3	0.61	3.0E-04		
Cobalt	07440-48-4	3.6E-02	1.8E-05		
Dichlorobenzene	25321-22-6	0.52	2.6E-04		
Formaldehyde	00050-00-0	33	1.6E-02		
Hexane	00110-54-3	782	0.39		
Lead	07439-92-1	0.22	1.1E-04		
Manganese	07439-96-5	0.17	8.3E-05		
Mercury	07439-97-6	0.17	5.6E-05		
Naphthalene	00091-20-3	0.11	1.3E-04		
Nickel	07440-02-0	0.20	4.6E-04		
Polycyclic Organic Matter	POM	3.8E-02	1.9E-05		
Selenium	07782-49-2	1.0E-02	5.2E-06		
Toluene	00108-88-3	1.5	7.4E-04		
DX Gas Combustion (Table 4)					
Carbon Monoxide	00630-08-0	4,706	2.4		
Nitrogen Oxides	NY210-00-0	5,602	2.8		
Sulfur Dioxide	07446-09-5	34	1.7E-02		
Total Particulate Matter	NY075-00-0	426	0.21		
PM ₁₀	NY075-00-5	426	0.21		
PM _{2.5}	NY075-02-5	426	0.21		
Volatile Organic Compounds	NY998-00-0	308	0.15		
Carbon Dioxide	00124-38-9	6,684,640	3,342		
Methane	00074-82-8	126	6.3E-02		
Nitrous Oxide	10024-97-2	13	6.3E-03		
Carbon Dioxide Equivalents	CO2e	6,698,977	3,349		
Total HAPs	NY100-00-0	106	5.3E-02		
Arsenic	07440-38-2	1.1E-02	5.6E-06		
Benzene	00071-43-2	0.12	5.9E-05		
Beryllium	07440-41-7	6.7E-04	3.4E-07		
Cadmium	07440-43-9	6.2E-02	3.4E-07 3.1E-05		
Chromium	07440-47-3	7.8E-02	3.7E-05 3.9E-05		
Cobalt	07440-47-3	4.7E-03	2.4E-06		
			3.4E-05		
Dichlorobenzene	25321-22-6	6.7E-02			
Formaldehyde	00050-00-0	4.2	2.1E-03		
Hexane	00110-54-3	101	5.0E-02		
Lead	07439-92-1	2.8E-02	1.4E-05		
Manganese	07439-96-5	2.1E-02	1.1E-05		
Mercury	07439-97-6	1.5E-02	7.3E-06		
Naphthalene	00091-20-3	3.4E-02	1.7E-05		
Nickel	07440-02-0	0.12	5.9E-05		
Polycyclic Organic Matter	POM	4.9E-03	2.5E-06		
Selenium	07782-49-2	1.3E-03	6.7E-07		
Toluene	00108-88-3	0.19	9.5E-05		

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold	
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)	
Fuel Oil Combustion (Table 5)	00430 00 0	202	0.14			
Carbon Monoxide	00630-08-0	283	0.14			
Nitrogen Oxides	NY210-00-0	1,133	0.57			
Sulfur Dioxide	07446-09-5	12	6.0E-03			
Total Particulate Matter	NY075-00-0	187	9.3E-02			
PM ₁₀	NY075-00-5	57	2.8E-02			
PM _{2.5}	NY075-02-5	14	7.1E-03			
Carbon Dioxide	00124-38-9	1,312,719	656			
Nitrous Oxide	10024-97-2	52	2.6E-02			
Methane	00074-82-8	10	5.2E-03			
Carbon Dioxide Equivalents	CO2e	1,320,249	660			
Volatile Organic Compounds	NY998-00-0	11	5.7E-03			
Total HAPs	NY100-00-0	4.0	2.0E-03			
Arsenic	07440-38-2	3.2E-02	1.6E-05			
Beryllium	07440-41-7	2.4E-02	1.2E-05			
Cadmium	07440-43-9	2.4E-02	1.2E-05			
Chromium	07440-47-3	2.4E-02	1.2E-05			
Formaldehyde	00050-00-0	3.5	1.7E-03			
Lead	07439-92-1	7.1E-02	3.6E-05			
Manganese	07439-96-5	4.8E-02	2.4E-05			
Mercury	07439-96-5	4.8E-02	2.4E-05			
Nickel	07440-02-0	2.4E-02	1.2E-05			
Polycyclic Organic Matter	POM	0.19	9.3E-05			
Selenium	07782-49-2	0.12	5.9E-05			
Emergency Generators (Table 6)						
Carbon Monoxide	00630-08-0	208	0.10			
Nitrogen Oxides	NY210-00-0	636	0.32			
Sulfur Dioxide	07446-09-5	8.6	4.3E-03			
Total Particulate Matter	NY075-00-0	20	9.9E-03			
PM ₁₀	NY075-00-5	18	8.8E-03			
PM _{2.5}	NY075-02-5	16	8.1E-03			
Volatile Organic Compounds	NY998-00-0	32	1.6E-02			
Carbon Dioxide	00124-38-9	33,105	1.02 02			
Methane	00074-82-8	37	1.9E-02			
Total HAPs	NY100-00-0	2.4	1.7E-02 1.2E-03			
Acenaphthene	00083-32-9	7.8E-04	3.9E-07			
Acenaphthylene	00208-96-8	1.7E-03	8.4E-07			
Acetaldehyde	00208-98-8	0.27	1.4E-04			
Acrolein	00075-07-0	0.27	8.0E-05			
Anthracene		2.4E-04	1.2E-05			
	00120-12-7					
Benzene	00071-43-2	0.16	8.2E-05			
Benz(a) nyrono	00056-55-3	1.4E-04	7.1E-08			
Benz(a)pyrene	00050-32-8	4.4E-05	2.2E-08			
Benzo(b)fluoranthene	00205-99-2	1.7E-04	8.7E-08			

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Benzo(g,h,i)perylene	00191-24-2	1.1E-04	5.5E-08		
Benzo(e)pyrene	00192-97-2	1.2E-05	5.8E-09		
Benzo(b,k)fluoranthene	00207-08-9	3.7E-05	1.9E-08		
Biphenyl	00092-52-4	6.0E-03	3.0E-06		
Carbon Tetrachloride	00056-23-5	1.1E-03	5.6E-07		
Chlorobenzene	00108-90-7	9.2E-04	4.6E-07		
Chloroethane	00075-00-3	5.3E-05	2.6E-08		
Chloroform	00067-66-3	8.7E-04	4.3E-07		
Chrysene	00218-01-9	2.6E-04	1.3E-07		
Dibenzo(a,h)anthracene	00053-70-3	6.9E-05	3.4E-08		
1,1-Dichloroethane	00075-34-3	7.2E-04	3.6E-07		
1,2-Dichloroethane	00107-06-2	7.2E-04	3.6E-07		
1,2-Dichloropropane	00078-87-5	8.2E-04	4.1E-07		
1,3-Dichloropropene	00542-75-6	8.0E-04	4.0E-07		
Ethylbenzene	00100-41-4	1.2E-03	6.2E-07		
Ethylene Dibromide	00106-93-4	1.3E-03	6.7E-07		
Ethylene Dichloride	00107-06-2	7.2E-04	3.6E-07		
Fluoranthene	00206-44-0	8.6E-04	4.3E-07		
Fluorene	00086-73-7	2.9E-03	1.5E-06		
Formaldehyde	00050-00-0	1.6	8.1E-04		
Hexane	00110-54-3	3.1E-02	1.6E-05		
Indeno(1,2,3-cd)pyrene	00193-39-5	7.3E-05	3.6E-08		
· ·	00091-20-3	2.5E-02	1.2E-05		
Naphthalene PAH					
Phenanthrene	130498-29-2	1.4E-03	7.1E-07		
	00085-01-8	7.3E-03	3.6E-06		
Pyrene	00129-00-0	7.3E-04	3.7E-07		
Styrene	00100-42-5	7.2E-04	3.6E-07		
1,1,2,2-Tetrachloroethane	00079-34-5	1.2E-03	6.2E-07		
Toluene	00108-88-3	6.8E-02	3.4E-05		
1,1,2-Trichloroethane	00079-00-5	9.7E-04	4.8E-07		
2,2,4-Trimethylpentane	00540-84-1	7.0E-03	3.5E-06		
Vinyl Chloride	00075-01-4	4.5E-04	2.3E-07		
Xylenes	01330-20-7	4.3E-02	2.2E-05		
U-CAST1 Furnaces (Table 7)					
Total Particulate Matter	NY075-00-0	9,502	4.8		
PM ₁₀	NY075-00-5	5,146	2.6		
PM _{2.5}	NY075-02-5	1,914	0.96		
Graphite	07782-42-5	3,837	1.9		
Copper oxide	01317-38-0	2,930	1.5		
Iron oxide	01309-37-1	871	0.44		
Aluminum oxide	01344-28-1	26	1.3E-02		
Zinc oxide	01314-13-2	8.0	4.0E-03		
Magnesium oxide	01309-48-4	2.2	1.1E-03		
Barium oxide	01304-28-5	0.35	1.1E-03 1.8E-04		
Darrain Uniac	0 1 0 0 T Z U - 0	0.55	1.0L-04		

			Actual Annual Emissions		Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Total HAPs	NY100-00-0	5.4	2.7E-03		
Lead oxide	01314-41-6	3.1	1.6E-03		
Manganese oxide	01313-13-9	2.2	1.1E-03		
Nickel oxide	01313-99-1	0.20	1.0E-04		
Cadmium oxide	01306-19-0	6.5E-02	3.2E-05		
Chromium oxide	01333-82-0	9.0E-02	4.5E-05		
Mercury oxide	21908-53-2	8.5E-04	4.2E-07		
U-CAST1 VAC Process (Table 8)					I
Total Particulate Matter	NY075-00-0	30	1.5E-02		
PM ₁₀	NY075-00-5	30	1.5E-02		
PM _{2.5}	NY075-02-5	30	1.5E-02		
Graphite	07782-42-5	12	6.0E-03		
Copper oxide	01317-38-0	9.2	4.6E-03		
Iron oxide	01309-37-1	2.7	1.4E-03		
Aluminum oxide	01344-28-1	8.2E-02	4.1E-05		
Zinc oxide	01314-13-2	2.5E-02	1.3E-05		
Magnesium oxide	01309-48-4	7.0E-03	3.5E-06		
Barium oxide	01304-28-5	1.1E-03	5.5E-07		
Silver oxide	20667-12-3	2.9E-04	1.5E-07		
Total HAPs	NY100-00-0	1.8E-02	9.0E-06		
Lead oxide	01314-41-6	9.8E-03	4.9E-06		
Manganese oxide	01313-13-9	7.0E-03	3.5E-06		
Nickel oxide	01313-99-1	6.3E-04	3.1E-07		
Cadmium oxide	01306-19-0	2.0E-04	1.0E-07		
Chromium oxide	01333-82-0	2.8E-04	1.4E-07		
Mercury oxide	21908-53-2	2.7E-06	1.3E-09		
U-ROLL1 (Table 9)					I
Total Particulate Matter	NY075-00-0	7,496	3.7		
PM ₁₀	NY075-00-5	7,299	3.6		
PM _{2.5}	NY075-02-5	6,424	3.2		
Propane-1,2-diol	00057-55-6	90	4.5E-02		
Hexylene glycol	00107-41-5	48	2.4E-02		
2-Butoxyethanol	00111-76-2	1.9E-07	9.4E-11		
2-Amino-2-methyl-1-propanol	00124-68-5	2.6E-02	1.3E-05		
Alkanolamine	00141-43-5	141	7.0E-02		
1,2-Benzisothiazol-3(2H)-one	02634-33-5	9.0	4.5E-03		
Hexahydro-1, 3, 5-tris (2-hydroxyethyl)-s-triazine	04719-04-4	179	9.0E-02		
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	90	4.5E-02		
Nonylphenol, ethoxylated	09016-45-9	139	7.0E-02		
Fatty alcohol alkoxylate	37335-03-8	0.13	6.6E-05		
Poly(oxy-1,2-ethanediyl), a -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	150	7.5E-02		
Amines, tallow alkyl, ethoxylated	61791-26-2	90	4.5E-02		

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	815	0.41		
Hydrotreated light naphthenic petroleum oil	64742-53-6	0.69	3.4E-04		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	653	0.33		
Sulfonic acids, petroleum, sodium salts	68608-26-4	229	0.11		
Petroleum distillates	Trade Secret #1	3.8E-06	1.9E-09		
Petroleum distillates (mineral oil)	Trade Secret #2	(b)	(b)		
Base oil	Trade Secret #3	139	7.0E-02		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	2,701	1.4		
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	90	4.5E-02		
Trade Secret	Trade Secret #8	300	0.15		
U-OVER1 (Table 10)					
Total Particulate Matter	NY075-00-0	14,127	7.1		
PM ₁₀	NY075-00-5	3,483	1.7		
PM _{2.5}	NY075-02-5	3,193	1.6		
Copper	07440-50-8	1,795	0.90		
Tin	07440-31-5	2.6E-02	1.3E-05		
Silver	07440-22-4	1.2E-02	5.8E-06		
Tellurium	13494-80-9	2.9E-03	1.5E-06		
Highly refined, low viscosity mineral					
oils/hydrocarbons	Trade Secret #4	1,761	0.88		
Proprietary emulsifier	Trade Secret #6	252	0.13		
HAPs	NY100-00-0	1.9E-03	9.3E-07		
Phosphorus	07723-14-0	1.9E-03	9.3E-07		
U-ANNE1 (Table 11)					
VOC	NY998-00-0	187	9.3E-02		
Diethylene glycol	00111-46-6	8.1	4.1E-03		
2-Butoxyethanol	00111-76-2	10	5.1E-03		
Petroleum distillates (mineral oil)	08042-47-5	2.4	1.2E-03		
Polyethylene glycol	25322-68-3	11	5.3E-03		
Distillates (petroleum), solvent-dewaxed light					
paraffinic	64742-56-9	156	7.8E-02		
Petroleum distillates	Trade Secret #1	15	7.6E-03		
Azole derivative	Trade Secret #7	10	5.2E-03		
U-ANNE1 - Pickling (Table 12)					
Total Particulate Matter	NY075-00-0	622	0.31		
PM_{10}	NY075-00-5	622	0.31		
PM _{2.5}	NY075-02-5	622	0.31		
Sulfuric acid	07664-93-9	622	0.31		

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold	
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)	
U-ANNE1 - Cleaning (Table 13)						
Total Particulate Matter	NY075-00-0	141	7.0E-02			
PM_{10}	NY075-00-5	141	7.0E-02			
$PM_{2.5}$	NY075-02-5	141	7.0E-02			
Diethylene glycol	00111-46-6	1.4E-02	7.2E-06			
Sodium metasilicate	06834-92-0	12	6.1E-03			
Hydrogen peroxide	07722-84-1	18	8.9E-03			
Sodium phosphate, tribasic	10101-89-0	4.9	2.5E-03			
Polyethylene glycol	25322-68-3	0.17	8.6E-05			
Azole derivative	Trade Secret #7	0.17	8.6E-05			
U-GALV1 Molten Tank (Table 14)						
Total Particulate Matter	NY075-00-0	3.9	1.9E-03			
PM ₁₀	NY075-00-5	3.9	1.9E-03			
PM _{2.5}	NY075-02-5	3.9	1.9E-03			
Zinc	07440-66-6	1.9	9.6E-04			
Tin	07440-31-5	1.9	9.6E-04			
Zinc chloride	07646-85-7	2.7E-02	1.4E-05			
Ammonium chloride	12125-02-9	1.2E-02	5.8E-06			
U-GALV1 Acid Tank (Table 15)						
Total Particulate Matter	NY075-00-0	3.3	1.6E-03			
PM ₁₀	NY075-00-5	3.3	1.6E-03			
PM _{2.5}	NY075-02-5	3.3	1.6E-03			
Zinc chloride	07646-85-7	0.25	1.3E-04			
Barium chloride	10361-37-2	0.25	1.3E-04			
Ammonium chloride	12125-02-9	0.25	1.3E-04			
HAPs	NY100-00-0	2.5	1.3E-03			
Hydrogen chloride	07647-01-0	2.5	1.3E-03			
Parts Washer (Table 16)						
VOC	NY998-00-0	181	9.1E-02			
Distillates, petroleum, hydrotreated light	64742-47-8	181	9.1E-02			
Process Source Emissions Subject to Part	212, Total					
Total Particulate Matter	NY075-00-0	31,790	16			
PM ₁₀	NY075-00-5	16,502	8.3			
PM _{2.5}	NY075-02-5	12,193	6.1			
Propane-1,2-diol	00057-55-6	90	4.5E-02			
Hexylene glycol	00107-41-5	48	2.4E-02			
2-Amino-2-methyl-1-propanol	00124-68-5	2.6E-02	1.3E-05			
Alkanolamine	00141-43-5	141	7.0E-02			
Barium oxide	01304-28-5	0.35	1.7E-04			
Iron oxide	01309-37-1	853	0.43			
Magnesium oxide	01309-48-4	2.2	1.1E-03			
Zinc oxide	01314-13-2	7.9	3.9E-03			

		Actual Annual Emissions		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Copper oxide	01317-38-0	2,870	1.4		
Aluminum oxide	01344-28-1	26	1.3E-02		
1,2-Benzisothiazol-3(2H)-one	02634-33-5	9.0	4.5E-03		
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	179	9.0E-02		
Sodium metasilicate	06834-92-0	12	6.1E-03		
Silver	07440-22-4	1.2E-02	5.8E-06		
Tin	07440-31-5	1.9	9.7E-04		
Copper	07440-50-8	1,795	0.90		
Zinc	07440-66-6	1.9	9.6E-04		
Zinc chloride	07646-85-7	0.28	1.4E-04		
Hydrogen chloride	07647-01-0	2.5	1.3E-03		
Sulfuric acid	07664-93-9	622	0.31		
Hydrogen peroxide	07722-84-1	18	8.9E-03		
Graphite	07782-42-5	3,759	1.9		
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	90	4.5E-02		
Nonylphenol, ethoxylated	09016-45-9	139	7.0E-02		
Sodium phosphate, tribasic	10101-89-0	4.9	2.5E-03		
Barium chloride	10361-37-2	0.25	1.3E-04		
Ammonium chloride	12125-02-9	0.26	1.3E-04		
Tellurium	13494-80-9	2.9E-03	1.5E-06		
Silver oxide	20667-12-3	9.1E-02	4.6E-05		
Fatty alcohol alkoxylate	37335-03-8	0.13	6.6E-05		
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	150	7.5E-02		
Amines, tallow alkyl, ethoxylated	61791-26-2	90	4.5E-02		
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	815	0.41		
Hydrotreated light naphthenic petroleum oil	64742-53-6	0.69	3.4E-04		
Sulfonic acids, petroleum, sodium salts	68608-26-4	229	0.11		
Petroleum distillates (mineral oil)	Trade Secret #2	(b)	(b)		
Base oil	Trade Secret #3	139	7.0E-02		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	4,462	2.2		
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	90	4.5E-02		
Proprietary emulsifier	Trade Secret #6	252	0.13		
Trade Secret	Trade Secret #8	300	0.15		
VOC	NY998-00-0	368	0.18		
Petroleum distillates (mineral oil)	08042-47-5	2.4	1.2E-03		
Distillates, petroleum, hydrotreated light Particulate/VOC ^(c)	64742-47-8	181	9.1E-02		
Diethylene glycol	00111-46-6	8.1	4.1E-03		
2-Butoxyethanol	00111-76-2	10	5.1E-03		
Polyethylene glycol	25322-68-3	11	5.4E-03		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	809	0.40		
Petroleum distillates	Trade Secret #1	15	7.6E-03		
Azole derivative	Trade Secret #7	11	5.3E-03		

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Total HAPs	NY100-00-0	7.9	3.9E-03		
Cadmium oxide	01306-19-0	6.4E-02	3.2E-05		
Nickel oxide	01313-99-1	0.20	9.8E-05		
Lead oxide	01314-41-6	3.1	1.5E-03		
Chromium oxide	01333-82-0	8.8E-02	4.4E-05		
Hydrogen chloride	07647-01-0	2.5	1.3E-03		
Phosphorus	07723-14-0	1.9E-03	9.3E-07		
Mercury oxide	21908-53-2	8.3E-04	4.2E-07		
Facility Total					
Carbon Monoxide	00630-08-0	49,626	25		100
Nitrogen Oxides	NY210-00-0	60,262	30	95	100
Sulfur Dioxide	07446-09-5	372	0.19	95	100
Carbon Dioxide	00124-38-9	71,138,289	35,569		
Methane	00074-82-8	1,363	0.68		
Nitrous Oxide	10024-97-2	184	9.2E-02		
Carbon Dioxide Equivalents	CO2e	71,262,402	35,631		
Total Particulate Matter	NY075-00-0	36,578	18	90	
PM ₁₀	NY075-00-5	21,248	11	90	100
PM _{2.5}	NY075-02-5	16,807	8.4	90	100
Propane-1,2-diol	00057-55-6	90	4.5E-02	70	100
Hexylene glycol	00107-41-5	48	2.4E-02		
2-Amino-2-methyl-1-propanol	00107-41-5	2.6E-02	1.3E-05		
Alkanolamine	00141-43-5	141	7.0E-02		
Barium oxide	01304-28-5	0.35	1.8E-04		
Iron oxide	01304-28-3	874	0.44		
	01309-37-1	2.2	1.1E-03		
Magnesium oxide Zinc oxide	01314-13-2	8.1	4.0E-03		
Copper oxide	01317-38-0	2,939	1.5		
Aluminum oxide	01344-28-1	26	1.3E-02		
1,2-Benzisothiazol-3(2H)-one	02634-33-5	9.0	4.5E-03		
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	179	9.0E-02		
Sodium metasilicate	06834-92-0	12	6.1E-03		
Silver	07440-22-4	1.2E-02	5.8E-06		
Tin	07440-31-5	1.9	9.7E-04		
Copper	07440-50-8	1,795	0.90		
Zinc	07440-66-6	1.9	9.6E-04		
Zinc chloride	07646-85-7	0.28	1.4E-04		
Hydrogen chloride	07647-01-0	2.5	1.3E-03		
Sulfuric acid	07664-93-9	622	0.31		
Hydrogen peroxide	07722-84-1	18	8.9E-03		
Graphite	07782-42-5	3,849	1.9		
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	90	4.5E-02		
Nonylphenol, ethoxylated	09016-45-9	139	7.0E-02		
Sodium phosphate, tribasic	10101-89-0	4.9	2.5E-03		
Barium chloride	10361-37-2	0.25	1.3E-04		

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	tpy)	(tpy)
Ammonium chloride	12125-02-9	0.26	1.3E-04		
Tellurium	13494-80-9	2.9E-03	1.5E-06		
Silver oxide	20667-12-3	9.3E-02	4.7E-05		
Fatty alcohol alkoxylate	37335-03-8	0.13	6.6E-05		
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	150	7.5E-02		
Amines, tallow alkyl, ethoxylated	61791-26-2	90	4.5E-02		
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	815	0.41		
Hydrotreated light naphthenic petroleum oil	64742-53-6	0.69	3.4E-04		
Sulfonic acids, petroleum, sodium salts	68608-26-4	229	0.11		
Petroleum distillates (mineral oil)	Trade Secret #2	(b)	(b)		
Base oil	Trade Secret #3	139	7.0E-02		
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	4,462	2.2		
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	90	4.5E-02		
Proprietary emulsifier	Trade Secret #6	252	0.13		
Trade Secret	Trade Secret #8	300	0.15		
	NY998-00-0	3,628	1.8		50
Volatile Organic Compounds					50
Petroleum distillates (mineral oil)	08042-47-5	2.4	1.2E-03		
Distillates, petroleum, hydrotreated light Particulate/VOC ^(c)	64742-47-8	181	9.1E-02		
Diethylene glycol	00111-46-6	8.1	4.1E-03		
2-Butoxyethanol	00111-76-2	10	5.1E-03		
Polyethylene glycol	25322-68-3	11	5.4E-03		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	809	0.40		
Petroleum distillates	Trade Secret #1	15	7.6E-03		
Azole derivative	Trade Secret #7	11	5.3E-03		
Total HAPs	NY100-00-0	1,119	0.56		25
Formaldehyde	00050-00-0	49	2.4E-02		10
Benz(a)pyrene	00050-32-8	4.4E-05	2.2E-08		10
Dibenzo(a,h)anthracene	00053-70-3	6.9E-05	3.4E-08		10
Carbon Tetrachloride	00056-23-5	1.1E-03	5.6E-07		10
Benz(a)anthracene	00056-55-3	1.4E-04	7.1E-08		10
Chloroform	00067-66-3	8.7E-04	4.3E-07		10
Benzene	00071-43-2	1.4	7.0E-04		10
Chloroethane	00075-00-3	5.3E-05	2.6E-08		10
Vinyl Chloride	00075-01-4	4.5E-04	2.3E-07		10
Acetaldehyde	00075-07-0	0.27	1.4E-04		10
1,1-Dichloroethane	00075-34-3	7.2E-04	3.6E-07		10
1,2-Dichloropropane	00078-87-5	8.2E-04	4.1E-07		10
1,1,2-Trichloroethane	00079-00-5	9.7E-04	4.8E-07		10
1,1,2,2-Tetrachloroethane	00079-34-5	1.2E-03	6.2E-07		10
Acenaphthene	00083-32-9	7.8E-04	3.9E-07		10
Phenanthrene	00085-01-8	7.3E-03	3.6E-06		10
Fluorene	00086-73-7	2.9E-03	1.5E-06		10

		Actual Ar Emissio		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)
Naphthalene	00091-20-3	0.38	1.9E-04		10
Biphenyl	00092-52-4	6.0E-03	3.0E-06		10
Ethylbenzene	00100-41-4	1.2E-03	6.2E-07		10
Styrene	00100-42-5	7.2E-04	3.6E-07		10
Ethylene Dibromide	00106-93-4	1.3E-03	6.7E-07		10
Acrolein	00107-02-8	0.16	8.0E-05		10
Ethylene Dichloride	00107-06-2	1.4E-03	7.2E-07		10
Toluene	00108-88-3	2.1	1.0E-03		10
Chlorobenzene	00108-90-7	9.2E-04	4.6E-07		10
Hexane	00110-54-3	1,053	0.53		10
Anthracene	00120-12-7	2.4E-04	1.2E-07		10
Pyrene	00129-00-0	7.3E-04	3.7E-07		10
Benzo(g,h,i)perylene	00191-24-2	1.1E-04	5.5E-08		10
Benzo(e)pyrene	00192-97-2	1.2E-05	5.8E-09		10
Indeno(1,2,3-cd)pyrene	00193-39-5	7.3E-05	3.6E-08		10
Benzo(b)fluoranthene	00205-99-2	1.7E-04	8.7E-08		10
Fluoranthene	00206-44-0	8.6E-04	4.3E-07		10
Benzo(b,k)fluoranthene	00207-08-9	3.7E-05	1.9E-08		10
Acenaphthylene	00208-96-8	1.7E-03	8.4E-07		10
Chrysene	00218-01-9	2.6E-04	1.3E-07		10
2,2,4-Trimethylpentane	00540-84-1	7.0E-03	3.5E-06		10
1,3-Dichloropropene	00542-75-6	8.0E-04	4.0E-07		10
Cadmium oxide	01306-19-0	6.5E-02	3.3E-05		10
Nickel oxide	01313-99-1	0.20	1.0E-04		10
Lead oxide	01314-41-6	3.2	1.6E-03		10
Xylenes	01330-20-7	4.3E-02	2.2E-05		10
Chromium oxide	01333-82-0	9.0E-02	4.5E-05		10
Lead	07439-92-1	0.36	1.8E-04		10
Manganese	07439-96-5	0.32	1.6E-04		10
Mercury	07439-96-5	0.32	1.6E-04		10
Nickel	07440-02-0	1.3	6.3E-04		10
Arsenic	07440-38-2	0.15	7.4E-05		10
Beryllium	07440-41-7	3.1E-02	1.5E-05		10
Cadmium	07440-43-9	0.67	3.3E-04		10
Chromium	07440-47-3	0.84	4.2E-04		10
Cobalt	07440-48-4	4.9E-02	2.5E-05		10
Hydrogen chloride	07647-01-0	2.5 1.0E.03	1.3E-03		10
Phosphorus Solonium	07723-14-0 07782-49-2	1.9E-03	9.3E-07 6.6E-05		10
Selenium		0.13			10
PAH Moreury oxido	130498-29-2	1.4E-03 8.5E-04	7.1E-07		10
Mercury oxide	21908-53-2		4.3E-07		10
Dichlorobenzene Polycyclic Organic Matter	25321-22-6	0.70	3.5E-04		10 10
Polycyclic Organic Matter	POM	0.24	1.2E-04		10

Revere Copper Products, Inc Rome, NY

		Actual Annual Emissions		Emission Cap ^(a)	Major Source Threshold
Emission Source and Contaminants	CAS Number	(lb/yr)	(tpy)	(tpy)	(tpy)

Notes:

- (a) Emission caps are based on existing and proposed caps. The sulfur dioxide cap will no longer be required due to the change from No. 6 to No. 2 fuel oil combustion by the boilers and the current sulfur content limit of No. 2 fuel oil. Based on the updated emission estimates, the Total Particulate Matter, PM_{10} , and $PM_{2.5}$ caps will no longer be required.
- (b) This pollutant is present in a biocide applied on some of the Rolling Mills and was included in the prior permit application as being potentially emitted from the Rolling Mills. Upon further investigation, the biocide is completely consumed by the bacteria within 24 to 48 hours of application and is not expected to be released to the atmosphere. As such, this biocide has been removed from the Emission Inventory tables. This pollutant has been left in the inventory to maintain the same Trade Secret identification methodology to avoid possible confusion.
- (c) Contaminants in this section are emitted as a particulate oil mist from some processes and as gaseous VOCs from oth

Table 3

Natural Gas Combustion

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(a)	Total Heat Input Rating	Commissioning Plan Projected Fuel Usage ^(b)	Projected Act Emissic	ons ^(c)
U-COMB1		(lb/MMscf)	(MMBtu/hr)	(MMscf/year) 95	(lb/yr)	(tpy)
Three boilers (two at 42 MMBt	u/br on and ana	o+ F7 2 MMD+/	141)	
Carbon Monoxide	00630-08-0	at 57.2 MiNibitu/1 84	ii) iii iig naturar	yas.	7,938	4.0
Nitrogen Oxides	NY210-00-0	100			9,450	4.7
Sulfur Dioxide	07446-09-5	0.60			7,430 57	2.8E-02
PM (Total)	NY075-00-0	7.6			718	0.36
PM ₁₀	NY075-00-5	7.6			718	0.36
PM _{2.5}	NY075-02-5	7.6			718	0.36
Carbon Dioxide	00124-38-9	119,316			11,275,324	5,638
Methane	00074-82-8	2.2			213	0.11
Nitrous Oxide	10024-97-2	0.22			21	1.1E-02
Volatile Organic Compounds	NY998-00-0	5.5			520	0.26
Total HAPs	NY100-00-0				178	8.9E-02
Arsenic	07440-38-2	2.0E-04			1.9E-02	9.5E-06
Benzene	00071-43-2	2.1E-03			0.20	9.9E-05
Beryllium	07440-41-7	1.2E-05			1.1E-03	5.7E-07
Cadmium	07440-43-9	1.1E-03			0.10	5.2E-05
Chromium	07440-47-3	1.4E-03			0.13	6.6E-05
Cobalt	07440-48-4	8.4E-05			7.9E-03	4.0E-06
Dichlorobenzene	25321-22-6	1.2E-03			0.11	5.7E-05
Formaldehyde	00050-00-0	7.5E-02			7.1	3.5E-03
Hexane	00110-54-3	1.8			170	8.5E-02
Lead	07439-92-1	5.0E-04			4.7E-02	2.4E-05
Manganese	07439-96-5	3.8E-04			3.6E-02	1.8E-05
Mercury	07439-97-6	2.6E-04			2.5E-02	1.2E-05
Naphthalene	00091-20-3	6.1E-04			5.8E-02	2.9E-05
Nickel	07440-02-0	2.1E-03			0.20	9.9E-05
Polycyclic Organic Matter	POM	8.8E-05			8.3E-03	4.2E-06
Selenium	07782-49-2	2.4E-05			2.3E-03	1.1E-06
Toluene	00108-88-3	3.4E-03			0.32	1.6E-04

Table 3

Natural Gas Combustion Summary of Actual Commissioning Plan Emissions

Commissioning Plan									
Building, Sources, and		Emission	Total Heat	Projected	Projected Ac	tual Annual			
Pollutants	CAS Number	Factor ^(a)	Input Rating	Fuel Usage (b)	Emissi	ons ^(c)			
		(lb/MMscf)	(MMBtu/hr)	(MMscf/year)	(lb/yr)	(tpy)			

		(ID/ IVIIVISCI)	(IVIIVIDITATITIT)	(Wilviscr/ year)	(ID/ yI)	(tpy)
Miscellaneous Facility-Wide			97	434		
Facility-Wide Natural Gas Com			ion units.			
Carbon Monoxide	00630-08-0	84			36,491	18
Nitrogen Oxides	NY210-00-0	100			43,442	22
Sulfur Dioxide	07446-09-5	0.60			261	0.13
PM (Total)	NY075-00-0	7.6			3,302	1.7
PM_{10}	NY075-00-5	7.6			3,302	1.7
PM _{2.5}	NY075-02-5	7.6			3,302	1.7
Carbon Dioxide	00124-38-9	119,316			51,832,501	25,916
Methane	00074-82-8	2.2			977	0.49
Nitrous Oxide	10024-97-2	0.22			98	4.9E-02
Volatile Organic Compounds	NY998-00-0	5.5			2,389	1.2
Total HAPs	NY100-00-0				820	0.41
Arsenic	07440-38-2	2.0E-04			8.7E-02	4.3E-05
Benzene	00071-43-2	2.1E-03			0.91	4.6E-04
Beryllium	07440-41-7	1.2E-05			5.2E-03	2.6E-06
Cadmium	07440-43-9	1.1E-03			0.48	2.4E-04
Chromium	07440-47-3	1.4E-03			0.61	3.0E-04
Cobalt	07440-48-4	8.4E-05			3.6E-02	1.8E-05
Dichlorobenzene	25321-22-6	1.2E-03			0.52	2.6E-04
Formaldehyde	00050-00-0	7.5E-02			33	1.6E-02
Hexane	00110-54-3	1.8			782	0.39
Lead	07439-92-1	5.0E-04			0.22	1.1E-04
Manganese	07439-96-5	3.8E-04			0.17	8.3E-05
Mercury	07439-97-6	2.6E-04			0.11	5.6E-05
Naphthalene	00091-20-3	6.1E-04			0.26	1.3E-04
Nickel	07440-02-0	2.1E-03			0.91	4.6E-04
Polycyclic Organic Matter	POM	8.8E-05			3.8E-02	1.9E-05
Selenium	07782-49-2	2.4E-05			1.0E-02	5.2E-06

Table 3

Natural Gas Combustion Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

	Commissioning Plan							
Building, Sources, and	nd Emission Total Heat Projected		Projected Act	ual Annual				
Pollutants	CAS Number	Factor ^(a)	Input Rating	Fuel Usage ^(b)	Emissio	ns ^(c)		
		(lb/MMscf)	(MMBtu/hr)	(MMscf/year)	(lb/yr)	(tpy)		
Toluene	00108-88-3	3.4E-03			1.5	7.4E-04		

Notes:

- (a) The emission factors were obtained from the USEPA's Compilation of Air Pollution Emission Factors (AP-42), Volume I, 5th Edition, Section 1.4 Natural Gas Combustion (July 1998). Greenhouse gas emission factors were obtained from 40 CFR Part 98 Subpart C Tables C-1 and C-2.
- (b) The Commissioning Plan Projected Fuel Usage is based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (c) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Fuel Usage (MMscf/yr) x Emission Factor (lb/MMscf).

Projected Actual Annual Emissions (ton/yr) = Projected Actual Annual Emissions (lb/yr) ÷ 2000 (lb/ton).

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Commissioning Plan Projected Fuel Usage ^(c)	Projected Annual Em	issions ^(d)
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(lb/yr)	(tpy)
01729-01734			1.25E-03	9.2		
Six Lee Wilson Annealing Uni						
Carbon Monoxide	00630-08-0	84			774	0.39
Nitrogen Oxides	NY210-00-0	100			922	0.46
Sulfur Dioxide	07446-09-5	0.6			5.5	2.8E-03
PM (Total)	NY075-00-0	7.6			70	3.5E-02
PM_{10}	NY075-00-5	7.6			70	3.5E-02
PM _{2.5}	NY075-02-5	7.6			70	3.5E-02
Carbon Dioxide	00124-38-9	119,316			1,099,840	550
Methane	00074-82-8	2.2			21	1.0E-02
Nitrous Oxide	10024-97-2	0.2			2.1	1.0E-03
Volatile Organic Compounds	NY998-00-0	5.5			51	2.5E-02
Total HAPs	NY100-00-0				17	8.7E-03
Arsenic	07440-38-2	2.0E-04			1.8E-03	9.2E-07
Benzene	00071-43-2	2.1E-03			1.9E-02	9.7E-06
Beryllium	07440-41-7	1.2E-05			1.1E-04	5.5E-08
Cadmium	07440-43-9	1.1E-03			1.0E-02	5.1E-06
Chromium	07440-47-3	1.4E-03			1.3E-02	6.5E-06
Cobalt	07440-48-4	8.4E-05			7.7E-04	3.9E-07
Dichlorobenzene	25321-22-6	1.2E-03			1.1E-02	5.5E-06
Formaldehyde	00050-00-0	7.5E-02			0.69	3.5E-04
Hexane	00110-54-3	1.8E+00			17	8.3E-03
Lead	07439-92-1	5.00E-04			4.6E-03	2.3E-06
Manganese	07439-96-5	3.8E-04			3.5E-03	1.8E-06
Mercury	07439-97-6	2.6E-04			2.4E-03	1.2E-06
Naphthalene	00091-20-3	6.1E-04			5.6E-03	2.8E-06
Nickel	07440-02-0	2.1E-03			1.9E-02	9.7E-06
Polycyclic Organic Matter	POM	8.8E-05			8.1E-04	4.1E-07
Selenium	07782-49-2	2.4E-05			2.2E-04	1.1E-07
Toluene	00108-88-3	3.4E-03			3.1E-02	1.6E-05

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Commissioning Plan Projected Fuel Usage ^(c)	Projected Annual Emi	issions ^(d)
01154		(lb/MMscf)	(MMscf/hr) 8.07E-04	(MMscf/year) 4.5	(lb/yr)	(tpy)
One Bright Anneal Unit in the	Rolling Mill		6.U/E-U4	4.5		
Carbon Monoxide	00630-08-0	84			378	0.19
Nitrogen Oxides	NY210-00-0	100			451	0.23
Sulfur Dioxide	07446-09-5	0.60			2.7	1.4E-03
PM (Total)	NY075-00-0	7.6			34	1.7E-02
PM ₁₀	NY075-00-5	7.6			34	1.7E-02
PM _{2.5}	NY075-02-5	7.6			34	1.7E-02 1.7E-02
Volatile Organic Compounds	NY998-00-0	5.5			25	1.7E 02 1.2E-02
Carbon Dioxide	00124-38-9	119,316			537,596	269
Methane	00074-82-8	2.2			10	5.1E-03
Nitrous Oxide	10024-97-2	0.22			1.0	5.1E-04
Total HAPs	NY100-00-0	0.22			8.5	4.3E-03
Arsenic	07440-38-2	2.0E-04			9.0E-04	4.5E-07
Benzene	00071-43-2	2.1E-03			9.5E-03	4.7E-06
Beryllium	07440-41-7	1.2E-05			5.4E-05	2.7E-08
Cadmium	07440-43-9	1.1E-03			5.0E-03	2.5E-06
Chromium	07440-47-3	1.4E-03			6.3E-03	3.2E-06
Cobalt	07440-48-4	8.4E-05			3.8E-04	1.9E-07
Dichlorobenzene	25321-22-6	1.2E-03			5.4E-03	2.7E-06
Formaldehyde	00050-00-0	7.5E-02			0.34	1.7E-04
Lead	07439-92-1	5.0E-04			2.3E-03	1.1E-06
Hexane	00110-54-3	1.8			8.1	4.1E-03
Manganese	07439-96-5	3.8E-04			1.7E-03	8.6E-07
Mercury	07439-97-6	2.6E-04			1.2E-03	5.9E-07
Naphthalene	00091-20-3	6.1E-04			2.7E-03	1.4E-06
Nickel	07440-02-0	2.1E-03			9.5E-03	4.7E-06
Polycyclic Organic Matter	POM	8.8E-05			4.0E-04	2.0E-07
Selenium	07782-49-2	2.4E-05			1.1E-04	5.4E-08
Toluene	00108-88-3	3.4E-03			1.5E-02	7.7E-06

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b) (Ib/MMscf)	Hourly Gas Flowrate (MMscf/hr)	Commissioning Plan Projected Fuel Usage ^(c) (MMscf/year)	Projected Annual Em	
01738		(127 1411/1901)	1.47E-03	37		(tpy)
One Strand Anneal Unit in the	e Rolling Mill					
Carbon Monoxide	00630-08-0	84			3,082	1.5
Nitrogen Oxides	NY210-00-0	100			3,669	1.8
Sulfur Dioxide	07446-09-5	0.60			22	1.1E-02
PM (Total)	NY075-00-0	7.6			279	1.4E-01
PM_{10}	NY075-00-5	7.6			279	1.4E-01
PM _{2.5}	NY075-02-5	7.6			279	1.4E-01
Volatile Organic Compounds	NY998-00-0	5.5			202	1.0E-01
Carbon Dioxide	00124-38-9	119,316			4,377,426	2,189
Methane	00074-82-8	2.2			82	4.1E-02
Nitrous Oxide	10024-97-2	0.22			8.2	4.1E-03
Total HAPs	NY100-00-0				69	3.5E-02
Arsenic	07440-38-2	2.0E-04			7.3E-03	3.7E-06
Benzene	00071-43-2	2.1E-03			7.7E-02	3.9E-05
Beryllium	07440-41-7	1.2E-05			4.4E-04	2.2E-07
Cadmium	07440-43-9	1.1E-03			4.0E-02	2.0E-05
Chromium	07440-47-3	1.4E-03			5.1E-02	2.6E-05
Cobalt	07440-48-4	8.4E-05			3.1E-03	1.5E-06
Dichlorobenzene	25321-22-6	1.2E-03			4.4E-02	2.2E-05
Formaldehyde	00050-00-0	7.5E-02			2.8	1.4E-03
Hexane	00110-54-3	1.8			66	3.3E-02
Lead	07439-92-1	5.0E-04			1.8E-02	9.2E-06
Manganese	07439-96-5	3.8E-04			1.4E-02	7.0E-06
Mercury	07439-97-6	2.6E-04			9.5E-03	4.8E-06
Naphthalene	00091-20-3	6.1E-04			2.2E-02	1.1E-05
Nickel	07440-02-0	2.1E-03			7.7E-02	3.9E-05
Polycyclic Organic Matter	POM	8.8E-05			3.2E-03	1.6E-06
Selenium	07782-49-2	2.4E-05			8.8E-04	4.4E-07
Toluene	00108-88-3	3.4E-03			0.12	6.2E-05

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Commissioning Plan Projected Fuel Usage ^(c)	Projected	issions ^(d)
00474		(lb/MMscf)	(MMscf/hr)	(MMscf/year) 5.6	(lb/yr)	(tpy)
00464 One Tray Style/Coil Anneal U	nit in the Bar Mi	11	2.19E-03	5.0		
Carbon Monoxide	00630-08-0	84			472	0.24
Nitrogen Oxides	NY210-00-0	100			561	0.28
Sulfur Dioxide	07446-09-5	0.60			3.4	1.7E-03
PM (Total)	NY075-00-0	7.6			43	2.1E-02
PM ₁₀	NY075-00-5	7.6			43	2.1E-02
PM _{2.5}	NY075-02-5	7.6			43	2.1E-02 2.1E-02
Volatile Organic Compounds	NY998-00-0	5.5			31	1.5E-02
Carbon Dioxide	00124-38-9	119,316			669,778	335
Methane	00074-82-8	2.2			13	6.3E-03
Nitrous Oxide	10024-97-2	0.22			1.3	6.3E-04
Total HAPs	NY100-00-0	0.22			11	5.3E-03
Arsenic	07440-38-2	2.0E-04			1.1E-03	5.6E-07
Benzene	00071-43-2	2.1E-03			1.2E-02	5.9E-06
Beryllium	07440-41-7	1.2E-05			6.7E-05	3.4E-08
Cadmium	07440-43-9	1.1E-03			6.2E-03	3.1E-06
Chromium	07440-47-3	1.4E-03			7.9E-03	3.9E-06
Cobalt	07440-48-4	8.4E-05			4.7E-04	2.4E-07
Dichlorobenzene	25321-22-6	1.2E-03			6.7E-03	3.4E-06
Formaldehyde	00050-00-0	7.5E-02			0.42	2.1E-04
Hexane	00110-54-3	1.8			10	5.1E-03
Lead	07439-92-1	5.0E-04			2.8E-03	1.4E-06
Manganese	07439-96-5	3.8E-04			2.1E-03	1.1E-06
Mercury	07439-97-6	2.6E-04			1.5E-03	7.3E-07
Naphthalene	00091-20-3	6.1E-04			3.4E-03	1.7E-06
Nickel	07440-02-0	2.1E-03			1.2E-02	5.9E-06
Polycyclic Organic Matter	POM	8.8E-05			5.0E-04	2.5E-07
Selenium	07782-49-2	2.4E-05			1.3E-04	6.7E-08
Toluene	00108-88-3	3.4E-03			1.9E-02	9.5E-06

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(b)	Hourly Gas Flowrate	Commissioning Plan Projected Fuel Usage ^(c)	Projected Annual Em	issions ^(d)
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(lb/yr)	(tpy)
Total				56.0		
Carbon Monoxide	00630-08-0				4,706	2.4
Nitrogen Oxides	NY210-00-0				5,602	2.8
Sulfur Dioxide	07446-09-5				34	1.7E-02
PM (Total)	NY075-00-0				426	0.21
PM ₁₀	NY075-00-5				426	0.21
PM _{2.5}	NY075-02-5				426	0.21
Volatile Organic Compounds	NY998-00-0				308	0.15
Carbon Dioxide	00124-38-9				6,684,640	3,342
Methane	00074-82-8				126	6.3E-02
Nitrous Oxide	10024-97-2				13	6.3E-03
Total HAPs	NY100-00-0				106	5.3E-02
Arsenic	07440-38-2				1.1E-02	5.6E-06
Benzene	00071-43-2				0.12	5.9E-05
Beryllium	07440-41-7				6.7E-04	3.4E-07
Cadmium	07440-43-9				6.2E-02	3.1E-05
Chromium	07440-47-3				7.8E-02	3.9E-05
Cobalt	07440-48-4				4.7E-03	2.4E-06
Dichlorobenzene	25321-22-6				6.7E-02	3.4E-05
Formaldehyde	00050-00-0				4.2	2.1E-03
Hexane	00110-54-3				101	5.0E-02
Lead	07439-92-1				2.8E-02	1.4E-05
Manganese	07439-96-5				2.1E-02	1.1E-05
Mercury	07439-97-6				1.5E-02	7.3E-06
Naphthalene	00091-20-3				3.4E-02	1.7E-05
Nickel	07440-02-0				0.12	5.9E-05
Polycyclic Organic Matter	POM				4.9E-03	2.5E-06
Selenium	07782-49-2				1.3E-03	6.7E-07
Toluene	00108-88-3				0.19	9.5E-05

Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

				Commissioning		
Building, Sources, and		Emission	Hourly Gas	Plan Projected	Projected	d Actual
Pollutants	CAS Number	Factor ^(b)	Flowrate	Fuel Usage ^(c)	Annual Emissions (d)	
		(lb/MMscf)	(MMscf/hr)	(MMscf/year)	(lb/yr)	(tpy)

Notes:

- (a) DX gas is a trademarked exothermic gas used to establish the atmosphere of the annealing furnaces. The gas is similar to combusted natural gas, so emissions were estimated using natural gas emission factors.
- (b) The emission factors were obtained from the USEPA's Compilation of Air Pollution Emission Factors (AP-42), Volume I, 5th Edition, Section 1.4 Natural Gas Combustion (July 1998).
- Greenhouse gas emission factors were obtained from 40 CFR Part 98 Subpart C Tables C-1 and C-2.
- (c) The Commissioning Plan Projected Fuel Usage is based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (d) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Fuel Usage (MMscf/yr) x Emission Factor (lb/MMscf).

Projected Actual Annual Emissions (ton/yr) = Projected Actual Annual Emissions (lb/yr) ÷ 2000 (lb/ton).

Table 5
Fuel Oil Boiler Combustion
Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	Emission Factor ^(a)	Total Heat Input Rating	Commissioning Plan Projected Fuel Usage ^(b)	Projected Annual Emis	
Poliutants	CAS Number	(lb/10 ³ gal)	(MMBtu/hr)	(gal/year)	(lb/yr)	(tpy)
U-COMB1		(iii) ie gaily	141	56,634	(167)17	(ipj)
Three boilers (two at 42 MN	/Btu/hr ea and	one at 57.2 N	MMBtu/hr) firii			
Carbon Monoxide	00630-08-0	5.0		-	283	0.14
Nitrogen Oxides	NY210-00-0	20			1,133	0.57
Sulfur Dioxide	07446-09-5	0.21			12	6.0E-03
Particulate Matter	NY075-00-0	3.3			187	9.3E-02
PM10	NY075-00-5	1.0			57	2.8E-02
PM2.5	NY075-02-5	0.25			14	7.1E-03
Carbon Dioxide	00124-38-9	23,179			1,312,719	656
Nitrous Oxide	10024-97-2	0.93			52	2.6E-02
Methane	00074-82-8	0.19			10	5.2E-03
Volatile Organic Compounds	NY998-00-0	0.20			11	5.7E-03
Total HAPs	NY100-00-0				4.0	2.0E-03
Arsenic	07440-38-2	5.6E-04			3.2E-02	1.6E-05
Beryllium	07440-41-7	4.2E-04			2.4E-02	1.2E-05
Cadmium	07440-43-9	4.2E-04			2.4E-02	1.2E-05
Chromium	07440-47-3	4.2E-04			2.4E-02	1.2E-05
Formaldehyde	00050-00-0	6.1E-02			3.5	1.7E-03
Lead	07439-92-1	1.3E-03			7.1E-02	3.6E-05
Manganese	07439-96-5	8.4E-04			4.8E-02	2.4E-05
Mercury	07439-96-5	4.2E-04			2.4E-02	1.2E-05
Nickel	07440-02-0	4.2E-04			2.4E-02	1.2E-05
Polycyclic Organic Matter	POM	3.3E-03			0.19	9.3E-05
Selenium	07782-49-2	2.1E-03			0.12	5.9E-05

Table 5

Fuel Oil Boiler Combustion Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

			Commissioning					
Building, Sources, and		Emission	Total Heat	Plan Projected	Projected	Actual		
Pollutants	CAS Number	Factor ^(a)	Input Rating	Fuel Usage ^(b)	Annual Emissions (c)			
		(lb/10 ³ gal)	(MMBtu/hr)	(gal/year)	(lb/yr)	(tpy)		

Notes:

(a) The emission factors were obtained from the USEPA's Compilation of Air Pollution Emission Factors (AP-42), Volume I, 5th Edition, Section 1.3 - Fuel Oil Combustion (September 1998).

Greenhouse Gas emission factors were obtained from 40 CFR Part 98 Subpart C Tables C-1 and C-2.

- (b) The Commissioning Plan Projected Fuel Usage is the equivalent amount of #2 fuel oil that corresponds to the 2021 amount of #6 fuel oil combusted by ratioing the fuel heating values.
- (c) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Fuel Usage (gal/yr) x Emission Factor (lb/ 10^3 gal) \div 1000 (gal/ 10^3 gal).

Projected Actual Annual Emissions (ton/yr) = Projected Actual Annual Emissions (lb/yr) ÷ 2000 (lb/ton).

Table 6
Facility-Wide Emergency Generators
Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Actu	ns ^(e)
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
Powerhouse				125	168	1.2	25		
Diesel Fired 1960 GM Emergency			0.05					07	4 45 0
Carbon Monoxide	00630-08-0		0.95					27	1.4E-0
Nitrogen Oxides	NY210-00-0		4.4					127	6.4E-0
Sulfur Dioxide	07446-09-5		0.29					8.4	4.2E-0
PM (Total)	NY075-00-0		0.31					8.9	4.5E-0
PM_{10}	NY075-00-5		0.31					8.9	4.5E-0
PM _{2.5}	NY075-02-5		0.31					8.9	4.5E-0
Volatile Organic Compounds	NY998-00-0		0.36					10	5.2E-0
Carbon Dioxide	00124-38-9		164					4,730	2.
Total HAPs	NY100-00-0							0.11	5.5E-0
Acenaphthene	00083-32-9		1.4E-06					4.1E-05	2.0E-0
Acenaphthylene	00208-96-8		5.1E-06					1.5E-04	7.3E-0
Acetaldehyde	00075-07-0		7.7E-04					2.2E-02	1.1E-0
Acrolein	00107-02-8		9.3E-05					2.7E-03	1.3E-0
Anthracene	00120-12-7		1.9E-06					5.4E-05	2.7E-0
Benzene	00071-43-2		9.3E-04					2.7E-02	1.3E-C
Benz(a)anthracene	00056-55-3		1.7E-06					4.8E-05	2.4E-0
Benz(a)pyrene	00050-32-8		1.9E-07					5.4E-06	2.7E-0
Benzo(b)fluoranthene	00205-99-2		9.9E-08					2.9E-06	1.4E-0
Benzo(g,h,i)perylene	00191-24-2		4.9E-07					1.4E-05	7.1E-0
Benzo(k)fluoranthene	00207-08-9		1.6E-07					4.5E-06	2.2E-0
Chrysene	00218-01-9		3.5E-07					1.0E-05	5.1E-0
Dibenzo(a,h)anthracene	00053-70-3		5.8E-07					1.7E-05	8.4E-0
Fluoranthene	00206-44-0		7.6E-06					2.2E-04	1.1E-C
Fluorene	00086-73-7		2.9E-05					8.4E-04	4.2E-0
Formaldehyde	00050-00-0		1.2E-03					3.4E-02	1.7E-0
Indeno(1,2,3-cd)pyrene	00193-39-5		3.8E-07					1.1E-05	5.4E-0
Naphthalene	00091-20-3		8.5E-05					2.4E-03	1.2E-0
Phenanthrene	00085-01-8		2.9E-05					8.5E-04	4.2E-0

Table 6
Facility-Wide Emergency Generators
Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Act Emissio	ns ^(e)
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
Pyrene	00129-00-0		4.8E-06					1.4E-04	6.9E-08
Toluene	00108-88-3		4.1E-04					1.2E-02	5.9E-06
Xylenes	01330-20-7		2.9E-04					8.2E-03	4.1E-06
Soap House				2000	2680	19	8.0		
Diesel Fired 1999 Caterpillar Eme	ergency Generator								
Carbon Monoxide	00630-08-0		0.85					128	6.4E-02
Nitrogen Oxides	NY210-00-0		3.2					480	0.24
Sulfur Dioxide	07446-09-5		1.5E-03					0.23	1.1E-04
PM (Total)	NY075-00-0		7.0E-02					10	5.2E-03
PM ₁₀	NY075-00-5		5.7E-02					8.6	4.3E-03
PM _{2.5}	NY075-02-5		4.8E-02					7.2	3.6E-03
Volatile Organic Compounds	NY998-00-0		8.2E-02					12	6.1E-03
Carbon Dioxide	00124-38-9		165					24,763	12
Methane	00074-82-8		8.1E-03					1.2	6.1E-04
Total HAPs	NY100-00-0							0.24	1.2E-04
Acenaphthene	00083-32-9		4.7E-06					7.0E-04	3.5E-07
Acenaphthylene	00208-96-8		9.2E-06					1.4E-03	6.9E-07
Acetaldehyde	00075-07-0		2.5E-05					3.8E-03	1.9E-06
Acrolein	00107-02-8		7.9E-06					1.2E-03	5.9E-07
Anthracene	00120-12-7		1.2E-06					1.8E-04	9.2E-08
Benzene	00071-43-2		7.8E-04					0.12	5.8E-05
Benz(a)anthracene	00056-55-3		6.2E-07					9.3E-05	4.7E-08
Benz(a)pyrene	00050-32-8		2.6E-07					3.9E-05	1.9E-08
Benzo(b)fluoranthene	00205-99-2		1.1E-06					1.7E-04	8.3E-08
Benzo(g,h,i)perylene	00191-24-2		5.6E-07					8.3E-05	4.2E-08
Benzo(k)fluoranthene	00207-08-9		2.2E-07					3.3E-05	1.6E-08
Chrysene	00218-01-9		1.5E-06					2.3E-04	1.1E-07
Dibenzo(a,h)anthracene	00053-70-3		3.5E-07					5.2E-05	2.6E-08
Fluoranthene	00206-44-0		4.0E-06					6.0E-04	3.0E-07

Table 6
Facility-Wide Emergency Generators
Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Acto	ns ^(e)
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
Fluorene	00086-73-7		1.3E-05					1.9E-03	9.6E-07
Formaldehyde	00050-00-0		7.9E-05					1.2E-02	5.9E-06
Indeno(1,2,3-cd)pyrene	00193-39-5		4.1E-07					6.2E-05	3.1E-08
Naphthalene	00091-20-3		1.3E-04					2.0E-02	9.8E-06
Phenanthrene	00085-01-8		4.1E-05					6.1E-03	3.1E-06
Pyrene	00129-00-0		3.7E-06					5.6E-04	2.8E-07
Toluene	00108-88-3		2.8E-04					4.2E-02	2.1E-05
Xylenes	01330-20-7		1.9E-04					2.9E-02	1.4E-05
Main Office				25	34	0.23	20		
Natural Gas Fired 2004 Generac I	0 0	or							
Carbon Monoxide	00630-08-0		3.7					17	8.7E-03
Nitrogen Oxides	NY210-00-0		2.2					10	5.2E-03
Sulfur Dioxide	07446-09-5		5.9E-04					2.8E-03	1.4E-06
PM (Total)	NY075-00-0		1.9E-02					9.1E-02	4.6E-05
PM ₁₀	NY075-00-5		9.5E-03					4.5E-02	2.2E-05
PM _{2.5}	NY075-02-5		9.5E-03					4.5E-02	2.2E-05
Volatile Organic Compounds	NY998-00-0		3.0E-02					0.14	6.9E-05
Carbon Dioxide	00124-38-9		110					516	0.26
Methane	00074-82-8		0.23					1.1	5.4E-04
Total HAPs	NY100-00-0							0.13	6.7E-05
Acetaldehyde	00075-07-0		2.8E-03					1.3E-02	6.5E-06
Acrolein	00107-02-8		2.6E-03					1.2E-02	6.2E-06
Benzene	00071-43-2		1.6E-03					7.4E-03	3.7E-06
Carbon Tetrachloride	00056-23-5		1.8E-05					8.3E-05	4.2E-08
Chlorobenzene	00108-90-7		1.3E-05					6.1E-05	3.0E-08
Chloroform	00067-66-3		1.4E-05					6.4E-05	3.2E-08
1,1-Dichloroethane	00075-34-3		1.1E-05					5.3E-05	2.6E-08
1,2-Dichloroethane	00107-06-2		1.1E-05					5.3E-05	2.6E-08
1,2-Dichloropropane	00078-87-5		1.3E-05					6.1E-05	3.0E-08

Table 6
Facility-Wide Emergency Generators
Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Actu Emissio	
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
1,3-Dichloropropene	00542-75-6		1.3E-05					6.0E-05	3.0E-08
Ethylbenzene	00100-41-4		2.5E-05					1.2E-04	5.8E-08
Ethylene Dibromide	00106-93-4		2.1E-05					1.0E-04	5.0E-08
Formaldehyde	00050-00-0		2.1E-02					9.6E-02	4.8E-05
Naphthalene	00091-20-3		9.7E-05					4.6E-04	2.3E-07
PAH	130498-29-2		1.4E-04					6.6E-04	3.3E-07
Styrene	00100-42-5		1.2E-05					5.6E-05	2.8E-08
1,1,2,2-Tetrachloroethane	00079-34-5		2.5E-05					1.2E-04	5.9E-08
Toluene	00108-88-3		5.6E-04					2.6E-03	1.3E-06
1,1,2-Trichloroethane	00079-00-5		1.5E-05					7.2E-05	3.6E-08
Vinyl Chloride	00075-01-4		7.2E-06					3.4E-05	1.7E-08
Xylenes	01330-20-7		2.0E-04					9.1E-04	4.6E-07
Coreless Furnace Generator Natural Gas Fired 2023 Generac	0 3			250	335	2.3	12		
Carbon Monoxide	00630-08-0	4.0						35	1.8E-02
Nitrogen Oxides	NY210-00-0	2.0						18	8.9E-03
Sulfur Dioxide	07446-09-5		5.9E-04					1.7E-02	8.3E-06
PM (Total)	NY075-00-0		1.0E-02					0.28	1.4E-04
PM ₁₀	NY075-00-5		7.7E-05					2.2E-03	1.1E-06
PM _{2.5}	NY075-02-5		7.7E-05					2.2E-03	1.1E-06
Volatile Organic Compounds	NY998-00-0	1.0						8.9	4.4E-03
								3,095	1.5E+00
Carbon Dioxide	00124-38-9		110					0,070	
Carbon Dioxide Methane	00124-38-9 00074-82-8		110 1.3					35	1.8E-02
	00074-82-8 NY100-00-0							35 2.0	9.8E-04
Methane Total HAPs Acenaphthene	00074-82-8 NY100-00-0 00083-32-9		1.3 1.3E-06					35 2.0 3.5E-05	9.8E-04 1.8E-08
Methane Total HAPs	00074-82-8 NY100-00-0		1.3					35 2.0	9.8E-04 1.8E-08 7.8E-08
Methane Total HAPs Acenaphthene Acenaphthylene Acetaldehyde	00074-82-8 NY100-00-0 00083-32-9 00208-96-8 00075-07-0		1.3E-06 5.5E-06 8.4E-03					35 2.0 3.5E-05 1.6E-04 0.24	9.8E-04 1.8E-08 7.8E-08 1.2E-04
Methane Total HAPs Acenaphthene Acenaphthylene	00074-82-8 NY100-00-0 00083-32-9 00208-96-8	 	1.3E-06 5.5E-06					35 2.0 3.5E-05 1.6E-04	9.8E-04 1.8E-08 7.8E-08

Table 6
Facility-Wide Emergency Generators
Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Actu	ns ^(e)
- (1) (1	00005 00 0	(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
Benzo(b)fluoranthene	00205-99-2		1.7E-07					4.7E-06	2.3E-09
Benzo(g,h,i)perylene	00191-24-2		4.1E-07					1.2E-05	5.8E-09
Benzo(e)pyrene	00192-97-2		4.2E-07					1.2E-05	5.8E-09
Biphenyl	00092-52-4		2.1E-04					6.0E-03	3.0E-06
Carbon Tetrachloride	00056-23-5		3.7E-05					1.0E-03	5.2E-07
Chlorobenzene	00108-90-7		3.0E-05					8.6E-04	4.3E-07
Chloroethane	00075-00-3		1.9E-06					5.3E-05	2.6E-08
Chloroform	00067-66-3		2.9E-05					8.0E-04	4.0E-07
Chrysene	00218-01-9		6.9E-07					2.0E-05	9.8E-09
1,1-Dichloroethane	00075-34-3		2.4E-05					6.6E-04	3.3E-07
1,2-Dichloroethane	00107-06-2		2.4E-05					6.6E-04	3.3E-07
1,2-Dichloropropane	00078-87-5		2.7E-05					7.6E-04	3.8E-07
1,3-Dichloropropene	00542-75-6		2.6E-05					7.4E-04	3.7E-07
Ethylbenzene	00100-41-4		4.0E-05					1.1E-03	5.6E-07
Ethylene Dibromide	00106-93-4		4.4E-05					1.2E-03	6.2E-07
Fluoranthene	00206-44-0		1.1E-06					3.1E-05	1.6E-08
Fluorene	00086-73-7		5.7E-06					1.6E-04	8.0E-08
Formaldehyde	00050-00-0		5.3E-02					1.5	7.4E-04
Hexane	00110-54-3		1.1E-03					3.1E-02	1.6E-05
Naphthalene	00091-20-3		7.4E-05					2.1E-03	1.0E-06
PAH	130498-29-2		2.7E-05					7.6E-04	3.8E-07
Phenanthrene	00085-01-8		1.0E-05					2.9E-04	1.5E-07
Phenol	00108-95-2		2.4E-05					6.8E-04	3.4E-07
Pyrene	00129-00-0		1.4E-06					3.8E-05	1.9E-08
Styrene	00100-42-5		2.4E-05					6.6E-04	3.3E-07
1,1,2,2-Tetrachloroethane	00079-34-5		4.0E-05					1.1E-03	5.6E-07
Toluene	00108-88-3		4.1E-04					1.1E-02	5.7E-06
1,1,2-Trichloroethane	00079-00-5		3.2E-05					8.9E-04	4.5E-07
2,2,4-Trimethylpentane	00540-84-1		2.5E-04					7.0E-03	3.5E-06
Vinyl Chloride	00075-01-4		1.5E-05					4.2E-04	2.1E-07

Table 6 Facility-Wide Emergency Generators

Summary of Actual Commissioning Plan Emissions

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Acto	ns ^(e)
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
Xylenes	01330-20-7		1.8E-04					5.2E-03	2.6E-0
Total	00/00 00 0							000	0.14
Carbon Monoxide	00630-08-0							208	0.10
Nitrogen Oxides	NY210-00-0							636	0.32
Sulfur Dioxide	07446-09-5							8.6	4.3E-03
PM (Total)	NY075-00-0							20	9.9E-0
PM ₁₀	NY075-00-5							18	8.8E-03
PM _{2.5}	NY075-02-5							16	8.1E-03
Volatile Organic Compounds	NY998-00-0							32	1.6E-02
Carbon Dioxide	00124-38-9							33,105	17
Methane	00074-82-8							37	1.9E-02
Total HAPs	NY100-00-0							2.4	1.2E-03
Acenaphthene	00083-32-9							7.8E-04	3.9E-0
Acenaphthylene	00208-96-8							1.7E-03	8.4E-0
Acetaldehyde	00075-07-0							0.27	1.4E-0
Acrolein	00107-02-8							0.16	8.0E-0
Anthracene	00120-12-7							2.4E-04	1.2E-0
Benzene	00071-43-2							0.16	8.2E-0
Benz(a)anthracene	00056-55-3							1.4E-04	7.1E-08
Benz(a)pyrene	00050-32-8							4.4E-05	2.2E-08
Benzo(b)fluoranthene	00205-99-2							1.7E-04	8.7E-08
Benzo(g,h,i)perylene	00191-24-2							1.1E-04	5.5E-08
Benzo(e)pyrene	00192-97-2							1.2E-05	5.8E-0
Benzo(k)fluoranthene	00207-08-9							3.7E-05	1.9E-08
Biphenyl	00092-52-4							6.0E-03	3.0E-0
Carbon Tetrachloride	00056-23-5							1.1E-03	5.6E-0
Chlorobenzene	00108-90-7							9.2E-04	4.6E-0
Chloroethane	00075-00-3							5.3E-05	2.6E-08
Chloroform	00067-66-3							8.7E-04	4.3E-0

Table 6

Facility-Wide Emergency Generators Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

Building, Sources, and Pollutants	CAS Number	NSPS Emission Factor ^(a)	AP-42 Emission Factor ^(b)	Power Output Rating ^(c)	Power Output Rating ^(c)	Maximum Heat Input ^(d)	Commissioning Plan Projected Operating Hours ^(c)	Projected Acto	
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)
Chrysene	00218-01-9							2.6E-04	1.3E-07
Dibenzo(a,h)anthracene	00053-70-3							6.9E-05	3.4E-08
1,1-Dichloroethane	00075-34-3							7.2E-04	3.6E-07
1,2-Dichloroethane	00107-06-2							7.2E-04	3.6E-07
1,2-Dichloropropane	00078-87-5							8.2E-04	4.1E-07
1,3-Dichloropropene	00542-75-6							8.0E-04	4.0E-07
Ethylbenzene	00100-41-4							1.2E-03	6.2E-07
Ethylene Dibromide	00106-93-4							1.3E-03	6.7E-07
Ethylene Dichloride	00107-06-2							7.2E-04	3.6E-07
Fluoranthene	00206-44-0							8.6E-04	4.3E-07
Fluorene	00086-73-7							2.9E-03	1.5E-06
Formaldehyde	00050-00-0							1.6	8.1E-04
Hexane	00110-54-3							3.1E-02	1.6E-05
Indeno(1,2,3-cd)pyrene	00193-39-5							7.3E-05	3.6E-08
Naphthalene	00091-20-3							2.5E-02	1.2E-05
PAH	130498-29-2							1.4E-03	7.1E-07
Phenanthrene	00085-01-8							7.3E-03	3.6E-06
Phenol	00108-95-2							6.8E-04	3.4E-07
Pyrene	00129-00-0							7.3E-04	3.7E-07
Styrene	00100-42-5							7.2E-04	3.6E-07
1,1,2,2-Tetrachloroethane	00079-34-5							1.2E-03	6.2E-07
Toluene	00108-88-3							6.8E-02	3.4E-05
1,1,2-Trichloroethane	00079-00-5							9.7E-04	4.8E-07
2,2,4-Trimethylpentane	00540-84-1							7.0E-03	3.5E-06
Vinyl Chloride	00075-01-4							4.5E-04	2.3E-07
Xylenes	01330-20-7							4.3E-02	2.2E-05

Notes:

- (a) The emission factors were based on the emissions standards in 40 CFR 60, Subparts IIII or JJJJ.
- (b) The emission factors were obtained from USEPA's Compiliation of Air Pollution Emission Factors, Volume 1, Fifth Edition, AP-42, Chapter 3 Stationary Internal

Table 6

Facility-Wide Emergency Generators Summary of Actual Commissioning Plan Emissions

		NSPS	AP-42	Power	Power	Maximum	Commissioning		
Building, Sources, and		Emission	Emission	Output	Output	Heat	Plan Projected	Projected Act	ual Annual
Pollutants	CAS Number	Factor ^(a)	Factor ^(b)	Rating ^(c)	Rating ^(c)	Input ^(d)	Operating Hours (c)	Emissio	ns ^(e)
		(g/HP-hr)	(lb/MMBtu)	(kW)	(HP)	(MMBtu/hr)	(hr/yr)	(lb/yr)	(tpy)

⁽c) Power Output Rating and Actual Operating Hours were provided by the client.

⁽d) Maximum Heat Input (MMBtu/hr) = Power Output Rating (HP) x 7,000 (Btu/HP-hr) ÷ 1,000,000 (Btu/MMBtu).

⁽e) Projected Actual Annual Emissions (lb/yr) = NSPS Emission Factor (g/HP-hr) x Power Output Rating (HP) x Actual Operating Hours (hr/yr) \div 453.59 (g/lb). Projected Actual Annual Emissions (lb/yr) = AP-42 Emission Factor (lb/MMBtu) x Maximum Heat Input (MMBtu/hr) x Actual Operating Hours (hr/yr). Projected Actual Annual Emissions (lb/yr) \div 2000 (lb/ton).

Table 7
U-CAST1 - Furnaces/Baghouses and Bypass
Summary of Actual Commissioning Plan Emissions

Sources and Pollutants	CAS Number	Composition ^(a)	Commissioning Plan Projected Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Projected	
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
BH1 Process (Cyclone/Ba	ghouse EP 00039)		4,220					
Total Particulate Matter	NY075-00-0			0.33	95	6.6	1,393	0.70
Total PM ₁₀	NY075-00-5			0.24	95	4.8	1,013	0.51
Total PM _{2.5}	NY075-02-5			0.15	95	2.9	612	0.31
Total Filterable PM	F-PM			0.20			844	0.42
Filterable PM ₁₀	F-PM10			0.11			464	0.23
Filterable PM _{2.5}	F-PM2.5			1.5E-02			63	3.2E-02
Condensible PM	C-PM			0.13			549	0.27
Graphite	07782-42-5	40		0.13	95	2.6	557	0.28
Copper oxide	01317-38-0	31		0.10	95	2.0	425	0.21
Iron oxide	01309-37-1	9.1		3.0E-02	95	0.60	126	6.3E-02
Aluminum oxide	01344-28-1	0.27		9.0E-04	95	1.8E-02	3.8	1.9E-03
Zinc oxide	01314-13-2	8.4E-02		2.8E-04	95	5.5E-03	1.2	5.8E-04
Magnesium oxide	01309-48-4	2.3E-02		7.7E-05	95	1.5E-03	0.33	1.6E-04
Barium oxide	01304-28-5	3.7E-03		1.2E-05	95	2.4E-04	5.1E-02	2.6E-05
Silver oxide	20667-12-3	9.7E-04		3.2E-06	95	6.4E-05	1.4E-02	6.8E-06
Total HAPs	NY100-00-0						0.83	4.2E-04
Lead oxide	01314-41-6	3.3E-02		1.1E-04	95	2.2E-03	0.46	2.3E-04
Manganese oxide	01313-13-9	2.3E-02		7.7E-05	95	1.5E-03	0.33	1.6E-04
Nickel oxide	01313-99-1	2.1E-03		6.9E-06	95	1.4E-04	2.9E-02	1.5E-05
Cadmium oxide	01306-19-0	6.8E-04		2.2E-06	95	4.5E-05	9.4E-03	4.7E-06
Chromium oxide	01333-82-0	9.3E-04		3.1E-06	95	6.2E-05	1.3E-02	6.5E-06
Mercury oxide	21908-53-2	8.9E-06		2.9E-08	95	5.8E-07	1.2E-04	6.2E-08
BP1 Process (By-pass, Cy	clone EP 00039)		43.2				_	
Total Particulate Matter	NY075-00-0			3.1	10	3.5	135	6.7E-02
Total PM ₁₀	NY075-00-5			5.2	10	5.8	225	0.11
Total PM _{2.5}	NY075-02-5			3.2	10	3.6	138	6.9E-02

Table 7
U-CAST1 - Furnaces/Baghouses and Bypass
Summary of Actual Commissioning Plan Emissions

Sources and Pollutants	CAS Number	Composition ^(a)	Commissioning Plan Projected Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Projected Annual Em	
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
Graphite	07782-42-5	40	· · · · · ·	2.1	10	2.3	90	4.5E-02
Copper oxide	01317-38-0	31		1.6	10	1.8	69	3.4E-02
Iron oxide	01309-37-1	9.1		0.47	10	0.52	20	1.0E-02
Aluminum oxide	01344-28-1	0.27		1.4E-02	10	1.6E-02	0.62	3.1E-04
Zinc oxide	01314-13-2	8.4E-02		4.4E-03	10	4.8E-03	0.19	9.4E-05
Magnesium oxide	01309-48-4	2.3E-02		1.2E-03	10	1.4E-03	5.3E-02	2.6E-05
Barium oxide	01304-28-5	3.7E-03		1.9E-04	10	2.1E-04	8.3E-03	4.1E-06
Silver oxide	20667-12-3	9.7E-04		5.0E-05	10	5.6E-05	2.2E-03	1.1E-06
Total HAPs	NY100-00-0						0.13	6.3E-05
Lead oxide	01314-41-6	3.3E-02		1.7E-03	10	1.9E-03	7.4E-02	3.7E-05
Manganese oxide	01313-13-9	2.3E-02		1.2E-03	10	1.4E-03	5.3E-02	2.6E-05
Nickel oxide	01313-99-1	2.1E-03		1.1E-04	10	1.2E-04	4.7E-03	2.3E-06
Cadmium oxide	01306-19-0	6.8E-04		3.5E-05	10	3.9E-05	1.5E-03	7.6E-07
Chromium oxide	01333-82-0	9.3E-04		4.9E-05	10	5.4E-05	2.1E-03	1.0E-06
Mercury oxide	21908-53-2	8.9E-06		4.6E-07	10	5.1E-07	2.0E-05	9.9E-09
BH2 Process (Cyclone/Ba	ghouse EP 00040)		3,987					
Total Particulate Matter	NY075-00-0			2.0	99	200	7,974	4.0
Total PM ₁₀	NY075-00-5			0.98	99	98	3,907	2.0
Total PM _{2.5}	NY075-02-5			0.29	99	29	1,164	0.58
Total Filterable PM	F-PM			1.8			7,097	3.5
Filterable PM ₁₀	F-PM10			0.76			3,030	1.5
Filterable PM _{2.5}	F-PM2.5			7.2E-02			287	0.14
Condensible PM	C-PM			0.22			877	0.44
Graphite	07782-42-5	40		0.80	99	80	3,190	1.6
Copper oxide	01317-38-0	31		0.61	99	61	2,436	1.2
Iron oxide	01309-37-1	9.1		0.18	99	18	724	0.36
Aluminum oxide	01344-28-1	0.27		5.5E-03	99	0.55	22	1.1E-02

Table 7
U-CAST1 - Furnaces/Baghouses and Bypass
Summary of Actual Commissioning Plan Emissions

Sources and Pollutants	CAS Number	Composition ^(a)	Commissioning Plan Projected Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Projected Annual Em	
		· (%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
Zinc oxide	01314-13-2	8.4E-02	-	1.7E-03	99	0.17	6.7	3.3E-03
Magnesium oxide	01309-48-4	2.3E-02		4.7E-04	99	4.7E-02	1.9	9.3E-04
Barium oxide	01304-28-5	3.7E-03		7.3E-05	99	7.3E-03	0.29	1.5E-04
Silver oxide	20667-12-3	9.7E-04		1.9E-05	99	1.9E-03	7.7E-02	3.9E-05
Total HAPs	NY100-00-0						4.5	2.2E-03
Lead oxide	01314-41-6	3.3E-02		6.5E-04	99	6.5E-02	2.6	1.3E-03
Manganese oxide	01313-13-9	2.3E-02		4.7E-04	99	4.7E-02	1.9	9.3E-04
Nickel oxide	01313-99-1	2.1E-03		4.2E-05	99	4.2E-03	0.17	8.3E-05
Cadmium oxide	01306-19-0	6.8E-04		1.4E-05	99	1.4E-03	5.4E-02	2.7E-05
Chromium oxide	01333-82-0	9.3E-04		1.9E-05	99	1.9E-03	7.4E-02	3.7E-05
Mercury oxide	21908-53-2	8.9E-06		1.8E-07	99	1.8E-05	7.1E-04	3.5E-07
BP2 Process (By-pass, Cy	clone EP 00040)		0.08					
Total Particulate Matter	NY075-00-0			9.4	10	10	0.75	3.8E-04
Total PM ₁₀	NY075-00-5			11	10	12	0.85	4.2E-04
Total PM _{2.5}	NY075-02-5			1.9	10	2.1	0.15	7.4E-05
Graphite	07782-42-5	40		4.2	10	4.7	0.34	1.7E-04
Copper oxide	01317-38-0	31		3.2	10	3.6	0.26	1.3E-04
Iron oxide	01309-37-1	9.1		0.96	10	1.1	7.7E-02	3.8E-05
Aluminum oxide	01344-28-1	0.27		2.9E-02	10	0.03	2.3E-03	1.2E-06
Zinc oxide	01314-13-2	8.4E-02		8.9E-03	10	0.01	7.1E-04	3.5E-07
Magnesium oxide	01309-48-4	2.3E-02		2.5E-03	10	0.00	2.0E-04	9.9E-08
Barium oxide	01304-28-5	3.7E-03		3.9E-04	10	4.3E-04	3.1E-05	1.6E-08
Silver oxide	20667-12-3	9.7E-04		1.0E-04	10	1.1E-04	8.2E-06	4.1E-09
Total HAPs	NY100-00-0						4.8E-04	2.4E-07
Lead oxide	01314-41-6	3.3E-02		3.5E-03	10	3.8E-03	2.8E-04	1.4E-07
Manganese oxide	01313-13-9	2.3E-02		2.5E-03	10	2.7E-03	2.0E-04	9.9E-08
Nickel oxide	01313-99-1	2.1E-03		2.2E-04	10	2.5E-04	1.8E-05	8.8E-09

Table 7 U-CAST1 - Furnaces/Baghouses and Bypass Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

		(2)	Commissioning Plan Projected Operating	Post- Control Emission	Control	Emission Rate	Projected	
Sources and Pollutants	CAS Number	Composition ^(a)	Hours ^(b)	Factor ^(c)	Efficiency ^(d)	Potential ^(e)	Annual Em	
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
Cadmium oxide	01306-19-0	6.8E-04		7.2E-05	10	7.9E-05	5.7E-06	2.9E-09
Chromium oxide	01333-82-0	9.3E-04		9.9E-05	10	1.1E-04	7.9E-06	4.0E-09
Mercury oxide	21908-53-2	8.9E-06		9.4E-07	10	1.0E-06	7.5E-08	3.7E-11
Total								
Total Particulate Matter	NY075-00-0						9,502	4.8
Total PM ₁₀	NY075-00-5						5,146	2.6
Total PM _{2.5}	NY075-02-5						1,914	0.96
Graphite	07782-42-5						3,837	1.9
Copper oxide	01317-38-0						2,930	1.5
Iron oxide	01309-37-1						871	0.44
Aluminum oxide	01344-28-1						26	1.3E-02
Zinc oxide	01314-13-2						8.0	4.0E-03
Magnesium oxide	01309-48-4						2.2	1.1E-03
Barium oxide	01304-28-5						0.35	1.8E-04
Silver oxide	20667-12-3						9.3E-02	4.7E-05
Total HAPs	NY100-00-0						5.4	2.7E-03
Lead oxide	01314-41-6						3.1	1.6E-03
Manganese oxide	01313-13-9						2.2	1.1E-03
Nickel oxide	01313-99-1						0.20	1.0E-04
Cadmium oxide	01306-19-0						6.5E-02	3.2E-05
Chromium oxide	01333-82-0						9.0E-02	4.5E-05
Mercury oxide	21908-53-2						8.5E-04	4.2E-07

Notes:

(a) The composition of the particulate is based on analysis of a sample collected from dust accumulated in the baghouse.

Table 7 U-CAST1 - Furnaces/Baghouses and Bypass Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Composition ^(a)	Commissioning Plan Projected Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Projected	
Jour des and i ondiants	CAS Number	(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)

- (b) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (c) PM Emission Factors for Process BH1 and BH2 are based on testing conducted in May 2023; testing included filterable PM, condensable PM, and particle size distribution, and represent post-control emissions.

Individual constituent Emission Factors were calculated by multiplying the Total Particulate Matter Emission Factor by the estimated percentage of the constituent.

For Process BP1 and BP2, the hourly Total Particulate Emission Factors were obtained from the June, 2008 source emissions test report provided by Revere. The hourly PM10 and PM2.5 Emission Factors were obtained from the February, 2002 source emissions test report provided by Revere. Both sets represent post-control emissions.

Individual constituent Emission Factors were calculated by multiplying the Total PM_{10} Emission Factor by the estimated percentage of the constituent. Due to the different test methods used between the 2002 and 2008 source testing, the PM_{10} emission factor is higher than the total emission factor. Therefore, this higher value was used as the basis for the toxics in order to be conservative.

- (d) The EP00039 cyclone-baghouse control efficiency was obtained from the February 6, 2002 source emissions test report provided by Revere. The EP00040 cyclone-baghouse control efficiency was 99.7% for total particulate matter per the February 6, 2002 source emissions test report. To be conservative, 99% was used in the EP 00040 emissions calculations, which corresponds to the control efficiency for $PM_{2.5}$ provided in AP-42 Appendix B.2 Table B.2-3 for single cyclones.
- (e) Emission Rate Potential (lb/hr) = Post-Control Emission Factor (lb/hr) ÷ (1- Control Efficiency) (%).
- (f) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Operating Hours (hr/yr) x Emission Factor (lb/hr). Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).

Table 8 U-CAST1 - Central Vacuum System Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Composition ^(a)	Comissioning Plan Projected Operating Hours ^(b)	Post- Control Emission Factor ^(c)	Control Efficiency ^(d)	Emission Rate Potential ^(e)	Projected Annual Em	
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
VAC Process (Single Cyclo	ne/Fabric Filter E	P 00602)	835					
Total Particulate Matter ^(h)	NY075-00-0	100		3.6E-02	99.9	36	30	1.5E-02
Total PM ₁₀ ^(h)	NY075-00-5	100		3.6E-02	99.9	36	30	1.5E-02
PM _{2.5} ^(h)	NY075-02-5	100		3.6E-02	99.9	36	30	1.5E-02
Graphite	07782-42-5	40		1.4E-02	99.9	14	12	6.0E-03
Copper oxide	01317-38-0	31		1.1E-02	99.9	11	9.2	4.6E-03
Iron oxide	01309-37-1	9.1		3.3E-03	99.9	3.3	2.7	1.4E-03
Aluminum oxide	01344-28-1	0.27		9.9E-05	99.9	9.9E-02	8.2E-02	4.1E-05
Zinc oxide	01314-13-2	8.4E-02		3.0E-05	99.9	3.0E-02	2.5E-02	1.3E-05
Magnesium oxide	01309-48-4	2.3E-02		8.4E-06	99.9	8.4E-03	7.0E-03	3.5E-06
Barium oxide	01304-28-5	3.7E-03		1.3E-06	99.9	1.3E-03	1.1E-03	5.5E-07
Silver oxide	20667-12-3	9.7E-04		3.5E-07	99.9	3.5E-04	2.9E-04	1.5E-07
Total HAPs	NY100-00-0						1.8E-02	9.0E-06
Lead oxide	01314-41-6	3.3E-02		1.2E-05	99.9	1.2E-02	9.8E-03	4.9E-06
Manganese oxide	01313-13-9	2.3E-02		8.4E-06	99.9	8.4E-03	7.0E-03	3.5E-06
Nickel oxide	01313-99-1	2.1E-03		7.5E-07	99.9	7.5E-04	6.3E-04	3.1E-07
Cadmium oxide	01306-19-0	6.8E-04		2.4E-07	99.9	2.4E-04	2.0E-04	1.0E-07
Chromium oxide	01333-82-0	9.3E-04		3.4E-07	99.9	3.4E-04	2.8E-04	1.4E-07
Mercury oxide	21908-53-2	8.9E-06		3.2E-09	99.9	3.2E-06	2.7E-06	1.3E-09

Notes:

- (a) The composition of the particulate is based on testing conducted by Revere of a sample collected from dust accumulated in the baghouse.
- (b) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (c) Particulate matter emission factors were based on May 2023 testing conducted on the EP 00040 baghouse vent (0.003 grains/dscf) and the engineering estimate that the Central Vacuum System baghouse provides control to the same outlet concentration. Emission factors for the individual constituents were calculated by multiplying the composition of each constituent by the Particulate Matter emission factor.
- (d) The cyclone and fabric filter particulate matter removal efficiency is estimated based on typical control efficiencies provided in USEPA's AP-42 Appendix
- (e) The emission rate potentials were calculated by dividing the emission factor by one minus the control efficiency.

Table 8 U-CAST1 - Central Vacuum System Summary of Actual Commissioning Plan Emissions

			Comissioning	Post-				
			Plan Projected	Control		Emission		
			Operating	Emission	Control	Rate	Projected Actual Annual Emissions ^(f)	
Sources and Pollutants	CAS Number	Composition (a)	Hours ^(b)	Factor ^(c)	Efficiency ^(d)	Potential ^(e)		
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)

⁽f) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Operating Hours (hr/yr) x Emission Factor (lb/hr). Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).

⁽g) It is assumed that all of the Particulate Matter is PM_{2.5.}

Table 9
U-ROLL1
Summary of Actual Commissioning Plan Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a) (%)	Comissioning Plan Projected Operating Hours ^(b) (hr/yr)	Control Efficiency ^(c) (%)	Emission Rate Potential ^(d) (lb/hr)	Actual Emission Rate ^(e) (lb/hr)	Projected Annual Em (lb/yr)	
1176 Bliss Mill (Baffle Chambe	er, EP 00036)	(· cy	1,312		(iii)	(iii)	, , ,	(13)
Coolant (Baums 882)	·	40%						
Total Particulate Matter ^(g)	NY075-00-0	100		10	2.2E-03	2.0E-03	2.6	1.3E-03
PM ₁₀ ^(g)	NY075-00-5	100		10	2.2E-03	2.0E-03	2.6	1.3E-03
PM _{2.5} ^(g) Hydrotreated light naphthenic	NY075-02-5	100		10	2.2E-03	2.0E-03	2.6	1.3E-03
petroleum oil Hydrotreated heavy naphthenic		26		10		5.2E-04	0.69	3.4E-04
petroleum oil	64742-52-5	22		10		4.4E-04	0.58	2.9E-04
Fatty alcohol alkoxylate Hexahydro-1,3,5-tris(2-	37335-03-8	5		10	1.1E-04	1.0E-04	0.13	6.6E-05
hydroxyethyl)-s-triazine	04719-04-4	1		10		2.0E-05	2.6E-02	1.3E-05
2-Amino-2-methyl-1-propanol	00124-68-5	1		10	2.2E-05	2.0E-05	2.6E-02	1.3E-05
(Bonderite S-FN 870)		0.00006%						
Total Particulate Matter ^(g)	NY075-00-0	100		10	3.2E-09	2.9E-09	3.8E-06	1.9E-09
PM ₁₀ ^(g)	NY075-00-5	100		10	3.2E-09	2.9E-09	3.8E-06	1.9E-09
PM _{2.5} ^(g)	NY075-02-5	100		10	3.2E-09	2.9E-09	3.8E-06	1.9E-09
Petroleum distillates	Trade Secret #1	100		10	3.2E-09	2.9E-09	3.8E-06	1.9E-09
2-Butoxyethanol	00111-76-2	5		10	1.6E-10	1.4E-10	1.9E-07	9.4E-11
Bactericide (Grotan)		60%						
Total Particulate Matter ^(g)	NY075-00-0	100		10	3.3E-03	3.0E-03	3.9	2.0E-03
PM ₁₀ ^(g)	NY075-00-5	100		10	3.3E-03	3.0E-03	3.9	2.0E-03
PM _{2.5} ^(g) 2,2',2"-(Hexahydro-1,3,5-	NY075-02-5	100		10	3.3E-03	3.0E-03	3.9	2.0E-03
triazine-1,3,5-triyl)triethanol	04719-04-4	47		10	1.6E-03	1.4E-03	1.8	9.2E-04
2-Aminoethanol	00141-43-5	1.8		10		5.4E-05	7.0E-02	3.5E-05

Table 9
U-ROLL1
Summary of Actual Commissioning Plan Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a) (%)	Comissioning Plan Projected Operating Hours ^(b) (hr/yr)	Control Efficiency ^(c) (%)	Emission Rate Potential ^(d) (lb/hr)	Actual Emission Rate ^(e) (lb/hr)	Projected Annual Em (lb/yr)	
1706 Hot Mill (Mist Eliminato	r. FP 00030)	(76)	2,577	(%)	(10/111)	(10/111)	(167 yr)	(tpy)
Coolant (Astro-sol N)	, <u> </u>		Ξ/011					
Total Particulate Matter (g)	NY075-00-0	100		10	0.30	0.27	696	0.35
PM ₁₀ ^(g)	NY075-00-5	100		10		0.27	696	0.35
PM _{2.5} ^(g)	NY075-02-5	100		10		0.27	696	0.35
Sulfonic acid, petroleum,								
sodium salts	68608-26-4	20		10	6.0E-02	5.4E-02	139	7.0E-02
Nonylphenol, ethoxylated	09016-45-9	20		10	6.0E-02	5.4E-02	139	7.0E-02
Hexahydro-1,3,5-tris (2-								
hydroxyethyl)-s-triazine	04719-04-4	20		10	6.0E-02	5.4E-02	139	7.0E-02
Base oil	Trade Secret #3	20		10	6.0E-02	5.4E-02	139	7.0E-02
Alkanolamine	00141-43-5	20		10	6.0E-02	5.4E-02	139	7.0E-02
1721 First Run Down Mill (Mi		0029)	4,739					
Coolant (Rodshield 68 (QH E	* *	100		10	0.00	0.00	2.022	2.0
Total PM	NY075-00-0 NY075-00-5	100 100		10 10		0.83 0.80	3,933 3,791	2.0 1.9
Total PM	NY075-00-5 NY075-02-5	100		10		0.80	3,791	1.9
Total PM _{2.5} Total Filterable PM	F-PM	100		10		0.69	3,270	1.0
Filterable PM ₁₀	F-PM10			10		0.26		
Filterable PM _{2.5}	F-PM2.5			10		0.23		
Condensible PM ^(h)	C-PM			10		0.12		
Highly refined, low viscosity	C-FIVI			10	0.03	0.57		
mineral oils/hydrocarbons Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9-	Trade Secret #4	90		10	0.633	0.570	2,701	1.4
octadecen-1-yloxy]- Amines, tallow alkyl,	57635-48-0	5		10	3.52E-02	3.17E-02	150	7.5E-02
ethoxylated	61791-26-2	3		10	2.11E-02	1.90E-02	90	4.5E-02

Table 9
U-ROLL1
Summary of Actual Commissioning Plan Emissions

			Comissioning					
			Plan Projected		Emission	Actual		
		Weight	Operating	Control	Rate	Emission	Projected	Actual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Efficiency ^(c)	Potential (d)	Rate ^(e)	Annual Em	issions ^(f)
		(%)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)
Propane-1,2-diol	00057-55-6	3		10	2.11E-02	1.90E-02	90	4.5E-02
Sulfonic acids, petroleum,								
sodium salts	68608-26-4	3		10	2.11E-02	1.90E-02	90	4.5E-02
(Z)-9-Octadecen-1-ol								
ethoxylated	09004-98-2	3		10	2.11E-02	1.90E-02	90	4.5E-02
Fatty acids, C18-unsaturated								
phosphates	Trade Secret #5	3		10	2.11E-02	1.90E-02	90	4.5E-02
1,2-Benzisothiazol-3(2H)-one	02634-33-5	0.3		10	2.11E-03	1.90E-03	9.0	4.5E-03
Trade Secret	Trade Secret #8	10		10	7.04E-02	6.33E-02	300	0.15
1723 Reversing Mill (No Cont	rol, EP 00026)		5,528					
Coolant (Cupromul 23)		86.7%						
Total Particulate Matter	NY075-00-0	100		0	0.36	0.36	1,990	1.0
Total PM ₁₀	NY075-00-5	100		0	0.35	0.35	1,935	0.97
Total PM _{2.5}	NY075-02-5	100		0	0.29	0.29	1,581	0.79
Filterable PM	F-PM			0	0.16	0.16		
Filterable PM ₁₀	F-PM10			0	0.15	0.15		
Filterable PM _{2.5}	F-PM2.5			0	8.6E-02	8.6E-02		
Condensible PM ^(h)	C-PM			0	0.20	0.20		
Hydrotreated heavy naphthenic	;							
petroleum distillate	64742-52-5	74		0	0.15	0.15	815	0.41
Hexylene glycol	00107-41-5	4.3		0	8.7E-03	8.7E-03	48	2.4E-02
Bactericide (Grotan)		13.3%						
Total Particulate Matter	NY075-00-0	100		0	0.36			
Total PM ₁₀	NY075-00-5	100		0	0.35			
Total PM _{2.5}	NY075-02-5	100		0	0.29			
Filterable PM	F-PM			0	0.16			
Filterable PM ₁₀	F-PM10			0	0.15			

			Comissioning Plan Projected		Emission	Actual		
Sources and Pollutants	CAS Number	Weight Percent ^(a)	Operating Hours ^(b)	Control Efficiency ^(c)	Rate Potential ^(d)	Emission Rate ^(e)	Projected Annual Em	issions ^(f)
		(%)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)
Filterable PM _{2.5}	F-PM2.5			0				
Condensible PM ^(h)	C-PM			0	0.20			
2,2',2"-(Hexahydro-1,3,5-								
triazine-1,3,5-triyl)triethanol	04719-04-4	10		0	2.1E-02	2.1E-02	38	1.9E-02
2-Aminoethanol	00141-43-5	0.40		0	8.0E-04	8.0E-04	1.5	7.3E-04
1724 Z-Mill (No Control, EP 00	0025)		784					
Roll Oil (Navi-Guard 135)								
Total Particulate Matter ^(g)	NY075-00-0	100		0	1.1	1.1	870	0.44
PM ₁₀ ^(g)	NY075-00-5	100		0	1.1	1.1	870	0.44
PM _{2.5} ^(g)	NY075-02-5	100		0	1.1	1.1	870	0.44
Distillates (petroleum), solvent	-							
dewaxed light paraffinic	64742-56-9	75		0	0.83	0.83	653	0.33
Total								
Total Particulate Matter	NY075-00-0						7,496	3.7
PM ₁₀	NY075-00-5						7,299	3.6
PM _{2.5}	NY075-02-5						6,424	3.2
Propane-1,2-diol	00057-55-6						90	4.5E-02
Hexylene glycol	00107-41-5						48	2.4E-02
2-Butoxyethanol	00111-76-2						1.9E-07	9.4E-11
2-Amino-2-methyl-1-propanol	00124-68-5						2.6E-02	1.3E-05
Alkanolamine	00141-43-5						141	7.0E-02
1,2-Benzisothiazol-3(2H)-one Hexahydro-1,3,5-tris(2-	02634-33-5						9.0	4.5E-03
hydroxyethyl)-s-triazine (Z)-9-Octadecen-1-ol	04719-04-4						179	9.0E-02
ethoxylated	09004-98-2						90	4.5E-02
Nonylphenol, ethoxylated	09016-45-9						139	7.0E-02

Table 9 U-ROLL1

Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Comissioning Plan Projected Operating Hours ^(b)	Control Efficiency ^(c)	Emission Rate Potential ^(d)	Actual Emission Rate ^(e)	Projected Annual Emi	issions ^(f)
		(%)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)
Fatty alcohol alkoxylate	37335-03-8						0.13	6.6E-05
Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9-								
octadecen-1-yloxy]-	57635-48-0						150	7.5E-02
ethoxylated	61791-26-2						90	4.5E-02
Hydrotreated heavy naphthenic								
petroleum oil Hydrotreated light naphthenic	64742-52-5						815	0.41
petroleum oil	64742-53-6						0.69	3.4E-04
Distillates (petroleum), solvent- dewaxed light paraffinic Sulfonic acids, petroleum,	64742-56-9						653	0.33
sodium salts	68608-26-4						229	0.11
Petroleum distillates	Trade Secret #1						3.8E-06	1.9E-09
Petroleum distillates (mineral								
oil) ⁽ⁱ⁾	Trade Secret #2							
Base oil	Trade Secret #3						139	7.0E-02
Highly refined, low viscosity								
mineral oils/hydrocarbons	Trade Secret #4						2,701	1.4
Fatty acids, C18-unsaturated								
phosphates	Trade Secret #5						90	4.5E-02
Trade Secret	Trade Secret #8						300	0.15

Notes:

- (a) From cooling bath composition information provided by Revere and manufacturer's Safety Data Sheets.
- (b) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (c) The mist eliminator particulate matter removal efficiency is estimated based on typical control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.

Table 9 U-ROLL1

Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

			Comissioning Plan Projected		Emission	Actual		
		Weight	Operating	Control	Rate	Emission	Projecte	d Actual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Efficiency ^(c)	Potential (d)	Rate ^(e)	Annual En	nissions ^(f)
		(%)	(hr/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)

- (d) Emission Rate Potentials for the Bliss Mill, Hot Mill, and Z-Mill were estimated using hourly emission rates for Total Particulate Matter provided by Revere, divided by the assumed particulate matter removal efficiency. For the 1st Run Down Mill and Reversing Mill, PM emission rates are based on testing conducted in May 2023, divided by the assumed particulate matter removal efficiency.
- (e) Actual Emission Rates for the Bliss Mill, Hot Mill, and Z-Mill were estimated using hourly emission rates for Total Particulate Matter provided by Revere. For the 1st Run Down Mill and Reversing Mill, PM emission rates are based on testing conducted in May 2023.
- (f) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Operating Hours (hr/yr) x Emission Rate Potential (lb/hr) x (1-Control Efficiency) (%).

Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

- (g) For the Mills that did not undergo testing in May 2023, all particulate matter is assumed to be PM_{2.5}.
- (h) For the Mills that underwent testing in May 2023, the individual contaminants are assumed to only be present in the condensible phase, and emissions are estimated by multiplying the weight percent by the Condensible PM emissions.
- (i) This pollutant is present in a biocide applied on some of the Rolling Mills and was included in the prior permit application as being potentially emitted from the Rolling Mills. Upon further investigation, the biocide is completely consumed by the bacteria within 24 hours of application and is not expected to be released to the atmosphere. As such, this biocide has been removed from the Emission Inventory tables. This pollutant has been left in the inventory to maintain the same Trade Secret identification methodology to avoid possible confusion.

Table 10 U-OVER1 Summary of Actual Commissioning Plan Emissions

Sources and Dellutants	CAS Number	Weight Percent	Comissioning Plan Projected Operating Hours ^(a)	Post- Control Emission Rate ^(b)	Control Efficiency ^(c)	Emission Rate Potential ^(d)	Projected	
Sources and Pollutants	CAS Number	(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
1715 Overhauler (Wet Scrul	bber, EP 00031)	(10)	4,838		(70)	(12/111)	(ID/ JI)	(ipj)
Copper Shavings			·					
Total Particulate Matter	NY075-00-0	100		2.9	91	32	14,127	7.1
Total PM ₁₀	NY075-00-5	100		0.72	91	8.0	3,483	1.7
Total PM _{2.5}	NY075-02-5	100		0.66	91	7.3	3,193	1.6
Filterable PM	F-PM			2.4	91			
Filterable PM ₁₀	F-PM10			0.20	91			
Filterable PM _{2.5}	F-PM2.5			0.14	91			
Condensible PM	C-PM			0.52	91			
Copper	07440-50-8	99.99		0.37	91	4.1	1,795	0.90
Tin	07440-31-5	0.15		3.6E-03	91	6.0E-05	2.6E-02	1.3E-05
Silver	07440-22-4	0.10		2.4E-03	91	2.7E-05	1.2E-02	5.8E-06
Tellurium	13494-80-9	0.05		1.2E-03	91	6.7E-06	2.9E-03	1.5E-06
HAPs	NY100-00-0					4.3E-06	1.9E-03	9.3E-07
Phosphorus	07723-14-0	0.04		9.6E-04	91	4.3E-06	1.9E-03	9.3E-07
Wallover Copperol 1000B								
Total Particulate Matter	NY075-00-0	100		2.9	91			
Total PM ₁₀	NY075-00-5	100		0.72	91			
Total PM _{2.5}	NY075-02-5	100		0.66	91			
Filterable PM	F-PM			2.4	91			
Filterable PM ₁₀	F-PM10			0.20	91			
Filterable PM _{2.5}	F-PM2.5			0.14	91			
Condensible PM	C-PM			0.52	91			
Highly refined, low viscosity								
mineral oils/hydrocarbons	Trade Secret #4	70		0.36	91	2.8	1,761	0.88
Proprietary emulsifier	Trade Secret #6	10		5.2E-02	91	5.8E-02	252	0.13

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent	Comissioning Plan Projected Operating Hours ^(a)	Post- Control Emission Rate ^(b)	Control Efficiency ^(c)	Emission Rate Potential ^(d)	Projected Annual Em	
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/yr)	(tpy)
Total								
Particulate Matter	NY075-00-0					32	14,127	7.1
PM ₁₀	NY075-00-5					8.0	3,483	1.7
PM _{2.5}	NY075-02-5					7.3	3,193	1.6
Copper	07440-50-8					4.1	1,795	0.90
Tin	07440-31-5					6.0E-05	2.6E-02	1.3E-05
Silver	07440-22-4					2.7E-05	1.2E-02	5.8E-06
Tellurium	13494-80-9					6.7E-06	2.9E-03	1.5E-06
Highly refined, low viscosity	1							
mineral oils/hydrocarbons	Trade Secret #4					2.8	1,761	0.88
Proprietary emulsifier	Trade Secret #6					5.8E-02	252	0.13
HAPs	NY100-00-0					4.3E-06	1.9E-03	9.3E-07
Phosphorus	07723-14-0					4.3E-06	1.9E-03	9.3E-07

Notes:

- (a) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (b) The PM and Copper Emission Factors are based on testing of post-control emissions in May 2023. For the other metal content of the copper shavings, emission factors for the individual constituents are calculated by multiplying the Total Filterable PM Emission Factor by the weight percent for each constituent. For the metal working fluid, emission factors for the individual constituents are calculated by multiplying the Condensible PM Emission Factor by the weight percent for each constituent.
- (c) The control efficiency of the scrubber is based on control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3, and assumed to meet the 212-2.3(a) Table 3 control efficiency requirement.
- (d) Emission Rate Potential (lb/hr) = Weight Percent (%) x Emission Factor (lb/hr) \div 1-Control Efficiency (%).
- (e) Projected Actual Annual Emissions (lb/yr) = Weight Percent (%) x Emission Factor (lb/hr) x Future Projected Operating Hours (hr/yr). Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).

			Comissioning			
		Weight	Plan Projected Operating	Emission Rate	Projected	l Actual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Potential ^(c)	Annual Em	
		(%)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)
1729-1734 Lee Wilson Anneal (EP 00	369)					
Navi-Guard Roll Oil 135			3,404			
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75		5.5E-03	19	9.4E-03
dewaxed light paraffinic	64742-56-9	75		5.5E-03	19	9.4E-03
Bonderite S-FN 860			3,404			
Volatile Organic Compounds	NY998-00-0	100		1.9E-04	0.64	3.2E-04
Diethylene glycol	00111-46-6	60		1.1E-04	0.38	1.9E-04
Polyethylene glycol	25322-68-3	60		1.1E-04	0.38	1.9E-04
Azole derivative	Trade Secret #7	5		9.4E-06	3.2E-02	1.6E-05
Bonderite S-FN 870			3,404			
VOC	NY998-00-0	100		1.9E-04	0.64	3.2E-04
Petroleum distillates	Trade Secret #1	100		1.9E-04	0.64	3.2E-04
2-Butoxyethanol	00111-76-2	5		9.4E-06	3.2E-02	1.6E-05
Wallover Premium 40			3,404			
VOC	NY998-00-0	100		1.4E-04	0.49	2.4E-04
Petroleum distillates (mineral oil)	08042-47-5	100		1.4E-04	0.49	2.4E-04
2383-2386 Ebner Anneal (EP 00440)						
Navi-Guard Roll Oil 135			5,960			
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75	,	3.3E-03	19	9.7E-03
dewaxed light paraffinic	64742-56-9	75		3.3E-03	19	9.7E-03
Bonderite S-FN 860			5,960			
Volatile Organic Compounds	NY998-00-0	100		1.1E-04	0.66	3.3E-04
Diethylene glycol	25322-68-3	60		6.7E-05	0.40	2.0E-04

		Weight	Comissioning Plan Projected Operating	Emission Rate	Projected	d Actual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Potential ^(c)	Annual Em	
		(%)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)
Polyethylene glycol	Trade Secret #7	60		6.7E-05	0.40	2.0E-04
Azole derivative	00111-46-6	5		5.6E-06	3.3E-02	1.7E-05
Bonderite S-FN 870			5,960			
VOC	NY998-00-0	100		1.1E-04	0.66	3.3E-04
Petroleum distillates	Trade Secret #1	100		1.1E-04	0.66	3.3E-04
2-Butoxyethanol	00111-76-2	5		5.6E-06	3.3E-02	1.7E-05
Wallover Premium 40			5,960			
VOC	NY998-00-0	100	·	8.2E-05	0.49	2.4E-04
Petroleum distillates (mineral oil)	08042-47-5	100		8.2E-05	0.49	2.4E-04
1154 Bright Anneal (EP 00367/0036	52)					
Navi-Guard Roll Oil 135			1,568			
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75		1.1E-02	17	8.4E-03
dewaxed light paraffinic	64742-56-9	75		1.1E-02	17	8.4E-03
Bonderite S-FN 860			1,568			
Volatile Organic Compounds	NY998-00-0	100		3.7E-04	0.57	2.9E-04
Diethylene glycol	25322-68-3	60		2.2E-04	0.34	1.7E-04
Polyethylene glycol	Trade Secret #7	60		2.2E-04	0.34	1.7E-04
Azole derivative	00111-46-6	5		1.8E-05	2.9E-02	1.4E-05
Bonderite S-FN 870			1,568			
VOC	NY998-00-0	100		3.7E-04	0.57	2.9E-04
Petroleum distillates	Trade Secret #1	100		3.7E-04	0.57	2.9E-04
2-Butoxyethanol	00111-76-2	5		1.8E-05	2.9E-02	1.4E-05
Wallover Premium 40			1,568			

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Comissioning Plan Projected Operating Hours ^(b)	Emission Rate Potential ^(c)	Projected Annual Em	issions ^(d)
		(%)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)
VOC	NY998-00-0	100		3.1E-04		2.4E-04
Petroleum distillates (mineral oil)	08042-47-5	100		3.1E-04	0.49	2.4E-04
464 Tray Style/Coil Anneal (EP 001	89/00190)					
Navi-Guard Roll Oil 135			7,259			
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75		1.1E-02	17	8.4E-03
dewaxed light paraffinic	64742-56-9	75		1.1E-02	17	8.4E-03
Bonderite S-FN 860			7,259			
Volatile Organic Compounds	NY998-00-0	100		3.7E-04	0.57	2.9E-04
Diethylene glycol	25322-68-3	60		2.2E-04	0.34	1.7E-04
Polyethylene glycol	Trade Secret #7	60		2.2E-04	0.34	1.7E-04
Azole derivative	00111-46-6	5		1.8E-05	2.9E-02	1.4E-05
Bonderite S-FN 870			7,259			
VOC	NY998-00-0	100		3.7E-04	0.57	2.9E-04
Petroleum distillates	Trade Secret #1	100		3.7E-04	0.57	2.9E-04
2-Butoxyethanol	00111-76-2	5		1.8E-05	2.9E-02	1.4E-05
Wallover Premium 40			7,259			
VOC	NY998-00-0	100		3.1E-04	0.49	2.4E-04
Petroleum distillates (mineral oil)	08042-47-5	100		3.1E-04	0.49	2.4E-04
1738 Strand Anneal (EP 00027)						
Navi-Guard Roll Oil 135			5,304			
Volatile Organic Compounds Distillates (petroleum), solvent-	NY998-00-0	75		1.6E-02	84	4.2E-02
dewaxed light paraffinic	64742-56-9	75		1.6E-02	84	4.2E-02

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Comissioning Plan Projected Operating Hours ^(b)	Emission Rate Potential ^(c)	Projected	
our oss and i onatams	OAS INGINISCI	(%)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)
Bonderite S-FN 860			5,304			
Volatile Organic Compounds	NY998-00-0	100		2.0E-03	10	5.2E-03
Diethylene glycol	00111-46-6	5		1.4E-03	7.6	3.8E-03
Polyethylene glycol	25322-68-3	60		1.7E-03	9.2	4.6E-03
Azole derivative	Trade Secret #7	60		1.7E-03	9.2	4.6E-03
Bonderite S-FN 870			5,304			
VOC	NY998-00-0	100		2.4E-03	13	6.4E-03
Petroleum distillates	Trade Secret #1	100		2.4E-03	13	6.4E-03
2-Butoxyethanol	00111-76-2	5		1.9E-03	10	5.0E-03
Wallover Premium 40			5,304			
VOC	NY998-00-0	100		9.2E-05	0.49	2.4E-04
Petroleum distillates (mineral oil)	08042-47-5	100		9.2E-05	0.49	2.4E-04
Total						
VOC	NY998-00-0				187	9.3E-02
Diethylene glycol	00111-46-6				8.1	4.1E-03
2-Butoxyethanol	00111-76-2				10	5.1E-03
Petroleum distillates (mineral oil)	08042-47-5				2.4	1.2E-03
Polyethylene glycol Distillates (petroleum), solvent-	25322-68-3				11	5.3E-03
dewaxed light paraffinic	64742-56-9				156	7.8E-02
Petroleum distillates	Trade Secret #1				15	7.6E-03
Azole derivative	Trade Secret #7				10	5.2E-03

Notes:

(a) From manufacturer's Safety Data Sheets.

Table 11 U-ANNE1

Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

			Comissioning Plan Projected	Emission		
		Weight	Operating	Rate	Projected	d Actual
Sources and Pollutants	CAS Number	Percent ^(a)	Hours ^(b)	Potential ^(c)	Annual Em	issions ^(d)
		(%)	(hr/yr)	(lb/hr)	(lb/yr)	(tpy)

⁽b) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.

Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

⁽c) The hourly emissions of volatile organic compounds from the residual metalworking fluid were based on the estimated fraction of fluid that remains on the metal, the constituent weight percent of the fluid, the maximum amount of fluid used in a single year between 2019 and 2021, the operating time in 2021, and the fraction of metal fed to the annealing units.

⁽d) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Operating Hours (hr/yr) x Emission Rate Potential (lb/hr).

Table 12 Pickling Line Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Density ^(a)	Application	•	Control	Emission Rate Potential ^(e)	Projected A	
			(lb/gal)	(gal/hr)	(gal/yr)	(%)	(lb/hr)	(lb/yr)	(tpy)
1740 Heavy Gauge Cleanin	g - Entry (Wet So	crubber, EP 00	0028)						
PCK Process - Sulfuric acid			15.3	1.59	6,792				
Particulate Matter ^(g)	NY075-00-0	8				25	0.19	622	0.31
PM ₁₀	NY075-00-5	8				25	0.19	622	0.31
PM _{2.5}	NY075-02-5	8				25	0.19	622	0.31
Sulfuric acid	07664-93-9	8				25	0.19	622	0.31

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) The Maximum Hourly Application Rate was provided by Revere.
- (c) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (d) Emissions from the Pickling Process are controlled by a wet scrubber. The control efficiency of the scrubber is based on the control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potential (lb/hr) = Maximum Hourly Application Rate (gal/hr) x Density (lb/gal) x Weight Percent (%) x Loss Factor of 10 (%).

The majority of the sulfuric acid used in the pickling line remains as a liquid and is sent to on-site waste treatment. To be conservative, it was assumed that 10% of the sulfuric acid is emitted to the exhaust stack.

(f) Projected Actual emissions (lb/yr) = Commissioning Plan Projected Annual Usage (gal/yr) x Density (lb/gal) x Weight Percent (%) x 1-Control Efficiency (%) x 10 (%).

The majority of the sulfuric acid used in the pickling line remains as a liquid and is sent to on-site waste treatment. It was estimated that 10% of the sulfuric acid is emitted to the exhaust stack.

Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).

(g) All particulate matter is assumed to be PM_{2.5}.

Table 13 Anneal Cleaning

Summary of Actual Commissioning Plan Emissions

Sources and Pollutants	CAS Number	Weight Percent ^(a) (%)	Density ^(a) (lb/gal)	Maximum Hourly Application Rate ^(b) (gal/hr)	Commissioning Plan Projected Annual Usage ^(c) (gal/yr)	Control Efficiency ^(d) (%)	Emission Rate Potential ^(e) (lb/hr)	Post- Control Emission Rate ^(f) (lb/hr)	Projected Annual Em (lb/yr)	
Line 1738 Strand Anneal Clea	aning (Wet Scrubbe			(gai/III)	(gai/yi)	(78)	(10/111)	(10/111)	(ID7 yI)	(ipy)
Aquaease PL714	aming (mor oor alba	J. , L. 000L	8.345	0.795	2,875					
Particulate Matter ^(h)	NY075-00-0	1.5			,	85	0.10	1.5E-02	54	2.7E-02
PM ₁₀ ^(h)	NY075-00-5	1.5				85	0.10	1.5E-02	54	2.7E-02
PM _{2.5} ^(h)	NY075-02-5	1.5				85	0.10	1.5E-02	54	2.7E-02
Sodium metasilicate	06834-92-0	0.15				85	1.0E-02	1.5E-03	5.4	2.7E-03
Sodium phosphate, tribasic	10101-89-0	6.0E-02				85	4.0E-03	6.0E-04	2.2	1.1E-03
Bonderite S-FN 860			8.345	0.795	1,342					
Particulate Matter ^(h)	NY075-00-0	1.0E-02	0.0.0	0.770	.,0.12	85	6.6E-04	1.0E-04	0.17	8.4E-05
PM ₁₀ ^(h)	NY075-00-5	1.0E-02				85		1.0E-04	0.17	8.4E-05
PM _{2.5} ^(h)	NY075-02-5	1.0E-02				85		1.0E-04	0.17	8.4E-05
Polyethylene glycol	25322-68-3	6.0E-03				85		6.0E-05	0.10	5.0E-05
Azole derivative	Trade Secret #7	6.0E-03				85		6.0E-05	0.10	5.0E-05
Diethylene glycol	00111-46-6	5.0E-04				85		5.0E-06	8.4E-03	4.2E-06
Line 1740 Heavy Gauge Clea	ning (Wet Scrubbe	r, EP 00028)								
Aquaease PL714		•	8.345	0.795	3,654					
Particulate Matter ^(h)	NY075-00-0	1.5				85	0.10	1.5E-02	69	3.4E-02
PM ₁₀ ^(h)	NY075-00-5	1.5				85	0.10	1.5E-02	69	3.4E-02
PM _{2.5} ^(h)	NY075-02-5	1.5				85	0.10	1.5E-02	69	3.4E-02
Sodium metasilicate	06834-92-0	0.15				85	1.0E-02	1.5E-03	6.9	3.4E-03
Sodium phosphate, tribasic	10101-89-0	6.0E-02				85	4.0E-03	6.0E-04	2.7	1.4E-03
Bonderite S-FN 860			8.345	0.795	758					
Particulate Matter ^(h)	NY075-00-0	1.3E-02				85	8.3E-04	1.2E-04	0.12	5.9E-05
PM ₁₀ ^(h)	NY075-00-5	1.3E-02				85		1.2E-04	0.12	5.9E-05
PM _{2,5} ^(h)	NY075-02-5	1.3E-02				85	8.3E-04	1.2E-04	0.12	5.9E-05
Polyethylene glycol	25322-68-3	7.5E-03				85		7.5E-05	7.1E-02	3.6E-05
Azole derivative	Trade Secret #7	7.5E-03				85	5.0E-04	7.5E-05	7.1E-02	3.6E-05
Diethylene glycol	00111-46-6	6.3E-04				85		6.2E-06	5.9E-03	3.0E-06
Hydrogen Peroxide			9.3464	0.795	2,552					
Particulate Matter ^(h)	NY075-00-0	0.5				85	3.7E-02	5.6E-03	18	8.9E-03

Table 13 Anneal Cleaning

Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

				Maximum Hourly	Commissioning		Emission	Post- Control		
		Weight	(2)	Application	Plan Projected	Control	Rate	Emission	Projected	
Sources and Pollutants	CAS Number	Percent ^(a)	Density ^(a)	Rate ^(b)	Annual Usage (c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)	Annual Emi	issions ^(g)
		(%)	(lb/gal)	(gal/hr)	(gal/yr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)
PM ₁₀ ^(h)	NY075-00-5	0.5				85	3.7E-02	5.6E-03	18	8.9E-03
PM _{2.5} ^(h)	NY075-02-5	0.5				85	3.7E-02	5.6E-03	18	8.9E-03
Hydrogen peroxide	07722-84-1	0.5				85	3.7E-02	5.6E-03	18	8.9E-03
Total										
Particulate Matter	NY075-00-0								141	7.0E-02
PM10	NY075-00-5								141	7.0E-02
PM2.5	NY075-02-5								141	7.0E-02
Diethylene glycol	00111-46-6								1.4E-02	7.2E-06
Sodium metasilicate	06834-92-0								12	6.1E-03
Hydrogen peroxide	07722-84-1								18	8.9E-03
Sodium phosphate, tribasic	10101-89-0								4.9	2.5E-03
Polyethylene glycol	25322-68-3								0.17	8.6E-05
Azole derivative	Trade Secret #7								0.17	8.6E-05

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) The Maximum Hourly Application Rate was provided by Revere.
- (c) The Commissioning Plan Projected Annual Usage is based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.
- (d) Emissions from the Pickling Process are controlled by a wet scrubber. The control efficiency of the scrubber is based on the control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potential (lb/hr) = Weight Percent (%) x Density (lb/gal) x Maximum Hourly Application Rate (gal/hr).
- (f) Post-Control Emission Rate (lb/hr) = Emission Rate Potential (lb/hr) x 1-Control Efficiency (%).
- (g) Projected Actual emissions (lb/yr) = Weight Percent (%) x Density (lb/gal) x Commissioning Plan Projected Annual Usage (gal/yr) x (1-Control Efficiency) (%). Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (h) All Particulate Matter is assumed to be PM_{2.5}.

Table 14
U-GALV1 Molten Metal Tank
Summary of Actual Commissioning Plan Emissions

			Comissioning Plan Projected Operating	Emission	Control	Emission Rate	Post- Control Emission	Projecto	ed Actual
Sources and Pollutants	CAS Number	Composition ^(a)	Hours ^(b)	Factor ^(c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)	Annual Em	issions ^(g)
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)
Molten Zinc/Tin Bath (Ba	ghouse, EP 00601)		185						
Molten Metal									
Particulate Matter ^(h)	NY075-00-0	100		2.1	99	2.1	2.1E-02	3.8	1.9E-03
PM ₁₀ ^(h)	NY075-00-5	100		2.1	99	2.1	2.1E-02	3.8	1.9E-03
PM _{2.5} ^(h)	NY075-02-5	100		2.1	99	2.1	2.1E-02	3.8	1.9E-03
Zinc	07440-66-6	50		2.1	99	1.0	1.0E-02	1.9	9.6E-04
Tin	07440-31-5	50		2.1	99	1.0	1.0E-02	1.9	9.6E-04
Zacion AB Flux									
Particulate Matter ^(h)	NY075-00-0	100		2.09E-02	99	2.1E-02	2.1E-04	3.9E-02	1.9E-05
PM ₁₀ ^(h)	NY075-00-5	100		2.09E-02	99	2.1E-02	2.1E-04	3.9E-02	1.9E-05
PM _{2.5} ^(h)	NY075-02-5	100		2.09E-02	99	2.1E-02	2.1E-04	3.9E-02	1.9E-05
Zinc chloride	07646-85-7	70		2.09E-02	99	1.5E-02	1.5E-04	2.7E-02	1.4E-05
Ammonium chloride	12125-02-9	30		2.09E-02	99	6.3E-03	6.3E-05	1.2E-02	5.8E-06
Total									
Particulate Matter ^(h)	NY075-00-0					2.1	2.1E-02	3.9	1.9E-03
PM ₁₀ ^(h)	NY075-00-5					2.1	2.1E-02	3.9	1.9E-03
PM _{2.5} ^(h)	NY075-02-5					2.1	2.1E-02	3.9	1.9E-03
Tin	07440-31-5					1.0	1.0E-02	1.9	9.6E-04
Zinc	07440-66-6					1.0	1.0E-02	1.9	9.6E-04
Zinc chloride	07646-85-7					1.5E-02	1.5E-04	2.7E-02	1.4E-05
Ammonium chloride	12125-02-9					6.3E-03	6.3E-05	1.2E-02	5.8E-06

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.

Table 14 U-GALV1 Molten Metal Tank Summary of Actual Commissioning Plan Emissions

			Comissioning				Post-		
			Plan Projected			Emission	Control		
			Operating	Emission	Control	Rate	Emission	Projecte	d Actual
Sources and Pollutants	CAS Number	Composition ^(a)	Hours ^(b)	Factor ^(c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)	Annual Emis	ssions ^(g)
		(%)	(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)

- (c) The emission factor of 2.09 lb/hr was taken from *Emissions From Hot-Dip Galvanizing Processes: Final Report; EPA 905/4-76-002* (March 1976). The emission factor includes the full standard deviation to be conservative and is representative of emissions from both the flux and molten metal. In order to separate emissions from the molten metal and the flux, the emission factor was multiplied by 99% for the molten metal and 1% for the flux. This was based on the relative mass of flux added compared to the amount of molten metal in the bath.
- (d) The control efficiency of the baghouse is based on control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potential (lb/hr) = Emission Factor (lb/hr) x Composition (%).
- (f) Post-Control Emission Rate (lb/hr) = Emission Factor (lb/hr) x 1-Control Efficiency (%) x Composition (%).
- (g) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Operating Hours (hr/yr) x Emission Rate Potential (lb/hr) x (1-Control Efficiency (%)/100).
- Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) ÷ 2,000 (lb/ton).
- (h) All particulate matter is assumed to be $PM_{2.5}$.

Table 15 U-GALV1 Acid Tank Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

			Comissioning				Post-		
			Plan Projected			Emission	Control		
		(2)	Operating	Emission	Control	Rate	Emission	Projected	
Sources and Pollutants	CAS Number	Composition ^(a)	Hours ^(b)	Factor ^(c)	_			Annual Em	
			(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)
HCl and Flux Bath (Scrub	ber, EP 00600)		185						
Muriatic Acid									
Particulate Matter ⁽ⁱ⁾	NY075-00-0	37		9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	37		9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03
$PM_{2.5}^{(i)}$	NY075-02-5	37		9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03
HAPs	NY100-00-0			9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03
Hydrogen chloride	07647-01-0	37		9.1E-02	85	9.1E-02	1.4E-02	2.5	1.3E-03
Zalcon W									
Particulate Matter ⁽ⁱ⁾	NY075-00-0	73		2.7E-02	85	2.7E-02	4.1E-03	0.76	3.8E-04
PM ₁₀ ⁽ⁱ⁾	NY075-00-5	73		2.7E-02	85	2.7E-02	4.1E-03	0.76	3.8E-04
PM _{2.5} ⁽ⁱ⁾	NY075-02-5	73		2.7E-02	85	2.7E-02	4.1E-03	0.76	3.8E-04
Zinc chloride	07646-85-7	40		9.1E-03	85	9.1E-03	1.4E-03	0.25	1.3E-04
Ammonium chloride	12125-02-9	30		9.1E-03	85	9.1E-03	1.4E-03	0.25	1.3E-04
Barium chloride	10361-37-2	2.5		9.1E-03	85	9.1E-03	1.4E-03	0.25	1.3E-04
Total									
Particulate Matter	NY075-00-0					0.12	1.8E-02	3.3	1.6E-03
PM ₁₀	NY075-00-5					0.12	1.8E-02	3.3	1.6E-03
PM _{2.5}	NY075-02-5					0.12	1.8E-02	3.3	1.6E-03
Zinc chloride	07646-85-7					9.1E-03	1.4E-03	0.25	1.3E-04
Barium chloride	10361-37-2					9.1E-03	1.4E-03	0.25	1.3E-04
Ammonium chloride	12125-02-9					9.1E-03	1.4E-03	0.25	1.3E-04
HAPs	NY100-00-0					9.1E-02	1.4E-02	2.5	1.3E-03
Hydrogen chloride	07647-01-0					9.1E-02	1.4E-02	2.5	1.3E-03

Notes:

(a) From manufacturer's Safety Data Sheets.

Table 15 U-GALV1 Acid Tank Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

			Comissioning				Post-		
			Plan Projected			Emission	Control		
			Operating	Emission	Control	Rate	Emission	Projected	Actual
Sources and Pollutants	CAS Number	Composition (a)	Hours ^(b)	Factor ^(c)	Efficiency ^(d)	Potential ^(e)	Rate ^(f)	Annual Emis	ssions ^(g)
			(hr/yr)	(lb/hr)	(%)	(lb/hr)	(lb/hr)	(lb/yr)	(tpy)

⁽b) The Commissioning Plan Projected Operating Hours are based on the increases estimated by Revere to occur as a result of the EP 00040 furnace Commissioning Plan.

The guidance document does not provide methods to estimate the emissions of the other chloride constituents. A literature search revealed that the other chloride constituents are expected to have significantly lower vapor pressures than hydrogen chloride. Therefore, the emission factors for these constituents were conservatively assumed to be 10% of the emission factor for hydrogen chloride.

- (d) The control efficiency of the wet scrubber is based on control efficiencies provided in USEPA's AP-42 Appendix B.2 Table B.2-3.
- (e) Emission Rate Potential (lb/hr) = Emission Factor (lb/hr).
- (f) Post-Control Emission Rate (lb/hr) = Emission Rate Potential (lb/hr) x 1-Control Efficiency (%).
- (g) Projected Actual Annual Emissions (lb/yr) = Commissioning Plan Projected Operating Hours (hr/yr) x Emission Factor (lb/hr) x (1-Control Efficiency (%)/100). Projected Actual Annual Emissions (tpy) = Projected Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).
- (h) All particulate matter is assumed to be $PM_{2.5}$.

⁽c) The hydrogen chloride emission factor was calculated using the equations provided in EPA's Guidance Document *National Emission Standards for Hazardous Air Pollutants (NESHAP) for Steel Pickling - HCl Process - Background Information for Proposed Standards* (June, 1997) Appendix E.

Table 16 U-SOLV1 Non-Exempt Parts Washer Summary of Actual Commissioning Plan Emissions

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	CAS Number	Weight Percent ^(a)	Density ^(a)	Volume ^(b)	Surface Area ^(b)	Actual Annual Usage ^(b)	Emission Rate Potential ^(c)	Actual A	
		(%)	(lb/gal)	(gal)	(ft²)	(gal/yr)	(lb/hr)	(lb/yr)	(tpy)
Evaporation Calculation Me	ethod		6.8	550	34	870			
VOC Distillates, petroleum,	NY998-00-0	3.1					5.0E-02	181	9.1E-02
hydrotreated light ^(f)	64742-47-8	3.1					5.0E-02	181	9.1E-02

Notes:

- (a) From manufacturer's Safety Data Sheets.
- (b) Information provided by Revere for 2021 and reflects annual usage minus the amount of solvent disposed of as liquid waste. No increase in solvent use is anticipated as a result of the commissioning plan.
- (c) The Emission Rate Potential was estimated using the evaporation model provided in *Methods for Estimating Air Emissions from Chemical Manufacturing Facilities, Volume II: Chapter 16* (August 2007) Section 3.7.
- (d) Actual Annual Emissions (lb/yr) = Actual Annual Usage (gal/yr) x Density (lb/gal) Weight Percent (%) Actual Annual Emissions (tpy) = Actual Annual Emissions (lb/yr) \div 2,000 (lb/ton).
- (e) The manufacturer's SDS indicates that the solvent is entirely comprised of distillates, petroleum, hydrotreated light, but also guarentees that the VOC content is less than 25 g/L. Emissions were estimated assuming 25 g/L of VOC and that all of the VOC consists of distillates, petroleum, hydrotreated light.

TABLE 17
COMMISSIONING PLAN ANNUAL OPERATING HOURS

Table 17
Hours Used to Calculate Modeling Emission Rates for Commissioning Plan

Emission Sources					Commis	sioning Pla	an Operatin	ng Hours					Total
	January	February	March	April	May	June		Month 2	Month 3	Month 4	Month 5	Month 6	Hours
U-CAST1 (EP00039) - Casting Furnaces To Baghouse	(hr/yr) 255	(hr/yr) 375	(hr/yr) 354	(hr/yr) 417	(hr/yr) 410	(hr/yr) 247	(hr/yr) 247	(hr/yr) 247	(hr/yr) 417	(hr/yr) 417	(hr/yr) 417	(hr/yr) 417	(hr/yr) 4,220
U-CAST1 (EP00040) - Casting Furnaces To Baghouse	342	324	329	316	198	354	354	354	354	354	354	354	3,987
U-CAST1 (EP00602) - Central Vacuum	12	14	102	47	126	10	10	10	126	126	126	126	835
U-ROLL1 (EP00036) - Bliss Mill	112	104	96	144	112	56	56	56	144	144	144	144	1,312
U-ROLL1 (EP00030) - Hot Mill	200	216	248	216	168	168	175	194	248	248	248	248	2,577
U-ROLL1 (EP00029) - First Run Down Mill	440	272	480	344	200	352	358	373	480	480	480	480	4,739
U-ROLL1 (EP00026) - Reversing Mill	472	424	552	440	304	376	376	376	552	552	552	552	5,528
U-ROLL1 (EP00025) - Z-Mill	128	96	48	0	0	0	0	0	128	128	128	128	784
U-OVER1 (EP00031) - Overhauler	384	360	472	376	280	352	357	369	472	472	472	472	4,838
U-ANNE1 (EP00362) - Bright Anneal Exit	56	184	96	104	128	88	88	88	184	184	184	184	1,568
U-ANNE1 (EP00367) - Bright Anneal Entry	56	184	96	104	128	88	88	88	184	184	184	184	1,568
U-ANNE1 (EP00369) - Lee Wilson Anneal	272	168	272	264	104	332	332	332	332	332	332	332	3,404
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry	672	624	712	672	496	336	419	480	712	712	712	712	7,259
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit	672	624	712	672	496	336	419	480	712	712	712	712	7,259
U-ANNE1 (EP00027) - Strand Anneal	472	400	536	360	240	384	384	384	536	536	536	536	5,304
U-ANNE1 (EP00440) - Ebner Anneal	720	624	736	776	0	0	0	0	776	776	776	776	5,960
1740 Heavy Gauge Cleaning (EP 00028)	576	576	664	592	432	432	432	432	664	664	664	664	6,792

APPENDIX H-1
COMMISSIONING MODELING REPORT

REVERE COPPER PRODUCTS, INC. MODELING REPORT – COMMISSIONING PLAN

Project name	Revere Copper Products, Inc. – Commissioning Plan
Project no.	1087689\1940103004
Recipient	NYSDEC - Impact Assessment and Meteorology Group

Document type Modeling Report

Version 1

Date July 21, 2023
Prepared by Steven Miraglia
Checked by Cris Hine

Approved by Matthew Traister, P.E.

CONTENTS

1.	Project Discussion	3
1.1	Facility Modifications	3
1.2	Differences Between the Commissioning Plan and the February 8, 2023 Renewal	
	Application	4
2.	Site Location and Description	6
3.	Stack Parameters and Buildings	6
4.	Emission Rates	6
5.	Urban/Rural Classification	7
6.	Good Engineering Practice Stack Height Analysis	7
7.	Meteorological Data	7
8.	Receptor Locations	8
9.	Lakes Environmental Software – Multi-Chem Use	8
10.	Modeling Results	9

LIST OF FIGURES

1	Site Location Map
2	Site Layout Map
3	Building 51 Stack Locations and Building Heights
4	Building 45 Building Heights
5	Building 46 and 56 Building Heights
6	Building 1 Building Heights
7	Building 14 Building Heights
8	Building 21 and 69 Stack Locations and Building Heights
9	Building 50 Building Heights
10	Sensitive Receptor Locations
11	Environmental Justice Areas
12	Disadvantaged Communities Map

LIST OF TABLES

- 1 Summary of Part 212 Evaluation
- 2 Summary of Stack Parameters (English Units)
- 3 Summary of Stack Parameters (Metric Units)
- 4 Modeled Toxics Emission Rates (Commissioning Plan 1-Hour)
- 5 Modeled Toxics Emission Rates (Commissioning Plan Annual)
- 6 Hours used to Calculate Annual Modeling Emission Rates for Commissioning Plan
- 7 Sensitive Receptors
- 8 Commissioning Plan Air Toxics Modeling Results Run with Multi-Chem
- 9 Commissioning Plan Air Toxics Modeling Results Run Without Multi-Chem

LIST OF EXHIBITS

- 1 Air Dispersion Modeling Protocol
- 2 Summary of May 2023 Stack Test Results

1. Project Discussion

Revere Copper Products, Inc. (Revere) is renewing and modifying the Air State Facility (ASF) Permit (ID 6-3013-00091/00039) for its manufacturing facility located at 1 Revere Park in Rome, New York. A site location map is provided in **Figure 1**.

An air dispersion modeling protocol (see **Exhibit 1**) was submitted to the New York State Department of Environmental Conservation (NYSDEC) on December 1, 2022 in order to satisfy NYSDEC's requirement for submitting a protocol prior to performing refined air dispersion modeling. NYSDEC provided comments on the protocol to Revere on January 9, 2023, which were incorporated into the modeling report submitted to NYSDEC with the ASF Permit renewal application on February 8, 2023.

In accordance with the Order on Consent (R6-20230614-21) and Schedule of Compliance, Revere is required to submit a complete ASF Permit renewal application containing the requested information identified in the Department's Notice of Incomplete Application no later than July 10, 2023; an extension to July 21, 2023 was requested by Revere and granted by NYSDEC.

Also, in accordance with the Schedule of Compliance, should Revere propose to commission or otherwise initiate the new furnace prior to receipt of the Permit Modification, Revere is to include for Department review and approval a temporary commissioning and/or operation plan, which includes sufficient detail to confirm the facility will be in compliance with applicable regulations during operation of the furnace.

Revere is submitting a revised ASF Permit application and including the Commissioning Plan as an attachment to the application (**Attachment H**). Air dispersion modeling was performed for both the ASF Permit application and the Commissioning Plan as these represent two different scenarios of operating the facility. This report focuses on the Commissioning Plan and a separate modeling report has been prepared that focuses on the ASF Permit application.

Air dispersion modeling was performed using the United States Environmental Protection Agency (USEPA) AERMOD (Version 22112) model.

1.1 Facility Modifications

Revere has removed casting furnace 2057 (Emission Unit U-CAST1, Emission Source 01257) and began the installation of a similar induction furnace (Emission Source 02728) that will provide an estimated 23.3% increase in output casting. The new furnace will vent to an existing cyclone and baghouse (00C40/00B40) and Emission Point (EP) 00040. Increases in emissions resulting from the furnace replacement project have been estimated, including emissions from the increased furnace capacity as well as emissions from downstream operations that will potentially increase as a result of increased furnace throughput.

The following additional facility changes that have been made were identified in the February 8, 2023 renewal application:

- The facility no longer produces or uses brass
- The facility has switched from residual (No. 6) to distillate (No. 2) fuel oil for the backup fuel combusted by the main boilers (Emission Unit U-COMB1)
- Machine #1187 has been removed from the facility

- Emission unit U-GRANC and Emission Point 00180 have been removed from the facility
- U-PTNRM, BH500, and Emission Point 00500 are no longer in use
- A non-exempt solvent cleaning bath has been identified (New Emission Unit U-SOLV1, Process SOL, Emission Source 02600) that is subject to Subpart 226-1 (Solvent Cleaning Processes)
- Estimated facility-wide potential emissions of SO₂ dropped below 100 tons per year (tpy) due to the shift from No. 6 to No. 2 fuel oil. Revere requested that the facility-wide cap on SO₂ emissions and the fuel oil usage cap be removed from the permit.

1.2 Differences Between the Commissioning Plan and the February 8, 2023 Renewal Application

The Commissioning Plan incorporates the following key differences from the February 8, 2023 application:

- Since some of Revere's process emission rates were based on source testing conducted in 2001 and 2008 and that testing did not include particle size distribution (PSD) analysis, Revere initiated source testing (for engineering purposes) in May 2023 to develop updated emission rates for five emission sources:
 - o 1723 Reversing Mill (U-ROLL1, Emission Point (EP) 00026, Source 01723)
 - o 1721 First Run Down Mill (U-ROLL1, EP 00029, Source 01721, Control 00C29)
 - Cast Shop 1799 Holding Furnace and 2443 Melting Furnace (U-CAST1, EP 00039, Source 01799 and 02443, Cyclone 00C39, and Baghouse 00C39)
 - o Cast Shop 2056 Melting Furnace (U-CAST1, EP 00040, Source 02056, Cyclone 00C40, and Baghouse 00B40)
 - o 1715 Overhauler (U-OVER1, EP 00031, Source 01715, Control 00C31).

For each of the above emission sources, samples were collected by Alliance Technical Group, LLC (Alliance) on May 30 through June 2, 2023 to establish updated emission rates for total filterable particulate matter (PM), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), and condensable PM. In addition, a sample collected from the overhauler exhaust was analyzed for copper. A summary of the stack test results is provided in **Exhibit 2**. The updated emission and exhaust flow rates have been incorporated into the emission calculations, Part 212 evaluation, and air dispersion modeling.

- Testing was not able to be performed on the Central Vacuum System (U-CAST1, EP 00602, Source CSVAC, Cyclone CSC01, and Baghouse CSB01) during the May 2023 test program. Revere previously assumed the PM concentration in the Central Vacuum System exhaust was equivalent to the grain standard, *i.e.*, 0.05 grains per dry standard cubic foot (gr/dscf), which is overly conservative given the air pollution control devices in use (*i.e.*, cyclone and baghouse). For our calculations, we have assumed that the performance of the vacuum exhaust cyclone and filter housing system would perform similarly to the exhaust of the cyclone and filter housing operating on the cast furnace exhausts. To be conservative, we used the higher of two available cast furnace exhaust outlet concentrations from the May 2023 test program and applied it to the vacuum system exhaust. The performance of the vacuum cyclone and filter housing is reasonably expected to be similar since the design features of the two systems are also similar.
- NYSDEC provided updated meteorological data on July 3, 2023 and these data have been used in the updated modeling. This is discussed further in Section 7 of this report.

• Revere has clarified the EPs associated with the 464 Tray Style Coil Annealing Furnace (U-ANNE1, Source 00464) and 1154 Annealing Furnace (U-ANNE1, Source 01154). In each of these processes, a natural gas-fired DX boiler provides DX gas consisting of natural gas combustion byproducts and heat to the annealing furnace; the DX gas becomes the atmosphere in the furnace during the annealing process. A separate small natural gas-fired combustion unit provides heat to the furnace during the annealing process. Copper from a rolling mill moves through the annealing furnace. Both the furnace entrance and exit have a chamber that captures fugitive emissions and vents them to the outside. There also is an emergency relief vent that engages if the DX gas pressure builds up in the annealing chamber; this rarely occurs.

Each of these annealing furnaces has four EPs: one exempt EP for venting combustion gases from a small, exempt tube furnace that provides heat to the furnace; one EP for the furnace entry chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when entering the annealing furnace; one EP for the furnace exit chamber, which captures fugitive emissions that might evolve from the residual metal working fluids present on the copper when exiting the annealing furnace; and the exempt emergency relief vent. The DX furnace vent is directed to the annealing chamber and does not directly vent outside. The entrance and exit chamber EPs are understood to be the EPs venting process emissions from these operations. Therefore, the following process EPs for these two annealing furnaces should be included:

- Emission Source 00464 Tray Style/Coil Anneal: EPs 00189 (entrance chamber exhaust) and 00190 (exit chamber exhaust); both of these EPs are in the current ASF Permit as well as the renewal application.
- Emission Source 01154 1154 Annealing Furnace: EPs 00367 (entry chamber exhaust) and
 00362 (exit chamber exhaust). EP 00367 is in the current ASF Permit, but EP 00362 is a new EP.

These stacks and their parameters have been added to the revised ASF Permit application and used in the updated modeling.

- Emissions from the combustion of natural gas by the DX boilers were double counted in the February 8, 2008 renewal application with the DX combustion gas that becomes the annealing furnace atmosphere. This double counting has been corrected.
- The coolants and additives used in the rolling mills (U-ROLL1) were updated based on additional bath composition information provided by Revere. In addition, Revere rolling mill process engineers have indicated the bacteria completely consume Kathon 886, an antimicrobial agent added to the 1723 Reversing Mill (U-ROLL1, EP 00026, Source 01723) and 1176 Bliss Mill (U-ROLL1, EP 00036, Source 01723) within 24 to 48 hours of its addition to the recirculating cooling water bath. As a result, emissions associated with constituents in Kathon 886 have been removed from the updated emission inventory.

When excessive biological growth (bacteria) is present in the water-soluble coolant systems, the pH of the solution is lowered from the acidic excretions of the bacteria. This biological growth is controlled by additions of antimicrobial agents to the coolant systems. Revere currently uses two different antimicrobials to stop the biological growth in the coolant systems: Grotan and Kathon. The Kathon additive is used as an initial dose at the start of a new coolant change. While the system residual of the Kathon additive is not testable, it is known to be consumed based on the rapid increase in pH

(less excretion from bacteria). Revere relies on the biological results reported by the in-house laboratory to gauge the need for additional antimicrobials.

- The distance to property line has been added for non-exempt emission points in Tables 2 and 3 of this report.
- The Part 212 air toxics evaluation presented in **Attachment D** of the permit application, as well as **Table 1** of this report, has been updated to incorporate the changes in emission rates, cooling water composition, and stack flow rates discussed above. Note that emission rates of constituents associated with particulate emissions, such as those from the casting and rolling mills, have been updated based on the May 2023 source testing results.
- For modeling of toxics, the emission rates used for modeling for comparison to the short-term guideline concentrations (SGCs) are the same as those used in the modeling for the revised ASF Permit application. Emission rates used for modeling for comparison to the annual guideline concentrations (AGCs) were lowered to factor in the proposed actual annual operating hours of the facility in the Commissioning plan. These emission rates are discussed in more detail in Section 4.
- PM₁₀ and PM_{2.5} modeling results for the revised ASF Permit application, as shown in **Attachment E**, demonstrate compliance with their respective NAAQS. As the emission rates in the Commissioning Plan are lower than those in the permit application, separate PM₁₀ and PM_{2.5} modeling was not performed for the Commissioning Plan as the more conservative values in the permit application already demonstrate compliance with the NAAQS.

2. Site Location and Description

The facility is located at 1 Revere Park in Rome, NY within Oneida County. A site location map is provided in **Figure 1**. The site is bounded by mixed residential and commercial development to the north, east, and south and by a public park and a permanently closed elementary school to the west.

The primary manufacturing operations at the Revere facility consist of induction furnaces used for copper casting operations, annealing units, rolling mills, and a copper galvanizing line. Emissions from these processes, except for the galvanizing line, require air dispersion modeling to demonstrate compliance with Part 212.

3. Stack Parameters and Buildings

Stack parameters for the EPs included in the refined modeling analysis are provided in **Table 2** (English Units) and **Table 3** (Metric Units). A site layout map showing the building locations and the facility fenceline is provided in **Figure 2**. Figures identifying the stack locations and building heights of the buildings at the site are provided in **Figure 3** through **Figure 9**.

4. Emission Rates

An air toxics evaluation was performed in accordance with NYSDEC's DAR-1 *Guidelines for the Evaluation* and Control of Contaminants Under 6 NYCRR Part 212, dated February 12, 2021. A summary of the Part 212 evaluation is provided in **Table 1**. This table provides a list of process emissions at the facility

(excluding combustion units and exempt/trivial activities) and identifies emissions that require modeling. A more detailed Part 212 evaluation is provided in **Attachment D** of the ASF Permit application.

A summary of the emission rates used in the modeling analysis is provided in **Tables 4** and **5**. Emission rates were calculated based on historical emission factors and stack testing results. **Table 5** includes the 1-hour emission rates for the air toxics that were modeled, and **Table 6** includes the annual emission rates for the modeled air toxics. The 1-hour toxics emission rates were modeled using post-control hourly emission rates. The annual toxics emission rates also were modeled using post-control hourly emission rates; however, the emission rates were lowered to factor in the proposed actual annual operating hours discussed the Commissioning Plan. The proposed actual annual operating hours are provided in **Table 6**. The hours for January through June were tracked by Revere during the first half of 2023. The hours for Month 1 and Month 2 of the Commissioning Plan were provided by Revere and reflect the expected annual operating hours including the commissioning of the new casting furnace and the associated increase of downstream operating hours. The remaining four months (Months 3 to 6) were based on the maximum monthly hours from the first eight months for each process unit. Hourly emission rates were multiplied by the Commissioning Plan operating hours and then divided by 8,760 hours to calculate annualized emission rates that are representative of the proposed actual hours of operation.

5. Urban/Rural Classification

In accordance with Section 2.3 of NYSDEC's DAR-10 air dispersion modeling guidance document: "Only facilities located in the New York City metro area may have sufficiently high population density and urban heat island effects to justify the use of urban dispersion coefficients." The site is not located in the New York City metro area; therefore, rural dispersion coefficients were used in the analysis.

6. Good Engineering Practice Stack Height Analysis

USEPA provides specific guidance for calculating Good Engineering Practice (GEP) stack height and for evaluating whether building downwash will occur (USEPA, 2003). GEP stack height is defined by USEPA as the height of the structure plus 1.5 times the lesser of the structure height or projected width. If the stack height for a source is less than the height identified using GEP guidelines, based on the dimensions of nearby buildings, then the potential for building downwash to occur exists and is to be considered in the modeling analysis.

The stacks to be modeled in this analysis are less than GEP stack height. Therefore, 36 directional building heights and widths data were estimated using the USEPA Building Profile Input Program, PRIME version 04274 (BPIP-PRIME) and incorporated into the AERMOD model.

7. Meteorological Data

The closest National Weather Service (NWS) station to the facility that has the appropriate available data for AERMOD is located in Rome, New York. The Rome NWS station is located approximately 3 kilometers to the Northeast of the facility. Therefore, the Rome, New York NWS station was utilized for the surface data for this analysis. Upper-air data from Albany, New York was also used. NYSDEC provided the necessary pre-processed data for use in the analysis. Data for years 2018-2022 were used.

8. Receptor Locations

In accordance with Section 2.4 of DAR-10¹, the modeling analysis utilized a set of nested Cartesian grids of receptors with a spacing of 70, 100, 250, and 500 meters extending to a distance of 1, 2, 5, and 10 kilometers, respectively, from the facility. The facility has restricted access with a fence and outer building walls that encloses the majority of the property, with the exception of the eastern parking lot; therefore, fence line receptors were included at a spacing of 25 meters. On-site receptors inside the fence line were excluded. Maximum impacts occurred within the 70-meter grid; therefore, no additional grids were added to the model.

Discrete receptors were added to sensitive locations including schools, hospitals, nursing homes, and daycares located within a 10-kilometer radius from the facility. **Figure 10** provides a map showing the locations of the sensitive receptors included in the modeling and **Table 7** provides the name and coordinates of each receptor.

Additional receptor grids were added to the Environmental Justice areas within a 10-kilometer radius from the facility and are identified in **Figure 11**. A receptor grid at 50-meter spacing was added to each area, in addition to the nested Cartesian grids. Note that 50-meter spacing in addition to the regular nested Cartesian grids resulted in an overabundance of receptors, but in absence of NYSDEC recommended spacing for Environmental Justice areas, this 50-meter spacing was used.

Disadvantaged Communities within a 10-kilometer radius from the facility were also identified and are included in **Figure 12**. No receptors were added to these areas as the above receptor grids provide adequate characterization of the impacts surrounding the facility.

The current version of AERMAP was used to calculate the receptor elevations and appropriate hill height values. Ten-meter resolution National Elevation Dataset (NED) data were used in the analysis.

9. Lakes Environmental Software - Multi-Chem Use

As shown in **Table 1**, more than 20 contaminants were required to be included in the air toxics modeling. Due to the large number of contaminants, the multi-chemical (multi-chem) utility of the AERMOD View program by Lakes Environmental SoftwareTM was used as an initial screening level model for the air toxics. The purpose of the utility is to streamline the modeling of multiple contaminants by avoiding having to set up separate project files for each contaminant in the analysis.

For each emission source in the analysis, multi-chem creates an AERMOD input file using a normalized emission rate of 1.0 gram per second. The input files are run with AERMOD and produce post files containing the normalized predicted concentrations for each averaging period at each receptor. For example, if the model is run for the 1-hour averaging period, then the post file will contain the normalized 1-hour predicted concentrations for each hour in the meteorological dataset at each receptor. Next, multi-chem takes the source-specific contaminant emission rates, multiplies by the normalized predicted concentrations in the respective post files, and cumulatively adds the values paired in time and location. The results of the calculations are summarized in contaminant-specific plot files. At the bottom of the plot files is a summary of the source IDs and emission rates used to generate the plot files.

¹ NYSDEC Guidelines on Dispersion Modeling Procedures for Air Quality Impact Analysis, Issued Date September 1, 2020.

Initial results using the multi-chem utility were provided to NYSDEC in advance of the final modeling report to afford NYSDEC the opportunity to identify any toxics that should be modeled outside of the multi-chem utility. NYSDEC provided the following list of constituents to be run outside of the multi-chem utility:

- 2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol [04719-04-4]
- Copper Oxide [01317-38-0]
- Copper [07440-50-8]
- Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- [57635-48-0]
- Fatty acids, C18-unsaturated phosphates [Trade Secret #5]
- Trade Secret [Trade Secret #8]

Additionally, NYSDEC required that emissions of copper oxide and copper be combined and modeled together for comparison to the SGC and AGC for copper. Copper oxide and copper were run together outside of the multi-chem utility, and the other four contaminants were also run separately without using the multi-chem utility.

10. Modeling Results

The results of the air toxics modeling using the multi-chem utility are provided in **Table 8** and the results for the specific contaminants run outside of the multi-chem utility are provided in **Table 9**.

The results of the air toxics modeling indicate that the maximum predicted concentrations of two of the modeled air contaminants exceed the AGC values provided by the NYSDEC Air Toxics Section (ATS). None of the modeled air contaminants exceed the SGCs in the NYSDEC DAR-1 AGC/SGC tables. Note that a third contaminant that required modeling for the Permit sgcoperating scenario (Fatty acids, C18-unsaturated phosphates, CAS# Trade Secret #5) did not require modeling in the Commissioning Plan operating scenario since actual annual emissions dropped to less than 100 pounds per year due to the reduced annual operating hours.

The two contaminants that exceed their respective AGCs are as follows:

- Poly(oxy-1,2-ethanediyl), a-(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]- (CAS# 57635-48-0)
- Trade Secret (CAS# Trade Secret #8).

These contaminants are emitted from the First Run Down Mill. None of these contaminants are listed in NYSDEC's DAR-1 AGC/SGC tables; therefore, the ATS provided interim AGC values based on toxicological reviews. The information regarding the toxicities of these contaminants that the ATS was able to find was extremely limited, which resulted in NYSDEC assigning very conservative interim AGC values to these contaminants.

A Toxic – Best Achievable Control Technology (T-BACT) analysis has been included in Attachment F of the air permit application. In this analysis, it is presented that the following factors impact the assessment of T-BACT for the First Run Down Mill:

- Revere has instituted effective process controls to the extent practical
- Revere has conducted initial evaluations of coolant alternatives, and each has challenges that would need to be vetted with further evaluation before they could be trialed at the facility

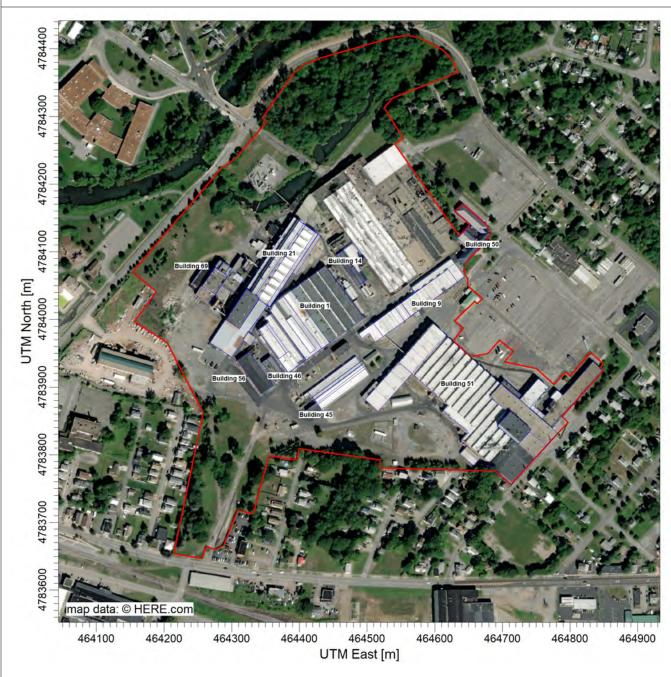
- The First Run Down Mill is equipped with a mist eliminator to minimize emissions
- The three target constituents have low volatility and, therefore, estimated emissions may be overly conservative (on the high side)
- There is a lack of specific sampling and analytical methods for the target constituents
- The interim AGCs assigned by NYSDEC have built-in safety factors of 10x and 100x due to a lack of available toxicological information and, thus, are overly conservative
- Predicted impacts of the three target constituents are less than NYSDEC's published de mimimis AGC of 0.1 micrograms per cubic meter (μq/m³)
- It is doubtful that an air pollution control manufacturer will provide a removal efficiency guarantee for the target compounds given the lack of information on these chemicals and the inability to quantify their physical state (e.g., aerosol, solid) or their present concentration/mass
- The estimated cost of removing approximately 665 combined pounds per year of the three target contaminants (540 pounds for the Commissioning Plan operating scenario) is \$1.3 to \$1.8 million per top of contaminant removed.

For these reasons, this evaluation concludes that the 1721 First Run Down Mill has T-BACT for emissions of the three specified contaminants, since no other alternatives could be demonstrated as feasible. Considered alternatives were either not technically feasible or not economically feasible.

Electronic copies of the AERMOD input and output files for PM_{10} , $PM_{2.5}$, and the air toxics that were run outside of multi-chem, contaminant-specific plot files for the contaminants run within multi-chem, BPIP input and output files, AERMAP input and output files, and meteorological data files were submitted to the NYSDEC File Transfer Service (FTS) site.

FIGURES

SITE LOCATION MAP


FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY

Revere Copper Products, Inc. 1 Revere Park Rome, NY 13440

RAMBOLL

Figure 2 - Site Layout Map

COMMENTS:	SOURCES:	COMPANY NAME:						
The red line represents the facility fenceline.	23	Revere Copper Products, Inc.						
	RECEPTORS:	MODELER:						
	10568	Steven Miraglia	RAMBOLL					
		SCALE: 1:5,592	RAMBULL					
		0.2 km						
		DATE:	PROJECT NO.:					
		7/16/2023	1940103004					

Figure 3 - Building 51 Stack Locations and Building Heights

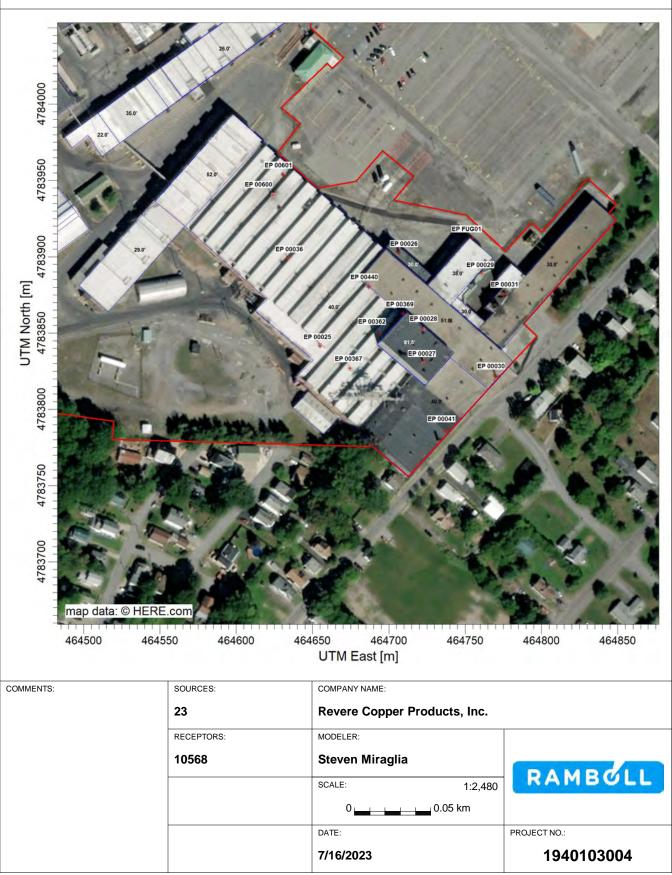


Figure 4 - Building 45 Building Heights

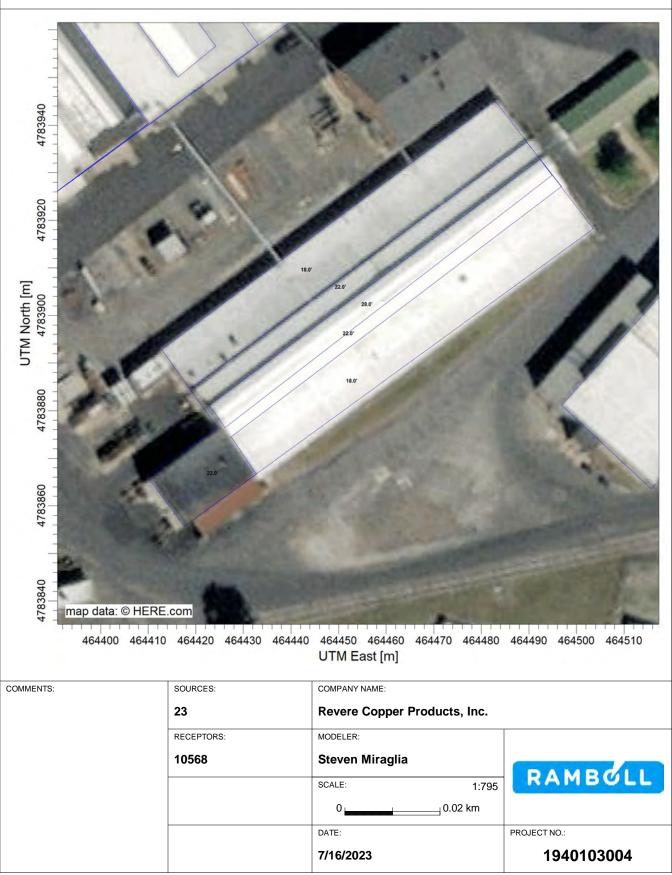


Figure 5 - Building 46 and 56 Building Heights

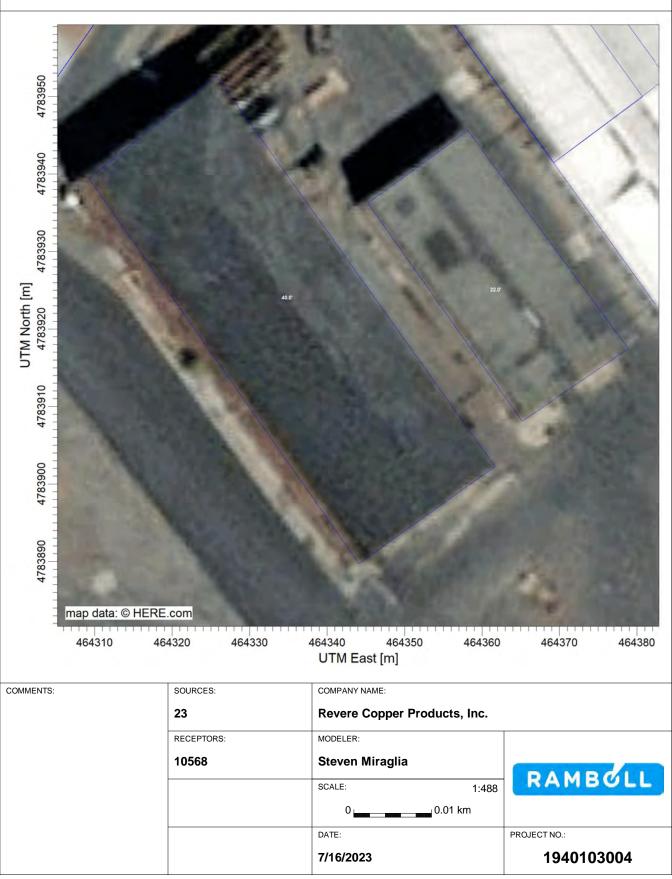


Figure 6 - Building 1 Stack Locations and Building Heights

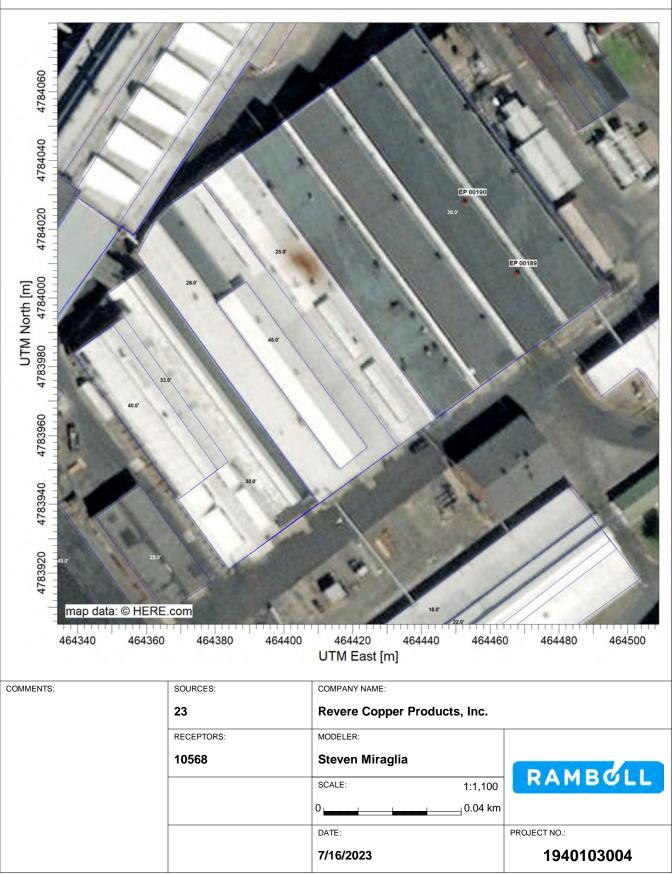


Figure 7 - Building 14 Stack Locations and Building Heights

Figure 8 - Building 21 and 69 Stack Locations and Building Heights

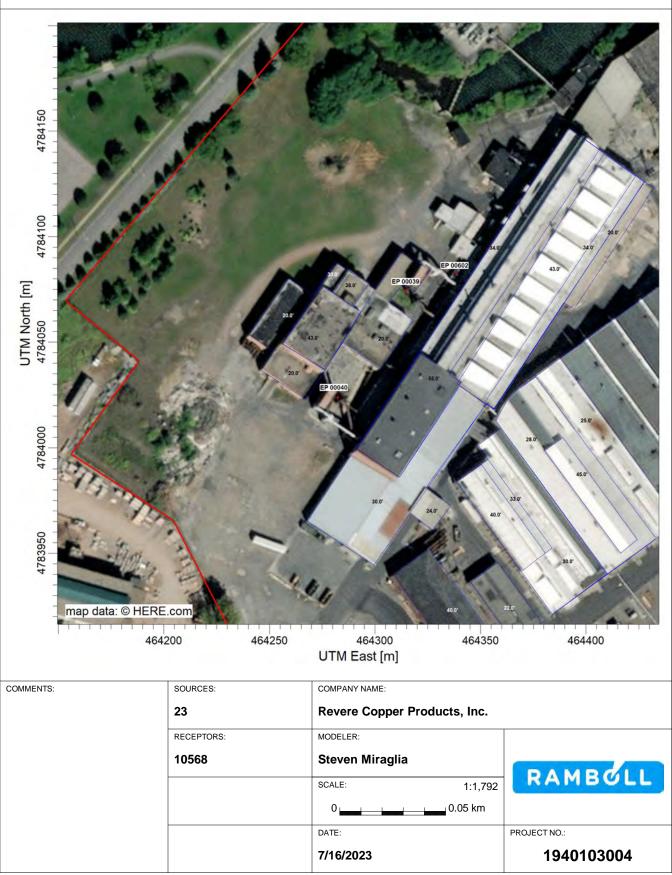


Figure 9 - Building 50 Building Heights

Figure 10 - Sensitive Receptor Locations

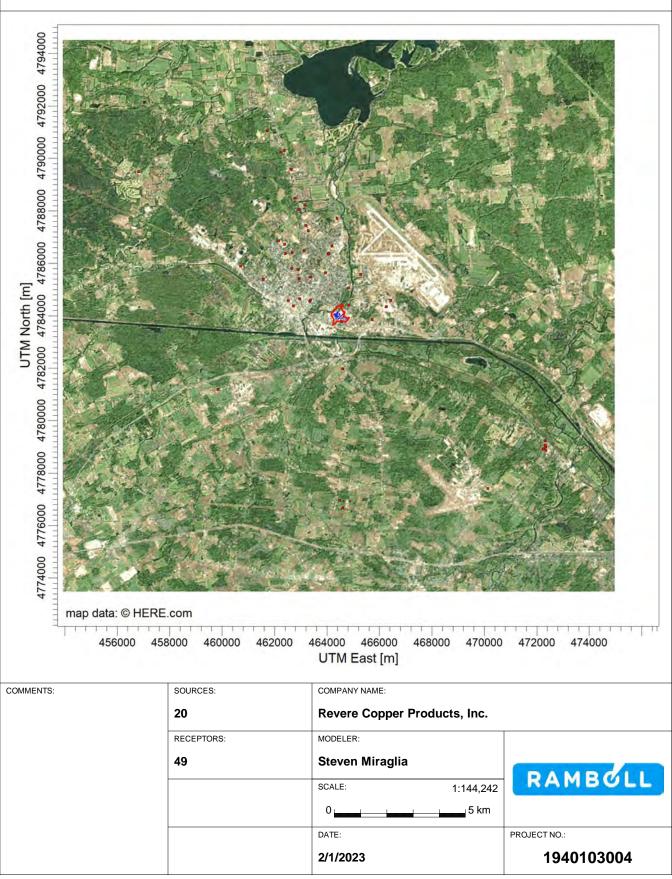


Figure 11 - Environmental Justice Area Map

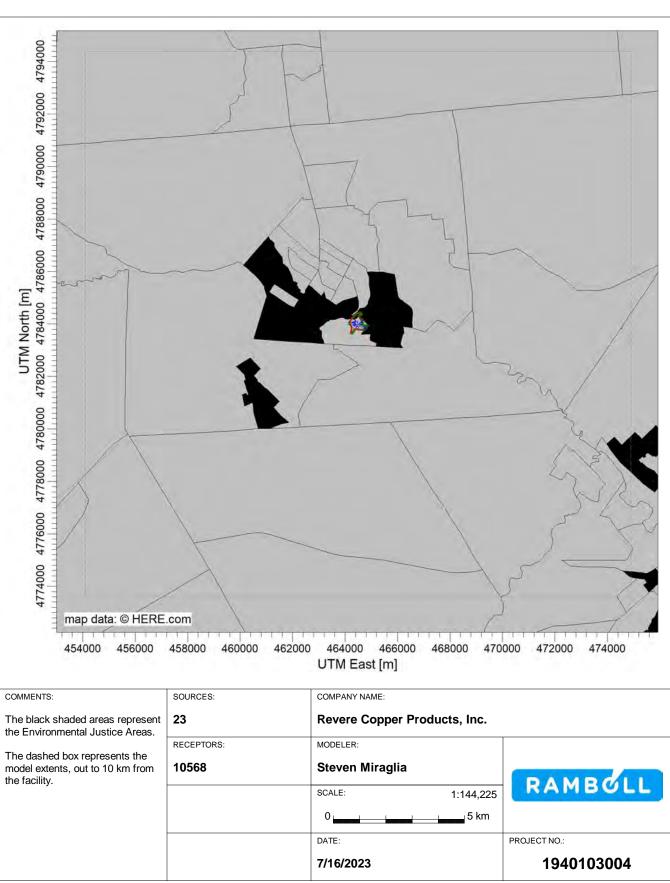
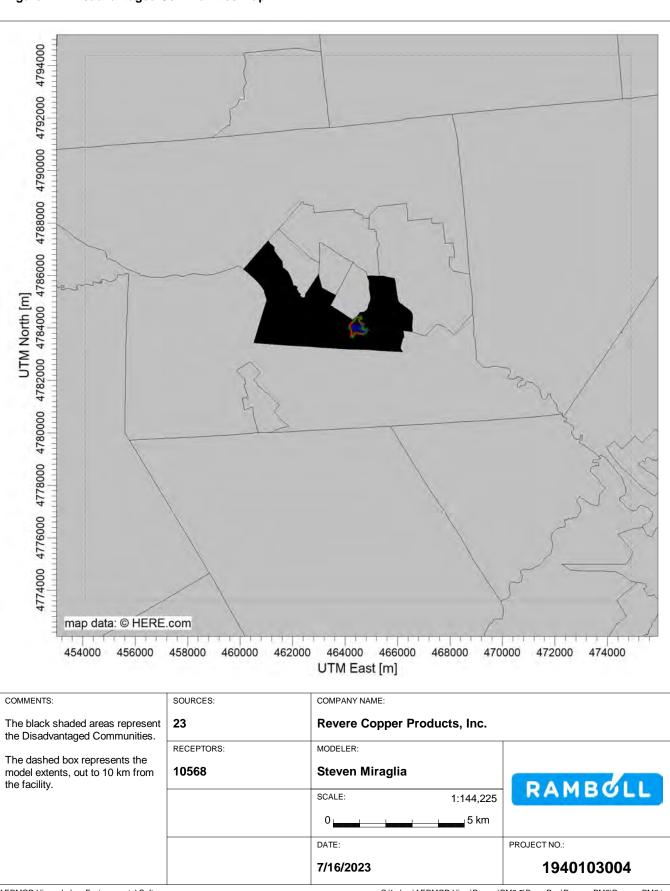



Figure 12 - Disadvantaged Communities Map

TABLES

Table 1
Summary of Part 212 Evaluation

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Actual Emissions (lb/yr)	Mass Emission Limit ^(b) (lb/yr)	Modeling Required (Yes/No)
Propane-1,2-diol	00057-55-6	N	N	90	100	NO
Hexylene glycol	00107-41-5	N	N	48	100	NO
Diethylene glycol	00111-46-6	N	N	8.1	100	NO
2-Butoxyethanol	00111-76-2	N	N	10	100	NO
2-Amino-2-methyl-1-propanol	00124-68-5	Ν	N	2.6E-02	100	NO
Alkanolamine	00141-43-5	Ν	N	141	100	YES
Barium oxide	01304-28-5	N	N	0.35	100	NO
Cadmium oxide	01306-19-0	Υ	Υ	6.4E-02	1	NO
Iron oxide	01309-37-1	Ν	N	853	100	YES
Magnesium oxide	01309-48-4	N	N	2.2	100	NO
Nickel oxide	01313-99-1	Υ	N	0.20	10	NO
Zinc oxide	01314-13-2	N	N	7.9	100	NO
Lead oxide	01314-41-6	Υ	Υ	3.1	5	NO
Copper oxide	01317-38-0	N	N	2,870	100	YES
Chromium oxide	01333-82-0	Υ	N	8.8E-02	250	NO
Aluminum oxide	01344-28-1	N	N	26	100	NO
1,2-Benzisothiazol-3(2H)-one	02634-33-5	N	N	9.0	100	NO
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	N	N	179	100	YES
Sodium metasilicate	06834-92-0	N	N	12	100	NO
Silver	07440-22-4	N	N	1.2E-02	100	NO
Tin	07440-31-5	N	N	1.9	100	NO
Copper	07440-50-8	N	N	1,795	100	YES
Zinc	07440-66-6	N	N	1.9	100	NO
Zinc chloride	07646-85-7	N	N	0.28	100	NO
Hydrogen chloride	07647-01-0	N	N	2.5	100	NO
Hydrogen chloride	07647-01-0	N	N	2.5	100	NO
Sulfuric acid	07664-93-9	N	N	622	100	YES
Hydrogen peroxide	07722-84-1	N	N	18	100	NO
Phosphorus	07723-14-0	N	N	1.9E-03	100	NO
Graphite	07782-42-5	N	N	3,759	100	YES
Petroleum distillates (mineral oil)	08042-47-5	Ν	N	2.4	100	NO

Table 1 Summary of Part 212 Evaluation

Revere Copper Products, Inc Rome, NY

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Actual Emissions (lb/yr)	Mass Emission Limit ^(b) (lb/yr)	Modeling Required (Yes/No)
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	N	N	90	100	NO
Nonylphenol, ethoxylated	09016-45-9	N	N	139	100	YES
Sodium phosphate, tribasic	10101-89-0	N	N	4.9	100	NO
Barium chloride	10361-37-2	N	N	0.25	100	NO
Ammonium chloride	12125-02-9	N	N	0.26	100	NO
Tellurium	13494-80-9	N	N	2.9E-03	100	NO
Silver oxide	20667-12-3	N	N	9.1E-02	100	NO
Mercury oxide	21908-53-2	Υ	Υ	8.3E-04	5	NO
Polyethylene glycol	25322-68-3	N	N	11	100	NO
Fatty alcohol alkoxylate	37335-03-8	N	N	0.13	0.1	NO ^(c)
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	N	N	150	100	YES
Amines, tallow alkyl, ethoxylated	61791-26-2	N	N	90	100	NO
Distillates, petroleum, hydrotreated light	64742-47-8	N	N	181	100	YES
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	N	N	815	100	YES
Hydrotreated light naphthenic petroleum oil	64742-53-6	N	N	0.69	100	NO
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	N	N	809	100	YES
Sulfonic acids, petroleum, sodium salts	68608-26-4	N	N	229	100	YES
Petroleum distillates	Trade Secret #1	N	N	15	100	NO
Base oil	Trade Secret #3	N	N	139	100	YES
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	N	N	4,462	100	YES
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	N	N	90	100	NO
Proprietary emulsifier	Trade Secret #6	N	N	252	100	YES
Azole derivative	Trade Secret #7	N	N	11	100	NO
Trade Secret	Trade Secret #8	N	N	300	100	YES

Notes:

- (a) HTAC and PB Trigger status as provided in 6 NYCRR Part 212-2.2 Table 2.
- (b) Mass Emission Limit (MEL) is based on 6 NYCRR Part 212-2.2 Table 2. For non-HTACs a limit of 100 lb/yr is listed.

Table 1 Summary of Part 212 Evaluation

				Facility-Wide	Mass	
			PB	Annual Actual	Emission	Modeling
Contaminants	CAS Number	HTAC ^(a)	Trigger ^(a)	Emissions	Limit ^(b)	Required
		(Y/N)	(Y/N)	(lb/yr)	(lb/yr)	(Yes/No)

⁽c) The NYSDEC Air Toxics Section has reviewed this chemical and indicated that little or no toxicological information was found for it. It was NYSDEC's recommendation that, as this contaminant is approximately equal to the second most stringent MEL that is acceptable for use of 0.1 lb/yr, modeling is not required due to the lack of evidence of this contaminant being considered to be highly toxic.

Table 2 Summary of Stack Parameters^(a) (English Units)

Revere Copper Products, Inc

Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate	Stack Location Y-Coordinate	Distance to Property Line	Base Elevation	Stack Height	Stack Diameter	Stack Diameter	Exit Temperature	Exit Velocity	Exit Flowrate	Stack Orientation
Ome	1 Onit	Dananig	Description	(meters)	(meters)	(ft)	(ft)	(ft)	(inches)	(ft)	(°F)	(ft/sec)	(acfm)	Orientation
				(((1.0)	(1.0)	(1.4)	((1.5)	(')	(iii oco)	(40111)	
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	464,723	4,783,831	142	453	100	36	3.0	80	57	24,000	Vertical
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	464,722	4,783,853	191	453	92	19	1.6	80	58	7,000	Vertical
U-ANNE1	00367	51	1154 Bright Anneal Entry Exhaust	464,674	4,783,827	180	453	45	9.0	0.75	100	19	500	Capped
U-ANNE1	00362	51	1154 Bright Anneal Exit Exhaust	464,694	4,783,850	253	453	45	9.0	0.75	100	19	500	Vertical
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	464,709	4,783,863	244	453	55	7.0	0.58	100	0.001	0.016	Capped
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	464,687	4,783,880	190	453	65	3.0	0.25	150	59	174	Vertical
U-ANNE1	00189	1	464 Tray Style/Coil Anneal Entry Exhaust	464,468	4,784,007	531	453	35	9.0	0.75	100	19	500	Vertical
U-ANNE1	00190	1	464 Tray Style/Coil Anneal Exit Exhaust	464,452	4,784,028	591	453	42	9.0	0.75	100	19	500	Vertical
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	464,315	4,784,074	384	455	50	48	4.0	200	48	36,499	Vertical
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	464,282	4,784,024	313	455	50	48	4.0	200	50	37,621	Vertical
U-CAST1	00602	21	Central Vacuum Exhaust	464,338	4,784,083	420	455	18	6.0	0.50	80	119	1,400	Vertical
U-FURN1	00041	51	Walking Beam Furnace Exhaust	464,737	4,783,786	9.84	453	60	51	4.3	510	43	37,000	Vertical
U-OVER1	00031	51	1715 Overhauler Exhaust	464,775	4,783,875	80.4	453	35	48	4.0	70	51	38,827	Vertical
U-ROLL1	00025	51	1724 Z-Mill Exhaust	464,655	4,783,842	226	453	44	42	3.5	150	53	30,600	Capped
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	464,707	4,783,903	102	453	57	36	3.0	70	56	23,554	Vertical
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	464,761	4,783,889	76.8	453	60	72	6.0	70	36	61,334	Vertical
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	464,770	4,783,822	4.49	453	80	30	2.5	115	68	20,000	Vertical
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	464,634	4,783,899	161	453	45	18	1.5	70	5.8	620	Capped
U-SOLV1	FUG01	51	Solvent Degreaser Exhaust	464,755	4,783,912	30.7	453	14	196	16	70	0.001	13	Horizontal
U-COMB1	00004	14	Boilers 1 & 2	464,492	4,784,078	482	453	150	84	7.0	200	7.3	16,800	Vertical
U-COMB1	00003	14	Boiler 3	464,490	4,784,069	505	453	60	50	4.2	390	9.4	7,700	Capped
U-GALV1	00600	51	02587 Acid Tank	464,624	4,783,941	73.5	453	44	24	2.0	70	74	14,000	Capped
U-GALV1	00601	51	02587 Molten Metal Tank	464,631	4,783,954	25.4	453	45	22	1.8	70	63	10,000	Capped

Notes:

(a) Stack parameters are based on information provided by Revere.

Table 3 Summary of Stack Parameters^(a) (Metric Units)

Revere Copper Products, Inc

Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate	Stack Location Y-Coordinate	Distance to Property Line	Base Elevation	Stack Height	Stack Diameter	Exit Temperature	Exit Velocity	Exit Flowrate	Stack Orientation
				(meters)	(meters)	(m)	(m)	(m)	(m)	(°C)	(m/sec)	(m ³ /sec)	
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	464,723	4,783,831	43.2	138	30	0.91	27	17	11	Vertical
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	464,722	4,783,853	58.3	138	28	0.48	27	18	3.3	Vertical
U-ANNE1	00367	51	1154 Bright Anneal Entry Exhaust	464,674	4,783,827	54.9	138	14	0.23	38	5.7	0.24	Capped
U-ANNE1	00362	51	1154 Bright Anneal Exit Exhaust	464,694	4,783,850	77.0	138	14	0.23	38	5.7	0.24	Vertical
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	464,709	4,783,863	74.3	138	17	0.18	38	3.0E-04	7.6E-06	Capped
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	464,687	4,783,880	58.0	138	20	0.08	66	18	8.2E-02	Vertical
U-ANNE1	00189	1	464 Tray Style/Coil Anneal Entry Exhaust	464,468	4,784,007	162	138	11	0.23	38	5.7	0.24	Vertical
U-ANNE1	00190	1	464 Tray Style/Coil Anneal Exit Exhaust	464,452	4,784,028	180	138	13	0.23	38	5.7	0.24	Vertical
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	464,315	4,784,074	117	139	15	1.2	93	15	17	Vertical
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	464,282	4,784,024	95.5	139	15	1.2	93	15	18	Vertical
U-CAST1	00602	21	Central Vacuum Exhaust	464,338	4,784,083	128	139	5.5	0.15	27	36	0.66	Vertical
U-FURN1	00041	51	Walking Beam Furnace Exhaust	464,737	4,783,786	3.00	138	18	1.3	266	13	17	Vertical
U-OVER1	00031	51	1715 Overhauler Exhaust	464,775	4,783,875	24.5	138	11	1.2	21	16	18	Vertical
U-ROLL1	00025	51	1724 Z-Mill Exhaust	464,655	4,783,842	69.0	138	13	1.1	66	16	14	Capped
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	464,707	4,783,903	31.1	138	17	0.91	21	17	11	Vertical
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	464,761	4,783,889	23.4	138	18	1.8	21	11	29	Vertical
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	464,770	4,783,822	1.37	138	24	0.76	46	21	9.4	Vertical
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	464,634	4,783,899	49.1	138	14	0.46	21	1.8	0.29	Capped
U-SOLV1	FUG01	51	Solvent Degreaser Exhaust	464,755	4,783,912	9.35	138	14	196	21	3.0E-04	6.0E-03	Horizontal
U-COMB1	00004	14	Boilers 1 & 2	464,492	4,784,078	147	138	46	2.1	93	2.2	7.9	Vertical
U-COMB1	00003	14	Boiler 3	464,490	4,784,069	154	138	18	1.3	199	2.9	3.6	Capped
U-GALV1	00600	51	02587 Acid Tank	464,624	4,783,941	22.4	138	13	0.61	21	23	6.6	Capped
U-GALV1	00601	51	02587 Molten Metal Tank	464,631	4,783,954	7.75	138	14	0.56	21	19	4.7	Capped
3 3/12 1	00001	0 1	02007 Motter Metal Tarix	100,001	1,700,704	7.75	130	17	0.50	۷.	1 /	7.7	опррси

(a) Stack parameters are based on information provided by Revere.

Table 4 Modeled Toxics Emission Rates (Commissioning Plan 1-Hour)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
U-CAST1 (EP00039) - Casting Furnaces To Baghouse			(3)
Iron oxide	01309-37-1	3.00E-02	3.77E-03
Copper oxide	01317-38-0	1.01E-01	1.27E-02
Graphite	07782-42-5	1.32E-01	1.66E-02
U-CAST1 (EP00040) - Casting Furnaces To Baghouse			
Iron oxide	01309-37-1	1.82E-01	2.29E-02
Copper oxide	01317-38-0	6.11E-01	7.70E-02
Graphite	07782-42-5	8.00E-01	1.01E-01
U-CAST1 (EP00602) - Central Vacuum	01200 27 1	2 275 02	4 425 04
Iron oxide	01309-37-1	3.27E-03	4.12E-04
Copper oxide	01317-38-0	1.10E-02	1.39E-03
Graphite	07782-42-5	1.44E-02	1.81E-03
U-ROLL1 (EP00036) - Bliss Mill	00141 42 5	F 27F 0F	/ 7/5 0/
2-Aminoethanol	00141-43-5	5.37E-05	6.76E-06
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	1.42E-03	1.79E-04
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	4.42E-04	5.57E-05
U-ROLL1 (EP00030) - Hot Mill Alkanolamine	00141 42 5	F 40F 02	/ DOE 03
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	00141-43-5 04719-04-4	5.40E-02 5.40E-02	6.80E-03 6.80E-03
Nonylphenol, ethoxylated	09016-45-9	5.40E-02 5.40E-02	6.80E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	5.40E-02	6.80E-03
Base oil	Trade Secret #3	5.40E-02	6.80E-03
U-ROLL1 (EP00029) - First Run Down Mill Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Ζ)-9-			
octadecen-1-yloxy]-	57635-48-0	3.17E-02	3.99E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.90E-02	2.39E-03
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	5.70E-01	7.18E-02
Trade Secret	Trade Secret #8	6.33E-02	7.98E-03
U-ROLL1 (EP00026) - Reversing Mill			
2-Aminoethanol	00141-43-5	7.97E-04	1.00E-04
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol	04719-04-4	2.09E-02	2.63E-03
Hydrotreated heavy naphthenic petroleum distillate	64742-52-5	1.47E-01	1.86E-02
U-ROLL1 (EP00025) - Z-Mill			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	8.33E-01	1.05E-01
U-OVER1 (EP00031) - Overhauler			
Copper	07440-50-8	3.71E-01	4.67E-02
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	2.55E-01	3.21E-02
Proprietary emulsifier	Trade Secret #6	5.20E-03	6.55E-04

Table 4 Modeled Toxics Emission Rates (Commissioning Plan 1-Hour)

Revere Copper Products, Inc Rome, NY

Sources and Pollutants	OAC Namel and	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
Sources and Pollutants	CAS Number	(lb/hr)	(g/s)
U-ANNE1 (EP00362) - Bright Anneal Exit			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	9.66E-03	1.22E-03
U-ANNE1 (EP00367) - Bright Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.07E-03	1.35E-04
U-ANNE1 (EP00369) - Lee Wilson Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	5.52E-03	6.96E-04
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.07E-03	1.35E-04
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	9.66E-03	1.22E-03
U-ANNE1 (EP00027) - Strand Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.59E-02	2.00E-03
U-ANNE1 (EP00440) - Ebner Anneal			
	64742-56-9	3.27E-03	4.12E-04
1740 Heavy Gauge Cleaning (EP 00028)			
Sulfuric acid	07664-93-9	1.46E-01	1.84E-02
U-SOLV1 - Parts Washer (Fugitive)			
Distillates, petroleum, hydrotreated light	64742-47-8	4.95E-02	6.24E-03

Notes:

(a) The modeled emission rates reflect post-control emission rates where a control device is in use.

Table 5 Modeled Toxics Emission Rates (Commissioning Plan - Annual)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
		(lb/hr)	(g/s)
-CAST1 (EP00039) - Casting Furnaces To Baghouse			
Iron oxide	01309-37-1	1.44E-02	1.82E-0
Copper oxide	01317-38-0	4.86E-02	6.12E-0
Graphite	07782-42-5	6.36E-02	8.01E-0
-CAST1 (EP00040) - Casting Furnaces To Baghouse			
Iron oxide	01309-37-1	8.26E-02	1.04E-0
Copper oxide	01317-38-0	2.78E-01	3.50E-0
Graphite	07782-42-5	3.64E-01	4.59E-02
-CAST1 (EP00602) - Central Vacuum			
Iron oxide	01309-37-1	3.12E-04	3.93E-0
Copper oxide	01317-38-0	1.05E-03	1.32E-0
Graphite	07782-42-5	1.37E-03	1.73E-0
I-ROLL1 (EP00036) - Bliss Mill			
2-Aminoethanol	00141-43-5	8.04E-06	1.01E-0
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	2.13E-04	2.69E-0
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	6.62E-05	8.34E-0
I-ROLL1 (EP00030) - Hot Mill			
Alkanolamine	00141-43-5	1.59E-02	2.00E-0
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	1.59E-02	2.00E-0
Nonylphenol, ethoxylated	09016-45-9	1.59E-02	2.00E-0
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.59E-02	2.00E-0
Base oil	Trade Secret #3	1.59E-02	2.00E-0
-ROLL1 (EP00029) - First Run Down Mill			
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	1.71E-02	2.16E-0
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.03E-02	1.30E-0
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	3.08E-01	3.89E-0
Trade Secret	Trade Secret #8	3.43E-02	4.32E-0
-ROLL1 (EP00026) - Reversing Mill			
2-Aminoethanol	00141-43-5	5.03E-04	6.34E-0
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol	04719-04-4	1.32E-02	1.66E-0
Hydrotreated heavy naphthenic petroleum distillate	64742-52-5	9.30E-02	1.17E-0
J-ROLL1 (EP00025) - Z-Mill			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	7.45E-02	9.39E-0
-OVER1 (EP00031) - Overhauler			
Copper	07440-50-8	2.05E-01	2.58E-0
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	1.41E-01	1.77E-0
Proprietary emulsifier	Trade Secret #6	2.87E-03	3.62E-0

Table 5 **Modeled Toxics Emission Rates (Commissioning Plan - Annual)**

Revere Copper Products, Inc. Rome, NY

U-ANNE1 (EP00362) - Bright Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.73E-03 2.18E-04 U-ANNE1 (EP00367) - Bright Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP000440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.73E-03 2.18E-04 U-ANNE1 (EP00367) - Bright Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04			(lb/hr)	(g/s)
U-ANNE1 (EP00367) - Bright Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04				
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP000440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.73E-03	2.18E-04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP000440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	U-ANNE1 (EP00367) - Bright Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04		64742-56-9	1.92E-04	2.42E-05
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04				
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	U-ANNE1 (EP00369) - Lee Wilson Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	2.15E-03	2.70E-04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	II ANNET (ED 00190) 464 Troy Style (Coil Appeal En	t m. r		
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04			9 00E 04	1 125 04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paramine	04/42-30-9	6.90E-04	1.126-04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exi	it		
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04			8.01E-03	1.01E-03
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04				
U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	*			
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	9.61E-03	1.21E-03
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	II-ANNE1 (ED00440) - Ebper Appeal			
	·	64742-56-9	2.22F-03	2.80F-04
		01112 00 7	2.222 33	2.002 0.
1740 Heavy Gauge Cleaning (EP 00028)	1740 Heavy Gauge Cleaning (EP 00028)			
Sulfuric acid 07664-93-9 1.13E-01 1.42E-02	Sulfuric acid	07664-93-9	1.13E-01	1.42E-02
	11 001 V4 B 1 W 1 (F :::)			
U-SOLV1 - Parts Washer (Fugitive)		(4740 47 0	4.055.00	(245 02
Distillates, petroleum, hydrotreated light 64742-47-8 4.95E-02 6.24E-03	Distillates, petroleum, nydrotreated light	04/42-4/-8	4.95E-02	6.24E-03

Notes:

(a) The modeled emission rates reflect post-control emission rates where a control device is in use. Additionally, the modeled emission rates incorporate the limited annual operating hours as proposed in the Commissioning Plan.

Table 6
Hours Used to Calculate Annual Modeling Emission Rates for Commissioning Plan
Revere Copper Products, Inc

Rome, NY

Sources	January (hr/yr)	February (hr/yr)	March (hr/yr)	April (hr/yr)	Commise May (hr/yr)	sioning Pla June (hr/yr)	an Operatir Month 1 (hr/yr)	Month 2 (hr/yr)	Month 3 (hr/yr)	Month 4 (hr/yr)	Month 5 (hr/yr)	Month 6 (hr/yr)	Total Hours (hr/yr)
U-CAST1 (EP00039) - Casting Furnaces To Baghouse	255	375	354	417	410	247	247	247	417	417	417	417	4220
U-CAST1 (EP00040) - Casting Furnaces To Baghouse	342	324	329	316	198	354	354	354	354	354	354	354	3987
U-CAST1 (EP00602) - Central Vacuum	12	14	102	47	126	10	10	10	126	126	126	126	835
U-ROLL1 (EP00036) - Bliss Mill	112	104	96	144	112	56	56	56	144	144	144	144	1312
U-ROLL1 (EP00030) - Hot Mill	200	216	248	216	168	168	175	194	248	248	248	248	2577
U-ROLL1 (EP00029) - First Run Down Mill	440	272	480	344	200	352	358	373	480	480	480	480	4739
U-ROLL1 (EP00026) - Reversing Mill	472	424	552	440	304	376	376	376	552	552	552	552	5528
U-ROLL1 (EP00025) - Z-Mill	128	96	48	0	0	0	0	0	128	128	128	128	784
U-OVER1 (EP00031) - Overhauler	384	360	472	376	280	352	357	369	472	472	472	472	4838
U-ANNE1 (EP00362) - Bright Anneal Exit	56	184	96	104	128	88	88	88	184	184	184	184	1568
U-ANNE1 (EP00367) - Bright Anneal Entry	56	184	96	104	128	88	88	88	184	184	184	184	1568
U-ANNE1 (EP00369) - Lee Wilson Anneal	272	168	272	264	104	332	332	332	332	332	332	332	3404
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Ent	672	624	712	672	496	336	419	480	712	712	712	712	7259
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exi	672	624	712	672	496	336	419	480	712	712	712	712	7259
U-ANNE1 (EP00027) - Strand Anneal	472	400	536	360	240	384	384	384	536	536	536	536	5304
U-ANNE1 (EP00440) - Ebner Anneal	720	624	736	776	0	0	0	0	776	776	776	776	5960
1740 Heavy Gauge Cleaning (EP 00028)	576	576	664	592	432	432	432	432	664	664	664	664	6792

Table 7 Sensitive Receptors^(a) Revere Copper Products, Inc

Rome, NY

Location Name	Receptor Location X-Coordinate (meters)	Receptor Location Y-Coordinate (meters)
Schools	(meters)	(meters)
Bellamy Elementary	465,720	4,783,850
Boces Consortium Continuing Ed	462,528	4,784,566
Central New York Academy Of Dance	460,703	4,785,892
Gansevoort Elementary School	461,577	4,785,376
George R Staley Elementary School ^(b)	464,091	4,784,259
Griffiss Child Development Center	466,431	4,784,586
John E Joy Elementary School	462,632	4,789,581
Kings Kids Christian Pre Sch	462,782	4,788,475
Louis V Denti Elementary School	462,396	4,786,724
Lyndon Strough Middle School	462,419	4,786,361
Mohawk Valley Community Action	456,820	4,789,491
New York State School for the Deaf	462,903	4,785,755
Nursery School of First Presbyterian Church	462,965	4,784,642
Oriskany High School	472,341	4,778,864
Ridge Mills Elementary School	464,380	4,787,712
Rome Catholic School	463,198	4,787,436
Rome Early Childhood Program	465,282	4,785,572
Rome Free Academy	466,258	4,784,343
Rome Refugee Services English School	463,345	4,784,544
Hospitals		
Rome Memorial Hospital: Prenatal Care	462,726	4,784,371
Rome Health General Hospital	464,043	4,786,362
Rome Memorial Hospital: Outpatient	462,936	4,788,048
Rome Memorial Hospital Diagnostic	464,184	4,786,658
Nursing Homes		
Rome Health Residential Health Care Facility	464,082	4,786,357
Colonial Park Rehabilitation & Nursing Center	464,827	4,785,055
The Grand Rehabilitation and Nursing at Rome	463,374	4,785,477
Betsy Ross Nursing Facility	462,159	4,786,848
Bethany Gardens	463,285	4,787,249
Nascentia Health	463,165	4,788,233
Terrace at Woodland	462,247	4,790,234
Eastern Star Home	472,341	4,778,994
Pounder Hall Inc	472,253	4,778,932
New Burton Homestead	463,373	4,784,596
Central Ny Ddso-Rome	459,846	4,781,187
Daycares		4 === - : =
Eastern Star Day Care Center Inc	472,319	4,779,065
Jesus Brethren Christian Schools	462,667	4,786,400
Peek-A-Boo Place Daycare	464,609	4,776,669
Little Folks Daycare	462,655	4,785,803
Home Grown Tots Daycare	462,945	4,785,413

Table 7 Sensitive Receptors^(a)

Revere Copper Products, Inc Rome, NY

Location Name	Receptor Location X-Coordinate (meters)	Receptor Location Y-Coordinate (meters)
Loving Hands Daycare	463,128	4,786,461
Cottage Hill Daycare	462,363	4,790,293
Something New Daycare	461,726	4,791,057
Little Brook Daycare LLC	464,832	4,784,404
Here We Grow Again Creative Learning Center	464,557	4,783,770
Griffiss Child Development Center	466,431	4,784,586
Rebecca France's Family WeeCare	464,484	4,776,959
Ava Dorfman Adult Day Care Center	463,946	4,785,636
Wild Things Child Care	464,605	4,781,966
Children's Dyslexia Center of Central New York	472,319	4,779,229
Mid York Child Care	470,136	4,777,410

Notes:

- (a) Sensitive receptors were identified using Google Maps to identify the schools, hospitals, nursing homes, and daycares located within a 10 kilometer radius from the facility, and Google Earth for receptor coordinates.
- (b) Note that this school is permanently closed due to flooding conditions. No receptor was added to the modeling for this location.

Table 8 Comissioning Plan Air Toxics Modeling Results - Multi-Chem

Pollutants	CAS Number	Averaging Period	Predicted Concentration	SGC/AGC ^(a)	Percent of SGC/AGC
			(µg/m³)	(µg/m³)	(%)
Alkanolamine	00141-43-5	1-Hour	0.981	1,500	<1
		Annual	0.00810	18	<1
Iron oxide	01309-37-1	1-Hour	1.73		
		Annual	0.0451	12	<1
Copper oxide ^(b)	01317-38-0	1-Hour	5.83	100	6
		Annual	0.152	0.48	32
2,2',2"-(Hexahydro-1,3,5-triazine-					
1,3,5-triyl)triethanol ^(c)	04719-04-4	1-Hour	0.981	30	3
,		Annual	0.0347	0.06	58
Copper	07440-50-8	1-Hour	18.1	100	18
		Annual	0.330	0.48	69
Sulfuric acid	07664-93-9	1-Hour	4.44	120	4
		Annual	0.365	1.0	36
Graphite	07782-42-5	1-Hour	7.64		
		Annual	0.199	4.8	4
Nonylphenol, ethoxylated ^(c)	09016-45-9	1-Hour	0.981	93	1
		Annual	0.00782	20	<1
Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9-					
octadecen-1-yloxy]-(c)	57635-48-0	1-Hour	0.812		
		Annual	0.0232	0.01	232

Table 8 Comissioning Plan Air Toxics Modeling Results - Multi-Chem

Pollutants	CAS Number	Averaging Period	Predicted Concentration (µg/m³)	SGC/AGC ^(a) (µg/m³)	Percent of SGC/AGC
Distillates, petroleum, hydrotreated light	d 64742-47-8	1-Hour Annual	26.4 1.00	900	 <1
Hydrotreated heavy naphthenic petroleum oil (c)	64742-52-5	1-Hour Annual	4.31 0.226	380 12	1 2
Distillates (petroleum), solvent- dewaxed light paraffinic ^(c)	64742-56-9	1-Hour Annual	52.5 0.291	380 12	14 2
Sulfonic acid, petroleum, sodium salts ^(c)	68608-26-4	1-Hour Annual	1.11 0.0190	0.10	 19
Base oil ^(c)	Trade Secret #3	1-Hour Annual	0.981 0.00782	380 12	<1 <1
Highly refined, low viscosity minera oils/hydrocarbons ^(c)	al Trade Secret #4	1-Hour Annual	22.3 0.645	380 12	6 5
Proprietary emulsifier ^(c)	Trade Secret #6	1-Hour Annual	0.254 0.00464	 0.10	 5
Trade Secret ^(c)	Trade Secret #8	1-Hour Annual	1.62 0.0464	0.001	 4645

Table 8 Comissioning Plan Air Toxics Modeling Results - Multi-Chem

Revere Copper Products, Inc Rome, NY

		Averaging	Predicted		Percent of
Pollutants	CAS Number	Period	Concentration	SGC/AGC ^(a)	SGC/AGC
			(µg/m³)	(µg/m³)	(%)

Notes:

- (a) Annual and short-term guideline concentrations (AGCs and SGCs, respectively) are based on NYSDEC's DAR-1, Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212 issued February 12, 2021 unless otherwise noted.
- (b) Copper oxide is not listed in DAR-1. For a different permit application, Ramboll proposed using the SGC/AGC for copper as interim values, which was approved for use by NYSDEC via email from Steve DeSantis on 1/31/2018.
- (c) NYSDEC has provided interim AGCs and SGCs for these contaminants based on toxicological reviews.

Table 9 Comissioning Plan Air Toxics Modeling Results - Outside of Multi-Chem

Revere Copper Products, Inc Rome, NY

Pollutants	CAS Number	Averaging Period	Predicted Concentration (µg/m³)	SGC/AGC ^(a) (µg/m³)	Percent of SGC/AGC (%)
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol ^(c)	04719-04-4	1-Hour Annual	0.981 0.0347	30 0.06	3 58
Copper and Copper oxide, combined ^(b)	07440-50-8/01317-38-0	1-Hour Annual	18.1 0.468	100 0.48	18 98
Poly(oxy-1,2-ethanediyl), a- (carboxymethyl)- ω -[(9Z)-9- octadecen-1-yloxy]- $^{(c)}$	57635-48-0	1-Hour Annual	0.812 0.0230	 0.01	 230
Trade Secret ^(c)	Trade Secret #8	1-Hour Annual	1.62 0.0459	0.001	 4591

Notes:

- (a) Annual and short-term guideline concentrations (AGCs and SGCs, respectively) are based on NYSDEC's DAR-1, Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212 issued February 12, 2021 unless otherwise noted.
- (b) As requested by NYSDEC on July 20, 2023, emissions of copper and copper oxide are modeled together and compared to the SGC/AGC for copper.
- (c) NYSDEC has provided interim AGCs and SGCs for these contaminants based on toxicological reviews.

Table 1
Summary of Part 212 Evaluation

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Actual Emissions (lb/yr)	Mass Emission Limit ^(b) (lb/yr)	Modeling Required (Yes/No)
Propane-1,2-diol	00057-55-6	N	N	90	100	NO
Hexylene glycol	00107-41-5	N	N	48	100	NO
Diethylene glycol	00111-46-6	N	N	8.1	100	NO
2-Butoxyethanol	00111-76-2	N	N	10	100	NO
2-Amino-2-methyl-1-propanol	00124-68-5	Ν	N	2.6E-02	100	NO
Alkanolamine	00141-43-5	Ν	N	141	100	YES
Barium oxide	01304-28-5	N	N	0.35	100	NO
Cadmium oxide	01306-19-0	Υ	Υ	6.4E-02	1	NO
Iron oxide	01309-37-1	Ν	N	853	100	YES
Magnesium oxide	01309-48-4	N	N	2.2	100	NO
Nickel oxide	01313-99-1	Υ	N	0.20	10	NO
Zinc oxide	01314-13-2	N	N	7.9	100	NO
Lead oxide	01314-41-6	Υ	Υ	3.1	5	NO
Copper oxide	01317-38-0	N	N	2,870	100	YES
Chromium oxide	01333-82-0	Υ	N	8.8E-02	250	NO
Aluminum oxide	01344-28-1	N	N	26	100	NO
1,2-Benzisothiazol-3(2H)-one	02634-33-5	N	N	9.0	100	NO
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	N	N	179	100	YES
Sodium metasilicate	06834-92-0	N	N	12	100	NO
Silver	07440-22-4	N	N	1.2E-02	100	NO
Tin	07440-31-5	N	N	1.9	100	NO
Copper	07440-50-8	N	N	1,795	100	YES
Zinc	07440-66-6	N	N	1.9	100	NO
Zinc chloride	07646-85-7	N	N	0.28	100	NO
Hydrogen chloride	07647-01-0	N	N	2.5	100	NO
Hydrogen chloride	07647-01-0	N	N	2.5	100	NO
Sulfuric acid	07664-93-9	N	N	622	100	YES
Hydrogen peroxide	07722-84-1	N	N	18	100	NO
Phosphorus	07723-14-0	N	N	1.9E-03	100	NO
Graphite	07782-42-5	N	N	3,759	100	YES
Petroleum distillates (mineral oil)	08042-47-5	Ν	N	2.4	100	NO

Table 1 Summary of Part 212 Evaluation

Revere Copper Products, Inc Rome, NY

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Actual Emissions (lb/yr)	Mass Emission Limit ^(b) (lb/yr)	Modeling Required (Yes/No)
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	N	N	90	100	NO
Nonylphenol, ethoxylated	09016-45-9	N	N	139	100	YES
Sodium phosphate, tribasic	10101-89-0	N	N	4.9	100	NO
Barium chloride	10361-37-2	N	N	0.25	100	NO
Ammonium chloride	12125-02-9	N	N	0.26	100	NO
Tellurium	13494-80-9	N	N	2.9E-03	100	NO
Silver oxide	20667-12-3	N	N	9.1E-02	100	NO
Mercury oxide	21908-53-2	Υ	Υ	8.3E-04	5	NO
Polyethylene glycol	25322-68-3	N	N	11	100	NO
Fatty alcohol alkoxylate	37335-03-8	N	N	0.13	0.1	NO ^(c)
Poly(oxy-1,2-ethanediyl), α -(carboxymethyl)- ω -[(9Z)-9-octadecen-1-yloxy]-	57635-48-0	N	N	150	100	YES
Amines, tallow alkyl, ethoxylated	61791-26-2	N	N	90	100	NO
Distillates, petroleum, hydrotreated light	64742-47-8	N	N	181	100	YES
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	N	N	815	100	YES
Hydrotreated light naphthenic petroleum oil	64742-53-6	N	N	0.69	100	NO
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	N	N	809	100	YES
Sulfonic acids, petroleum, sodium salts	68608-26-4	N	N	229	100	YES
Petroleum distillates	Trade Secret #1	N	N	15	100	NO
Base oil	Trade Secret #3	N	N	139	100	YES
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	N	N	4,462	100	YES
Fatty acids, C18-unsaturated phosphates	Trade Secret #5	N	N	90	100	NO
Proprietary emulsifier	Trade Secret #6	N	N	252	100	YES
Azole derivative	Trade Secret #7	N	N	11	100	NO
Trade Secret	Trade Secret #8	N	N	300	100	YES

Notes:

- (a) HTAC and PB Trigger status as provided in 6 NYCRR Part 212-2.2 Table 2.
- (b) Mass Emission Limit (MEL) is based on 6 NYCRR Part 212-2.2 Table 2. For non-HTACs a limit of 100 lb/yr is listed.

Table 1 Summary of Part 212 Evaluation

				Facility-Wide	Mass	
			PB	Annual Actual	Emission	Modeling
Contaminants	CAS Number	HTAC ^(a)	Trigger ^(a)	Emissions	Limit ^(b)	Required
		(Y/N)	(Y/N)	(lb/yr)	(lb/yr)	(Yes/No)

⁽c) The NYSDEC Air Toxics Section has reviewed this chemical and indicated that little or no toxicological information was found for it. It was NYSDEC's recommendation that, as this contaminant is approximately equal to the second most stringent MEL that is acceptable for use of 0.1 lb/yr, modeling is not required due to the lack of evidence of this contaminant being considered to be highly toxic.

Table 2 Summary of Stack Parameters^(a) (English Units)

Revere Copper Products, Inc

Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate	Stack Location Y-Coordinate	Distance to Property Line	Base Elevation	Stack Height	Stack Diameter	Stack Diameter	Exit Temperature	Exit Velocity	Exit Flowrate	Stack Orientation
Offic	Foliit	Building	Description	(meters)	(meters)	(ft)	(ft)	(ft)	(inches)	(ft)	(°F)	(ft/sec)	(acfm)	Orientation
				(11101010)	(motor o)	(11)	(1.1)	(11)	(11101100)	(11)	(.)	(11, 500)	(domi)	
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	464,723	4,783,831	142	453	100	36	3.0	80	57	24,000	Vertical
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	464,722	4,783,853	191	453	92	19	1.6	80	58	7,000	Vertical
U-ANNE1	00367	51	1154 Bright Anneal Entry Exhaust	464,674	4,783,827	180	453	45	9.0	0.75	100	19	500	Capped
U-ANNE1	00362	51	1154 Bright Anneal Exit Exhaust	464,694	4,783,850	253	453	45	9.0	0.75	100	19	500	Vertical
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	464,709	4,783,863	244	453	55	7.0	0.58	100	0.001	0.016	Capped
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	464,687	4,783,880	190	453	65	3.0	0.25	150	59	174	Vertical
U-ANNE1	00189	1	464 Tray Style/Coil Anneal Entry Exhaust	464,468	4,784,007	531	453	35	9.0	0.75	100	19	500	Vertical
U-ANNE1	00190	1	464 Tray Style/Coil Anneal Exit Exhaust	464,452	4,784,028	591	453	42	9.0	0.75	100	19	500	Vertical
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	464,315	4,784,074	384	455	50	48	4.0	200	48	36,499	Vertical
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	464,282	4,784,024	313	455	50	48	4.0	200	50	37,621	Vertical
U-CAST1	00602	21	Central Vacuum Exhaust	464,338	4,784,083	420	455	18	6.0	0.50	80	119	1,400	Vertical
U-FURN1	00041	51	Walking Beam Furnace Exhaust	464,737	4,783,786	9.84	453	60	51	4.3	510	43	37,000	Vertical
U-OVER1	00031	51	1715 Overhauler Exhaust	464,775	4,783,875	80.4	453	35	48	4.0	70	51	38,827	Vertical
U-ROLL1	00025	51	1724 Z-Mill Exhaust	464,655	4,783,842	226	453	44	42	3.5	150	53	30,600	Capped
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	464,707	4,783,903	102	453	57	36	3.0	70	56	23,554	Vertical
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	464,761	4,783,889	76.8	453	60	72	6.0	70	36	61,334	Vertical
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	464,770	4,783,822	4.49	453	80	30	2.5	115	68	20,000	Vertical
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	464,634	4,783,899	161	453	45	18	1.5	70	5.8	620	Capped
U-SOLV1	FUG01	51	Solvent Degreaser Exhaust	464,755	4,783,912	30.7	453	14	196	16	70	0.001	13	Horizontal
U-COMB1	00004	14	Boilers 1 & 2	464,492	4,784,078	482	453	150	84	7.0	200	7.3	16,800	Vertical
U-COMB1	00003	14	Boiler 3	464,490	4,784,069	505	453	60	50	4.2	390	9.4	7,700	Capped
U-GALV1	00600	51	02587 Acid Tank	464,624	4,783,941	73.5	453	44	24	2.0	70	74	14,000	Capped
U-GALV1	00601	51	02587 Molten Metal Tank	464,631	4,783,954	25.4	453	45	22	1.8	70	63	10,000	Capped

Notes:

(a) Stack parameters are based on information provided by Revere.

Table 3 Summary of Stack Parameters^(a) (Metric Units)

Revere Copper Products, Inc

Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate	Stack Location Y-Coordinate	Distance to Property Line	Base Elevation	Stack Height	Stack Diameter	Exit Temperature	Exit Velocity	Exit Flowrate	Stack Orientation
			·	(meters)	(meters)	(m)	(m)	(m)	(m)	(°C)	(m/sec)	(m ³ /sec)	
			45000		. = 2 2 2 2 2	10.0	100						No. 11
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	464,723	4,783,831	43.2	138	30	0.91	27	17	11	Vertical
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	464,722	4,783,853	58.3	138	28	0.48	27	18	3.3	Vertical
U-ANNE1	00367	51	1154 Bright Anneal Entry Exhaust	464,674	4,783,827	54.9	138	14	0.23	38	5.7	0.24	Capped
U-ANNE1	00362	51	1154 Bright Anneal Exit Exhaust	464,694	4,783,850	77.0	138	14	0.23	38	5.7	0.24	Vertical
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	464,709	4,783,863	74.3	138	17	0.18	38	3.0E-04	7.6E-06	Capped
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	464,687	4,783,880	58.0	138	20	0.08	66	18	8.2E-02	Vertical
U-ANNE1	00189	1	464 Tray Style/Coil Anneal Entry Exhaust	464,468	4,784,007	162	138	11	0.23	38	5.7	0.24	Vertical
U-ANNE1	00190	1	464 Tray Style/Coil Anneal Exit Exhaust	464,452	4,784,028	180	138	13	0.23	38	5.7	0.24	Vertical
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	464,315	4,784,074	117	139	15	1.2	93	15	17	Vertical
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	464,282	4,784,024	95.5	139	15	1.2	93	15	18	Vertical
U-CAST1	00602	21	Central Vacuum Exhaust	464,338	4,784,083	128	139	5.5	0.15	27	36	0.66	Vertical
U-FURN1	00041	51	Walking Beam Furnace Exhaust	464,737	4,783,786	3.00	138	18	1.3	266	13	17	Vertical
U-OVER1	00031	51	1715 Overhauler Exhaust	464,775	4,783,875	24.5	138	11	1.2	21	16	18	Vertical
U-ROLL1	00025	51	1724 Z-Mill Exhaust	464,655	4,783,842	69.0	138	13	1.1	66	16	14	Capped
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	464,707	4,783,903	31.1	138	17	0.91	21	17	11	Vertical
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	464,761	4,783,889	23.4	138	18	1.8	21	11	29	Vertical
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	464,770	4,783,822	1.37	138	24	0.76	46	21	9.4	Vertical
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	464,634	4,783,899	49.1	138	14	0.46	21	1.8	0.29	Capped
U-SOLV1	FUG01	51	Solvent Degreaser Exhaust	464,755	4,783,912	9.35	138	14	196	21	3.0E-04	6.0E-03	Horizontal
U-COMB1	00004	14	Boilers 1 & 2	464,492	4,784,078	147	138	46	2.1	93	2.2	7.9	Vertical
U-COMB1	00003	14	Boiler 3	464,490	4,784,069	154	138	18	1.3	199	2.9	3.6	Capped
U-GALV1	00600	51	02587 Acid Tank	464,624	4,783,941	22.4	138	13	0.61	21	23	6.6	Capped
U-GALV1	00601	51	02587 Molten Metal Tank	464,631	4,783,954	7.75	138	14	0.56	21	19	4.7	Capped

(a) Stack parameters are based on information provided by Revere.

Table 4 Modeled Toxics Emission Rates (Commissioning Plan 1-Hour)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
U-CAST1 (EP00039) - Casting Furnaces To Baghouse		(12, 111)	(9, 3)
Iron oxide	01309-37-1	3.00E-02	3.77E-03
Copper oxide	01317-38-0	1.01E-01	1.27E-02
Graphite	07782-42-5	1.32E-01	1.66E-02
U-CAST1 (EP00040) - Casting Furnaces To Baghouse			
Iron oxide	01309-37-1	1.82E-01	2.29E-02
Copper oxide	01317-38-0	6.11E-01	7.70E-02
Graphite	07782-42-5	8.00E-01	1.01E-01
U-CAST1 (EP00602) - Central Vacuum			
Iron oxide	01309-37-1	3.27E-03	4.12E-04
Copper oxide	01317-38-0	1.10E-02	1.39E-03
Graphite	07782-42-5	1.44E-02	1.81E-03
U-ROLL1 (EP00036) - Bliss Mill			
2-Aminoethanol	00141-43-5	5.37E-05	6.76E-06
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	1.42E-03	1.79E-04
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	4.42E-04	5.57E-05
U-ROLL1 (EP00030) - Hot Mill			
Alkanolamine	00141-43-5	5.40E-02	6.80E-03
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine Nonylphenol, ethoxylated	04719-04-4 09016-45-9	5.40E-02 5.40E-02	6.80E-03 6.80E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	5.40E-02 5.40E-02	6.80E-03 6.80E-03
Base oil	Trade Secret #3	5.40E-02	6.80E-03
U-ROLL1 (EP00029) - First Run Down Mill Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-			
octadecen-1-yloxy]-	57635-48-0	3.17E-02	3.99E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.90E-02	2.39E-03
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	5.70E-01	7.18E-02
Trade Secret	Trade Secret #8	6.33E-02	7.98E-03
U-ROLL1 (EP00026) - Reversing Mill			
2-Aminoethanol	00141-43-5	7.97E-04	1.00E-04
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol	04719-04-4	2.09E-02	2.63E-03
Hydrotreated heavy naphthenic petroleum distillate	64742-52-5	1.47E-01	1.86E-02
U-ROLL1 (EP00025) - Z-Mill			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	8.33E-01	1.05E-01
U-OVER1 (EP00031) - Overhauler			
Copper	07440-50-8	3.71E-01	4.67E-02
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	2.55E-01	3.21E-02
Proprietary emulsifier	Trade Secret #6	5.20E-03	6.55E-04

Table 4 **Modeled Toxics Emission Rates (Commissioning Plan 1-Hour)**

Revere Copper Products, Inc. Rome, NY

Courses and Dellutants	OAC November	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
Sources and Pollutants	CAS Number	(lb/hr)	(g/s)
U-ANNE1 (EP00362) - Bright Anneal Exit			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	9.66E-03	1.22E-03
U-ANNE1 (EP00367) - Bright Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.07E-03	1.35E-04
U-ANNE1 (EP00369) - Lee Wilson Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	5.52E-03	6.96E-04
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entr	У		
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.07E-03	1.35E-04
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	9.66E-03	1.22E-03
U-ANNE1 (EP00027) - Strand Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.59E-02	2.00E-03
U-ANNE1 (EP00440) - Ebner Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	3.27E-03	4.12E-04
1740 Heavy Gauge Cleaning (EP 00028)			
Sulfuric acid	07664-93-9	1.46E-01	1.84E-02
U-SOLV1 - Parts Washer (Fugitive)			
Distillates, petroleum, hydrotreated light	64742-47-8	4.95E-02	6.24E-03

Notes:

(a) The modeled emission rates reflect post-control emission rates where a control device is in use.

Table 5 Modeled Toxics Emission Rates (Commissioning Plan - Annual)

Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a) (lb/hr)	Modeled Emission Rate ^(a) (g/s)
U-CAST1 (EP00039) - Casting Furnaces To Baghouse	9		(3)
Iron oxide	01309-37-1	1.44E-02	1.82E-03
Copper oxide	01317-38-0	4.86E-02	6.12E-03
Graphite	07782-42-5	6.36E-02	8.01E-03
U-CAST1 (EP00040) - Casting Furnaces To Baghouse			
Iron oxide	01309-37-1	8.26E-02	1.04E-02
Copper oxide	01317-38-0	2.78E-01	3.50E-02
Graphite	07782-42-5	3.64E-01	4.59E-02
U-CAST1 (EP00602) - Central Vacuum	04000 07.4	0.405.04	2 225 25
Iron oxide	01309-37-1	3.12E-04	3.93E-05
Copper oxide	01317-38-0	1.05E-03	1.32E-04
Graphite	07782-42-5	1.37E-03	1.73E-04
U-ROLL1 (EP00036) - Bliss Mill			
2-Aminoethanol	00141-43-5	8.04E-06	1.01E-06
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	2.13E-04	2.69E-05
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	6.62E-05	8.34E-06
U-ROLL1 (EP00030) - Hot Mill			
Alkanolamine	00141-43-5	1.59E-02	2.00E-03
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	1.59E-02	2.00E-03
Nonylphenol, ethoxylated	09016-45-9	1.59E-02	2.00E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.59E-02	2.00E-03
Base oil	Trade Secret #3	1.59E-02	2.00E-03
U-ROLL1 (EP00029) - First Run Down Mill Poly(oxy-1,2-ethanediyl), α-(carboxymethyl)-ω-[(9Z)-9-	-		
octadecen-1-yloxy]-	57635-48-0	1.71E-02	2.16E-03
Sulfonic acid, petroleum, sodium salts	68608-26-4	1.03E-02	1.30E-03
Highly refined, low viscosity mineral oils/hydrocarbons	Trade Secret #4	3.08E-01	3.89E-02
Trade Secret	Trade Secret #8	3.43E-02	4.32E-03
U-ROLL1 (EP00026) - Reversing Mill			
2-Aminoethanol	00141-43-5	5.03E-04	6.34E-05
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol	04719-04-4	1.32E-02	1.66E-03
Hydrotreated heavy naphthenic petroleum distillate	64742-52-5	9.30E-02	1.17E-02
U-ROLL1 (EP00025) - Z-Mill			
Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	7.45E-02	9.39E-03
U-OVER1 (EP00031) - Overhauler			
Copper	07440-50-8	2.05E-01	2.58E-02
Limbly refined lawy describy reinord alle /by dresorbers	Trada Coarat #1	1.41E-01	1.77E-02
Highly refined, low viscosity mineral oils/hydrocarbons Proprietary emulsifier	Trade Secret #4 Trade Secret #6	2.87E-03	3.62E-04

Table 5 **Modeled Toxics Emission Rates (Commissioning Plan - Annual)**

Revere Copper Products, Inc. Rome, NY

U-ANNE1 (EP00362) - Bright Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.73E-03 2.18E-04 U-ANNE1 (EP00367) - Bright Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP000440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Sources and Pollutants	CAS Number	Modeled Emission Rate ^(a)	Modeled Emission Rate ^(a)
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.73E-03 2.18E-04 U-ANNE1 (EP00367) - Bright Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04			(lb/hr)	(g/s)
U-ANNE1 (EP00367) - Bright Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04				
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP000440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	1.73E-03	2.18E-04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 1.92E-04 2.42E-05 U-ANNE1 (EP00369) - Lee Wilson Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP000440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	U-ANNE1 (EP00367) - Bright Anneal Entry			
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04		64742-56-9	1.92E-04	2.42E-05
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.15E-03 2.70E-04 U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04				
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Entry Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	U-ANNE1 (EP00369) - Lee Wilson Anneal			
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	2.15E-03	2.70E-04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.90E-04 1.12E-04 U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	II ANNET (ED 00190) 464 Troy Style (Coil Appeal En	t m. r		
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exit Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04			9 00E 04	1 125 04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paramine	04/42-30-9	6.90E-04	1.126-04
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 8.01E-03 1.01E-03 U-ANNE1 (EP00027) - Strand Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exi	it		
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04			8.01E-03	1.01E-03
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 9.61E-03 1.21E-03 U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04				
U-ANNE1 (EP00440) - Ebner Anneal Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	*			
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	Distillates (petroleum), solvent-dewaxed light paraffinic	64742-56-9	9.61E-03	1.21E-03
Distillates (petroleum), solvent-dewaxed light paraffinic 64742-56-9 2.22E-03 2.80E-04	II-ANNE1 (ED00440) - Ebper Appeal			
	·	64742-56-9	2.22F-03	2.80F-04
		01112 00 7	2.222 33	2.002 0.
1740 Heavy Gauge Cleaning (EP 00028)	1740 Heavy Gauge Cleaning (EP 00028)			
Sulfuric acid 07664-93-9 1.13E-01 1.42E-02	Sulfuric acid	07664-93-9	1.13E-01	1.42E-02
	11 001 V4 B 1 W 1 (F :::)			
U-SOLV1 - Parts Washer (Fugitive)		(4740 47 0	4.055.00	(245 02
Distillates, petroleum, hydrotreated light 64742-47-8 4.95E-02 6.24E-03	Distillates, petroleum, nydrotreated light	04/42-4/-8	4.95E-02	6.24E-03

Notes:

(a) The modeled emission rates reflect post-control emission rates where a control device is in use. Additionally, the modeled emission rates incorporate the limited annual operating hours as proposed in the Commissioning Plan.

Table 6 Hours Used to Calculate Annual Modeling Emission Rates for Commissioning Plan Revere Copper Products, Inc

Rome, NY

Sources	January (hr/yr)	February (hr/yr)	March (hr/yr)	April (hr/yr)	Commis May (hr/yr)	sioning Pla June (hr/yr)	n Operatir Month 1 (hr/yr)	ng Hours Month 2 (hr/yr)	Month 3 (hr/yr)	Month 4 (hr/yr)	Month 5 (hr/yr)	Month 6 (hr/yr)	Total Hours (hr/yr)
U-CAST1 (EP00039) - Casting Furnaces To Baghouse	255	375	354	417	410	247	247	247	417	417	417	417	4220
U-CAST1 (EP00040) - Casting Furnaces To Baghouse	342	324	329	316	198	354	354	354	354	354	354	354	3987
U-CAST1 (EP00602) - Central Vacuum	12	14	102	47	126	10	10	10	126	126	126	126	835
U-ROLL1 (EP00036) - Bliss Mill	112	104	96	144	112	56	56	56	144	144	144	144	1312
U-ROLL1 (EP00030) - Hot Mill	200	216	248	216	168	168	175	194	248	248	248	248	2577
U-ROLL1 (EP00029) - First Run Down Mill	440	272	480	344	200	352	358	373	480	480	480	480	4739
U-ROLL1 (EP00026) - Reversing Mill	472	424	552	440	304	376	376	376	552	552	552	552	5528
U-ROLL1 (EP00025) - Z-Mill	128	96	48	0	0	0	0	0	128	128	128	128	784
U-OVER1 (EP00031) - Overhauler	384	360	472	376	280	352	357	369	472	472	472	472	4838
U-ANNE1 (EP00362) - Bright Anneal Exit	56	184	96	104	128	88	88	88	184	184	184	184	1568
U-ANNE1 (EP00367) - Bright Anneal Entry	56	184	96	104	128	88	88	88	184	184	184	184	1568
U-ANNE1 (EP00369) - Lee Wilson Anneal	272	168	272	264	104	332	332	332	332	332	332	332	3404
U-ANNE1 (EP 00189) - 464 Tray Style/Coil Anneal Ent	672	624	712	672	496	336	419	480	712	712	712	712	7259
U-ANNE1 (EP 00190) - 464 Tray Style/Coil Anneal Exi	672	624	712	672	496	336	419	480	712	712	712	712	7259
U-ANNE1 (EP00027) - Strand Anneal	472	400	536	360	240	384	384	384	536	536	536	536	5304
U-ANNE1 (EP00440) - Ebner Anneal	720	624	736	776	0	0	0	0	776	776	776	776	5960
1740 Heavy Gauge Cleaning (EP 00028)	576	576	664	592	432	432	432	432	664	664	664	664	6792

Table 7 Sensitive Receptors^(a) Revere Copper Products, Inc

Rome, NY

Location Name	Receptor Location X-Coordinate	Receptor Location Y-Coordinate
Location Name	(meters)	(meters)
Schools	(meters)	(meters)
Bellamy Elementary	465,720	4,783,850
Boces Consortium Continuing Ed	462,528	4,784,566
Central New York Academy Of Dance	460,703	4,785,892
Gansevoort Elementary School	461,577	4,785,376
George R Staley Elementary School ^(b)	464,091	4,784,259
Griffiss Child Development Center	466,431	4,784,586
John E Joy Elementary School	462,632	4,789,581
Kings Kids Christian Pre Sch	462,782	4,788,475
Louis V Denti Elementary School	462,396	4,786,724
Lyndon Strough Middle School	462,419	4,786,361
Mohawk Valley Community Action	456,820	4,789,491
New York State School for the Deaf	462,903	4,785,755
Nursery School of First Presbyterian Church	462,965	4,784,642
Oriskany High School	472,341	4,778,864
Ridge Mills Elementary School	464,380	4,787,712
Rome Catholic School	463,198	4,787,436
Rome Early Childhood Program	465,282	4,785,572
Rome Free Academy	466,258	4,784,343
Rome Refugee Services English School	463,345	4,784,544
Hospitals		
Rome Memorial Hospital: Prenatal Care	462,726	4,784,371
Rome Health General Hospital	464,043	4,786,362
Rome Memorial Hospital: Outpatient	462,936	4,788,048
Rome Memorial Hospital Diagnostic	464,184	4,786,658
Nursing Homes		
Rome Health Residential Health Care Facility	464,082	4,786,357
Colonial Park Rehabilitation & Nursing Center	464,827	4,785,055
The Grand Rehabilitation and Nursing at Rome	463,374	4,785,477
Betsy Ross Nursing Facility	462,159	4,786,848
Bethany Gardens	463,285	4,787,249
Nascentia Health	463,165	4,788,233
Terrace at Woodland	462,247	4,790,234
Eastern Star Home	472,341	4,778,994
Pounder Hall Inc	472,253	4,778,932
New Burton Homestead	463,373	4,784,596
Central Ny Ddso-Rome	459,846	4,781,187
Daycares		
Eastern Star Day Care Center Inc	472,319	4,779,065
Jesus Brethren Christian Schools	462,667	4,786,400
Peek-A-Boo Place Daycare	464,609	4,776,669
Little Folks Daycare	462,655	4,785,803
Home Grown Tots Daycare	462,945	4,785,413

Table 7 Sensitive Receptors^(a)

Revere Copper Products, Inc Rome, NY

Location Name	Receptor Location X-Coordinate (meters)	Receptor Location Y-Coordinate (meters)
Loving Hands Daycare	463,128	4,786,461
Cottage Hill Daycare	462,363	4,790,293
Something New Daycare	461,726	4,791,057
Little Brook Daycare LLC	464,832	4,784,404
Here We Grow Again Creative Learning Center	464,557	4,783,770
Griffiss Child Development Center	466,431	4,784,586
Rebecca France's Family WeeCare	464,484	4,776,959
Ava Dorfman Adult Day Care Center	463,946	4,785,636
Wild Things Child Care	464,605	4,781,966
Children's Dyslexia Center of Central New York	472,319	4,779,229
Mid York Child Care	470,136	4,777,410

Notes:

- (a) Sensitive receptors were identified using Google Maps to identify the schools, hospitals, nursing homes, and daycares located within a 10 kilometer radius from the facility, and Google Earth for receptor coordinates.
- (b) Note that this school is permanently closed due to flooding conditions. No receptor was added to the modeling for this location.

Table 9 Comissioning Plan Air Toxics Modeling Results - Outside of Multi-Chem

Revere Copper Products, Inc Rome, NY

Pollutants	CAS Number	Averaging Period	Predicted Concentration (µg/m³)	SGC/AGC ^(a) (µg/m³)	Percent of SGC/AGC (%)
2,2',2"-(Hexahydro-1,3,5-triazine-1,3,5-triyl)triethanol ^(c)	04719-04-4	1-Hour Annual	0.981 0.0347	30 0.06	3 58
Copper and Copper oxide, combined ^(b)	07440-50-8/01317-38-0	1-Hour Annual	18.1 0.468	100 0.48	18 98
Poly(oxy-1,2-ethanediyl), α- (carboxymethyl)-ω-[(9Z)-9- octadecen-1-yloxy]- ^(c)	57635-48-0	1-Hour Annual	0.812 0.0230	 0.01	230
Trade Secret ^(c)	Trade Secret #8	1-Hour Annual	1.62 0.0459	0.001	 4591

Notes:

- (a) Annual and short-term guideline concentrations (AGCs and SGCs, respectively) are based on NYSDEC's DAR-1, Guidelines for the Evaluation and Control of Ambient Air Contaminants Under Part 212 issued February 12, 2021 unless otherwise noted.
- (b) As requested by NYSDEC on July 20, 2023, emissions of copper and copper oxide are modeled together and compared to the SGC/AGC for copper.
- (c) NYSDEC has provided interim AGCs and SGCs for these contaminants based on toxicological reviews.

EXHIBITS

REVERE COPPER PRODUCTS, INC. MODELING PROTOCOL

Project name	Revere Copper Products,	Inc Air State	Facility Permit	Renewal

Project no. 1087689\1940103004

Recipient NYSDEC Air Dispersion Modeling Group

Document type Modeling Protocol

Version 1

Date December 1, 2022
Prepared by Steven Miraglia
Checked by Helena Kubarycz
Approved by Cris Hine

CONTENTS

1.	Project Discussion	2
2.	Site Location and Description	2
3.	Stack Parameters and Buildings	2
4.	Emission Rates	2
5.	Urban/Rural Classification	2
6.	Good Engineering Practice Stack Height Analysis	3
7.	Meteorological Data	3
8.	Receptor Locations	3
9.	Lakes Environmental Software – Multi-Chem Use	3
10.	Modeling Results	4

LIST OF TABLES

- 1 Summary of Part 212 Evaluation
- 2 Summary of Stack Parameters (English Units)
- 3 Summary of Stack Parameters (Metric Units)

LIST OF FIGURES

1 Site Location Map

1. Project Discussion

Revere Copper Products, Inc. (Revere) is renewing and modifying the Air State Facility (ASF) Permit, ID 6-3013-00091/00039, for their manufacturing facility located at 1 Revere Park in Rome, New York. As a part of the renewal/modification process, the facility is required to perform air dispersion modeling to demonstrate compliance with the air toxics requirements in Title 6 of the New York Code of Rules and Regulations (6 NYCRR) Part 212. A summary of the Part 212 evaluation is provided in **Table 1**.

Air dispersion modeling will be performed using the United States Environmental Protection Agency (USEPA) AERMOD (Version 21112) model. This protocol was developed to satisfy the New York State Department of Environmental Conservation's (NYSDEC's) requirement for submittal of a modeling protocol prior to performing refined air dispersion modeling.

2. Site Location and Description

The facility is located at 1 Revere Park in Rome, NY within Oneida county. A site location map is provided in **Figure 1**. The site is bounded by mixed residential and commercial development to the north, east, and south and by a public park and elementary school to the east.

The primary manufacturing operations at the Revere facility consist of induction furnaces used for copper casting operations, annealing units, rolling mills, and a copper galvanizing line. Emissions from these processes, except for the galvanizing line, require air dispersion modeling to demonstrate compliance with Part 212. The emissions of criteria pollutants are capped to below the major source thresholds; therefore, no modeling of criteria pollutants will be performed.

3. Stack Parameters and Buildings

Stack parameters for the emission points that are expected to be included in the refined modeling analysis are provided in **Table 2** (English Units) and **Table 3** (Metric Units). Note that some of the stack parameters are currently being collected or confirmed by Revere; the modeling report will include complete stack parameter tables. Additionally, the building heights and locations of each stack are also being confirmed by Revere; the modeling report will include a site layout map with the building heights and stack locations.

4. Emission Rates

Emission rates that will require modeling are in the process of being finalized and will be included in the modeling report.

5. Urban/Rural Classification

In accordance with Section 2.3 of NYSDEC's DAR-10 air dispersion modeling guidance document: "Only facilities located in the New York City metro area may have sufficiently high population density and urban heat island effects to justify the use of urban dispersion coefficients." The site is not located in the New York City metro area; therefore, rural dispersion coefficients will be used in the analysis.

6. Good Engineering Practice Stack Height Analysis

USEPA provides specific guidance for calculating Good Engineering Practice (GEP) stack height and for evaluating whether building downwash will occur (USEPA, 2003). GEP stack height is defined by USEPA as the height of the structure plus 1.5 times the lesser of the structure height or projected width. If the stack height for a source is less than the height identified using GEP guidelines, based on the dimensions of nearby buildings, then the potential for building downwash to occur exists and is to be considered in the modeling analysis.

The stacks to be modeled in this analysis will be less than GEP stack height. Therefore, 36 directional building heights and widths data will be estimated using the USEPA Building Profile Input Program, PRIME version (BPIP-PRIME) and incorporated into the AERMOD model.

7. Meteorological Data

The closest National Weather Service (NWS) station to the facility that has the appropriate available data for AERMOD is located in Rome, New York. The Rome NWS station is located approximately 3 kilometers to the Northeast of the facility. Therefore, the Rome, New York NWS station will be utilized for the surface data for this analysis. Upper-air data from Albany, New York will also be used. NYSDEC will provide the necessary pre-processed data for use in the analysis. Data for years 2017-2021 will be used.

8. Receptor Locations

The modeling analysis utilized a set of nested Cartesian grids of receptors with a spacing of 70, 100, and 250 meters extending to a distance of 1, 2, and 5 kilometers, respectively, from the facility. The facility has restricted access with a fence that encloses the entire property; therefore, fence line receptors will be included at a spacing of 25 meters. On-site receptors inside the fence line will be excluded. If maximum impacts occur beyond 1 km from the facility, an additional grid will be placed around the maximum impacts with grid points 70 meters apart.

The current version of AERMAP will be used to calculate the receptor elevations and appropriate hill height values. Ten-meter resolution National Elevation Dataset (NED) data will be used in the analysis.

9. Lakes Environmental Software - Multi-Chem Use

As shown in **Table 1**, it is anticipated that more than 20 different contaminants will need to be included in the modeling. Due to the large number of contaminants, the analysis will be performed using the multichemical (multi-chem) utility of the AERMOD View program by Lakes Environmental SoftwareTM. The purpose of the utility is to streamline the modeling of multiple contaminants by avoiding having to set up separate project files for each contaminant in the analysis.

For each emission source in the analysis, multi-chem creates an AERMOD input file using a normalized emission rate of 1.0 gram per second. The input files are run with AERMOD and produce post files containing the normalized predicted concentrations for each averaging period at each receptor. For example, if the model is run for the 1-hour averaging period, then the post file will contain the normalized 1-hour predicted concentrations for each hour in the meteorological dataset at each receptor. Next, multi-chem takes the source-specific contaminant emission rates, multiplies by the normalized predicted

concentrations in the respective post files, and cumulatively adds the values paired in time and location. The results of the calculations are summarized in contaminant-specific plot files. At the bottom of the plot files will be a summary of the source IDs and emission rates used to generate the plot files.

If the maximum impacts of any of the modeled contaminants are 90% or higher of the respective short-term or annual guideline concentration (SGCs and AGCs, respectively) then those contaminants will be run in AERMOD outside of the multi-chem utility.

10. Modeling Results

A modeling report will be submitted to NYSDEC as part of the facility's ASF permit renewal/modification application. The modeling analysis will provide a comparison of the maximum predicted concentrations to the SGC and AGC values provided in the DAR-1 guidance.

Electronic copies of AERMOD input and output files, BPIP input and output files, AERMAP input and output files, and meteorological data files will be submitted to the modeling group in NYSDEC's Central Office.

TABLES

Table 1 Summary of Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status

Revere Copper Products, Inc Rome, NY

Contaminants	CAS Number	HTAC ^(a) (Y/N)	PB Trigger ^(a) (Y/N)	Facility-Wide Annual Emissions (lb/yr)	Mass Emission Limit ^(b)	Modeling Required (Yes/No)
Propane-1,2-diol	00057-55-6	N	N	605	100	YES
Hexylene glycol	00107-41-5	N	N	216	100	YES
Diethylene glycol	00111-46-6	N	N	7.8	100	NO
2-Butoxyethanol	00111-76-2	N	N	10	100	NO
2-Amino-2-methyl-1-propanol	00124-68-1	N	N	2.3E-02	100	NO
Alkanolamine	00141-43-5	N	N	331	100	YES
Barium oxide	01304-28-5	N	N	33	100	NO
Iron oxide	01309-37-1	N	N	659	100	YES
Magnesium oxide	01309-48-4	N	N	329	100	YES
Nickel oxide	01313-99-1	Y	N	33	10	YES
Zinc oxide	01314-13-2	N	N	1,647	100	YES
Lead oxide	01314-41-6	Y	Y	66	5	YES
Copper oxide	01317-38-0	N	N	4,941	100	YES
Aluminum oxide	01344-28-1	N	N	659	100	YES
1,2-Benzisothiazol-3(2H)-one	02634-33-5	N	N	12	100	NO
2-Methyl-4-isothiazolin-3-one	02682-20-4	N	N	216	100	YES
Hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine	04719-04-4	N	N	3,588	100	YES
Sodium metasilicate	06834-92-0	N	N	48	100	NO
Silicon	07440-21-3	N	N	165	100	YES
Silver	07440-22-4	N	N	2.7	100	NO
Tin	07440-31-5	N	N	5.7	100	NO
Copper	07440-50-8	N	N	2,650	100	YES
Zinc	07440-66-6	N	N	1.7	100	NO
Zinc chloride	07646-85-7	N	N	3.9	100	NO
Hydrogen chloride	07647-01-0	N	N	39	100	NO
Sulfuric acid	07664-93-9	N	N	4,548	100	YES
Hydrogen peroxide	07722-84-1	N	N	97	100	NO
Phosphorus	07723-14-0	N	N	1.1	100	NO
Graphite	07782-42-5	N	N	13,175	100	YES
Magnesium chloride	07786-30-3	N	N	431	100	YES
Petroleum distillates (mineral oil)	08042-47-5	N	N	2.0	100	NO
(Z)-9-Octadecen-1-ol ethoxylated	09004-98-2	N	N	605	100	YES
Nonylphenol, ethoxylated	09016-45-9	N	N	202	100	YES
Sodium phosphate, tribasic	10101-89-0	N	N	19	100	NO
Barium chloride	10361-37-2	N	N	3.9	100	NO
Magnesium dinitrate	10377-60-3	N	N	906	100	YES
Ammonium chloride	12125-02-9	N	N	3.9	100	NO
Tellurium	13494-80-9	N	N	1.3	100	NO
Polyethylene glycol	25322-68-3	N	N	11	100	NO
Fatty alcohol alkoxylate	37335-03-8	N	N	0.11	100	NO
Amines, tallow alkyl, ethoxylated	61791-26-2	N	N	605	100	YES
Distillates, petroleum, hydrotreated light	64742-47-8	N	N	181	100	YES
Hydrotreated heavy naphthenic petroleum oil	64742-52-5	N	N	3,668	100	YES
Hydrotreated light naphthenic petroleum oil	64742-53-6	N	N	0.60	100	NO
Distillates (petroleum), solvent-dewaxed light						
paraffinic	64742-56-9	N	N	973	100	YES
Sulfonic acid, petroleum, sodium salts	68608-26-4	N	N	806	100	YES
Petroleum distillates	Trade Secret #1	N	N	17	100	NO
Petroleum distillates (mineral oil)	Trade Secret #2	N	N	297	100	YES
Base oil Highly refined, low viscosity mineral	Trade Secret #3	N	N	202	100	YES
oils/hydrocarbons	Trade Secret #4	N	N	9,675	100	YES
Alkyl ether carboxylic acid	Trade Secret #5	N	N	605	100	YES
Proprietary emulsifier	Trade Secret #6	N	N	295	100	YES
Azole derivative	Trade Secret #7	N	N	11	100	NO

Table 1

Summary of Part 212 Proposed Environmental Ratings and High Toxicity Air Contaminant (HTAC) Status

Revere Copper Products, Inc Rome, NY

Facility-Wide Mass PB Annual Emission Modeli Contaminants CAS Number HTAC ^(a) Trigger ^(a) Emissions Limit ^(b) Requir (Y/N) (Y/N) (Ib/yr) (Yes/N	uired
---	-------

Notes:

- (a) HTAC and PB Trigger status as provided in 6 NYCRR Part 212-2.2 Table 2.
- (b) Mass Emission Limit (MEL) is based on 6 NYCRR Part 212-2.2 Table 2. For non-HTACs a limit of 100 lb/yr is listed.

Table 2
Summary of Stack Parameters (English Units)

Revere Copper Products, Inc Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate (meters)	Stack Location Y-Coordinate (meters)	Base Elevation (ft)	Stack Height (ft)	Stack Diameter (inches)	Stack Diameter (ft)	Exit Temperature (°F)	Exit Velocity (ft/sec)	Exit Flowrate (acfm)	Stack Orientation
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	(2)	(5)	445	82	36	3.0	(2)	(2)	(5)	(5)
				(a)	(a)					(a)	(a)	(a)	(a)
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	(a)	(a)	445	88	19	1.6	(a)	(a)	(a)	(a)
U-ANNE1	00367	51	1154 Bright Anneal Exhaust	(a)	(a)	445	30	12	1.0	(a)	(a)	(a)	(a)
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	(a)	(a)	445	30	7	0.6	(a)	(a)	(a)	(a)
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	(a)	(a)	445	30	3	0.3	(a)	(a)	(a)	(a)
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	(a)	(a)	445	50	48	4.0	200	60	45,000	(a)
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	(a)	(a)	445	50	48	4.0	200	60	45,000	(a)
U-CAST1	00602	21	Central Vacuum Exhaust	(a)	(a)	445	18	6	0.5	(a)	(a)	(a)	(a)
U-OVER1	00031	51	1715 Overhauler Exhaust	(a)	(a)	445	44	48	4.0	70	40	30,000	(a)
U-ROLL1	00025	51	1724 Z-Mill Exhaust	(a)	(a)	445	44	42	3.5	150	53	30,600	(a)
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	(a)	(a)	445	30	36	3.0	70	53	22,500	(a)
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	(a)	(a)	445	60	72	6.0	70	8	13,000	(a)
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	(a)	(a)	445	80	30	2.5	115	68	20,000	(a)
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	(a)	(a)	445	45	18	1.5	70	6	620	(a)
U-SOLV1	Fugitive	51	Solvent Degreaser Exhaust	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)

Notes:

(a) Stack parameters and locations are currently being collected by Revere.

Table 3 Summary of Stack Parameters (Metric Units) Revere Copper Products, Inc Rome, NY

Emission Unit	Emission Point	Building	Description	Stack Location X-Coordinate (meters)	Stack Location Y-Coordinate (meters)	Base Elevation (m)	Stack Height (m)	Stack Diameter (m)	Exit Temperature (°C)	Exit Velocity (m/sec)	Exit Flowrate (m³/sec)	Stack Orientation
U-ANNE1	00027	51	1738 Strand Anneal Wet Scrubber Exhaust	(a)	(a)	136	25	0.91	(a)	(a)	(a)	(a)
U-ANNE1	00028	51	1740 Heavy Gauge Wet Scrubber Exhaust	(a)	(a)	136	27	0.48	(a)	(a)	(a)	(a)
U-ANNE1	00367	51	1154 Bright Anneal Exhaust	(a)	(a)	136	9	0.30	(a)	(a)	(a)	(a)
U-ANNE1	00369	51	1729-1734 Lee Wilson Exhaust	(a)	(a)	136	9	0.18	(a)	(a)	(a)	(a)
U-ANNE1	00440	51	2383-2386 Ebner Exhaust	(a)	(a)	136	9	0.08	(a)	(a)	(a)	(a)
U-CAST1	00039	21	1799 & 2443 Baghouse Exhaust	(a)	(a)	136	15	1.22	93	18	21	(a)
U-CAST1	00040	21	2056 & 2057 Baghouse Exhaust	(a)	(a)	136	15	1.22	93	18	21	(a)
U-CAST1	00602	21	Central Vacuum Exhaust	(a)	(a)	136	5	0.15	(a)	(a)	(a)	(a)
U-OVER1	00031	51	1715 Overhauler Exhaust	(a)	(a)	136	13	1.22	21	12	14	(a)
U-ROLL1	00025	51	1724 Z-Mill Exhaust	(a)	(a)	136	13	1.07	66	16	14	(a)
U-ROLL1	00026	51	1723 Reversing Mill Exhaust	(a)	(a)	136	9	0.91	21	16	11	(a)
U-ROLL1	00029	51	1721 First Run Down Mill Exhaust	(a)	(a)	136	18	1.83	21	2	6	(a)
U-ROLL1	00030	51	1706 Hot Mill Mist Eliminator Exhaust	(a)	(a)	136	24	0.76	46	21	9	(a)
U-ROLL1	00036	51	1176 Bliss Mill Mist Eliminator Exhaust	(a)	(a)	136	14	0.46	21	2	0	(a)
U-SOLV1	Fugitive	51	Solvent Degreaser Exhaust	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)

Notes:

(a) Stack parameters and locations are currently being collected by Revere.

FIGURES

SITE LOCATION MAP

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY

Revere Copper Products, Inc. 1 Revere Park Rome, NY 13440

RAMBOLL

July 18, 2023

David Ozog Environmental Manager Revere Copper Products Inc. One Revere Park Rome, NY 13440 315-338-2160 (direct) DOzog@reverecopper.com

RE: Investigative Testing
Five (5) Process Exhausts
Alliance Project No. 2023-2747

Dear Mr. Ozog,

Alliance Technical Group, LLC (Alliance) conducted investigative testing at the Revere Copper Products facility located in Rome, New York. Testing concluded of determining the emission rates of filterable and condensable particulate matter (PM) for five (5) process exhausts, with additional copper (Cu) testing at the exhaust of the 1515 Overhauler, at the facility.

Please find attached summaries of the testing results along with a copy of the field data collected during the testing. Please contact me at (315) 289-9433 or via email at jeff.gorman@alliancetg.com if you have any questions or need additional information.

Sincerely,

Alliance Technical Group, LLC

Jeff Gorman, QSTI

Operations Manager- New York

Enclosure

Laboratory Reports can be found in the full test report in Exhibit 3 of the Renewal Application

Table 1
Summary of Results – 2056 Melting Furnace

Run Number	Run 1	Run 2	Run 3	Average
Date	6/1/23	6/2/23	6/2/23	
Volumetric Flow Rate				
Stack Conditions, acfm	37,889	37,403	37,572	37,621
Stack Conditions dscfm	34,603	34,469	34,238	34,437
Filterable Particulate Matter Data				
Concentration, grain/dscf	0.0022	0.0039	0.0030	0.0030
Emission Rate, lb/hr	0.64	1.2	0.88	0.89
Condensable Particulate Matter Data				
Concentration, grain/dscf	2.7E-04	5.3E-04	3.2E-04	3.7E-04
Emission Rate, lb/hr	0.079	0.16	0.095	0.11

Table 2
Summary of Results – 2443 Melting Furnace

Run Number	Run 1	Run 2	Run 3	Average	
Date	6/2/23	6/2/23	6/2/23		
Volumetric Flow Rate					
Stack Conditions, acfm	36,188	36,524	36,786	36,499	
Stack Conditions dscfm	33,277	33,054	33,130	33,154	
Filterable Particulate Matter Data					
Concentration, grain/dscf	8.8E-04	7.6E-04	4.8E-04	7.1E-04	
Emission Rate, lb/hr	0.25	0.22	0.14	0.20	
Condensable Particulate Matter Data					
Concentration, grain/dscf	4.8E-04	4.3E-04	4.8E-04	4.7E-04	
Emission Rate, lb/hr	0.14	0.12	0.14	0.13	

Table 3
Summary of Results – 1715 Overhauler

Run Number	Run 1	Run 2	Run 3	Average
Date	5/30/23	5/31/23	5/31/23	
Volumetric Flow Rate				
Stack Conditions, acfm	39,813	39,971	36,697	38,827
Stack Conditions dscfm	39,075	38,880	35,533	37,829
Filterable Particulate Matter Data				
Concentration, grain/dscf	0.0035	0.013	0.0064	0.0075
Emission Rate, lb/hr	1.2	4.2	1.9	2.4
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0022	0.0017	7.9E-04	0.0016
Emission Rate, lb/hr	0.75	0.55	0.24	0.52
Copper Data				
Concentration, ug/dscm	2,538			2,538
Emission Rate, lb/hr	0.37			0.37

Table 4
Summary of Results – 1723 Reversing Mill

Run Number	Run 1	Run 2	Run 3	Average
Date	5/31/23	6/1/23	6/1/23	
Volumetric Flow Rate				
Stack Conditions, acfm	25,441	23,155	22,064	23,554
Stack Conditions dscfm	24,404	21,982	20,736	22,374
Filterable Particulate Matter Data				
Concentration, grain/dscf	8.7E-04	9.5E-04	6.4E-04	8.2E-04
Emission Rate, lb/hr	0.18	0.18	0.11	0.16
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0011	0.0012	9.0E-04	0.0011
Emission Rate, lb/hr	0.23	0.22	0.16	0.20

Table 5
Summary of Results – 1721 First Run Down Mill

Run Number	Run 1	Run 2	Run 3	Average	
Date	5/31/23	6/1/23	6/1/23		
Volumetric Flow Rate					
Stack Conditions, acfm	60,905	61,226	61,870	61,334	
Stack Conditions dscfm	57,917	58,539	58,671	58,376	
Filterable Particulate Matter Data					
Concentration, grain/dscf	6.6E-04	5.4E-04	3.7E-04	5.2E-04	
Emission Rate, lb/hr	0.33	0.27	0.19	0.26	
Condensable Particulate Matter Data					
Concentration, grain/dscf	0.0018	0.0010	6.5E-04	0.0011	
Emission Rate, lb/hr	0.88	0.51	0.33	0.57	

Location Revere Copper - Rome, NY
Source 2443 Metling Furnace Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/2/23	6/2/23	6/2/23	
Start Time		7:50	9:42	11:39	
Stop Time		8:20	11:12	13:09	
Run Time, min	(θ)	90.0	90.0	90.0	90.0
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.01	29.99	30.00	30.00
Meter Correction Factor	(Y)	1.003	1.003	1.003	1.003
Orifice Calibration Value	(ΔH @)	1.850	1.850	1.850	1.850
Meter Volume, ft ³	(Vm)	57.339	57.472	59.538	58.116
Meter Temperature, °F	(Tm)	69.2	78.5	92.1	79.9
Meter Temperature, °R	(Tm)	528.9	538.2	551.8	539.6
Meter Orifice Pressure, in. WC	(ΔH)	1.333	1.350	1.400	1.361
Volume H ₂ O Collected, mL	(Vlc)	19.1	20.4	24.7	21.4
Nozzle Diameter, in	(Dn)	0.212	0.212	0.212	0.212
Area of Nozzle, ft ²	(An)	0.0002	0.0002	0.0002	0.0002
Filterable PM Mass, mg	(Mn)	3.3	<u>2.8</u>	<u>1.8</u>	2.6
Condensable PM Mass, mg	(M_{CPM})	1.8	1.6	1.8	1.7
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	57.740	56.839	57.459	57.346
Standard Water Volume, ft ³	(Vwstd)	0.901	0.962	1.165	1.009
Moisture Fraction Measured	(BWSmsd)	0.015	0.017	0.020	0.017
Moisture Fraction @ Saturation	(BWSsat)	0.080	0.100	0.103	0.094
Moisture Fraction	(BWS)	0.015	0.017	0.020	0.017
Meter Pressure, in Hg	(Pm)	30.11	30.09	30.10	30.10
Volume at Nozzle, ft ³	(Vn)	62.789	62.805	63.797	63.13
sokinetic Sampling Rate, (%)	(I)	98.8	97.9	98.8	98.5
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	0.8	-0.4	0.0	0.1
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	8.8E-04	7.6E-04	4.8E-04	7.1E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.25	0.22	0.14	0.20
Condensable PM Concentration, grain/dscf	(C _{CPM})	4.8E-04	4.3E-04	4.8E-04	4.7E-04
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.14	0.12	0.14	0.13
Total PM Concentration, grain/dscf	(C _{TPM})	0.0014	0.0012	9.7E-04	0.0012
Total PM Emission Rate, lb/hr	(ER _{TPM})	0.39	0.34	0.27	0.33

Underlined values contain one or more fractions below MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY

Source 2443 Metling Furnace

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/2/23	6/2/23	6/2/23	
Start Time		7:50	9:42	11:39	
Stop Time		8:20	11:12	13:09	
Run Time, min		90.0	90.0	90.0	90.0
,	VELOCITY	HEAD, in.	WC		
Point 1		0.70	0.58	0.64	0.64
Point 2		0.69	0.66	0.66	0.67
Point 3		0.68	0.69	0.69	0.69
Point 4		0.68	0.72	0.72	0.71
Point 5		0.68	0.78	0.78	0.75
Point 6		0.68	0.84	0.84	0.79
Point 7		0.68	0.78	0.78	0.75
Point 8		0.68	0.70	0.70	0.69
Point 9		0.68	0.54	0.54	0.59
Point 10		0.54	0.54	0.54	0.54
Point 11		0.70	0.70	0.70	0.70
Point 12		0.76	0.70	0.70	0.72
Point 13		0.62	0.62	0.62	0.62
Point 14		0.64	0.64	0.64	0.64
Point 15		0.72	0.72	0.72	0.72
Point 16		0.76	0.76	0.76	0.76
Point 17		0.80	0.80	0.80	0.80
Point 18		0.80	0.80	0.80	0.80
Point 19		0.76	0.76	0.76	0.76
Point 20		0.68	0.68	0.68	0.68
Point 21		0.56	0.56	0.68	0.60
Point 22		0.58	0.58	0.58	0.58
Point 23		0.66	0.68	0.68	0.67
Point 24		0.70	0.68	0.68	0.69
	CALCUL	ATED DAT			0.00
Square Root of ΔP, (in. WC) ^{1/2}	(ΔP)	0.826	0.828	0.833	0.829
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.01	29.99	30.00	30.00
Static Pressure, in. WC	(Pg)	0.21	0.21	0.21	0.21
Stack Pressure, in. Hg	(Ps)	30.03	30.01	30.02	30.02
Stack Cross-sectional Area, ft ²	(As)	12.57	12.57	12.57	12.57
Temperature, °F	(Ts)	107.3	115.3	116.4	113.0
Temperature, °R	(Ts)	567.0	575.0	576.1	572.698
Moisture Fraction Measured	(BWSmsd)	0.015	0.017	0.020	0.017
Moisture Fraction @ Saturation	(BWSsat)	0.080	0.100	0.103	0.094
Moisture Fraction	(BWS)	0.015	0.017	0.020	0.017
O ₂ Concentration, %	(O_2)	18.1	18.1	18.1	18.1
CO ₂ Concentration, %	(CO_2)	2.0	2.0	2.0	2.0
Molecular Weight, lb/lb-mole (dry)	(Md)	29.04	29.04	29.04	29.04
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.87	28.86	28.82	28.85
Velocity, ft/sec	(Vs)	48.0	48.4	48.8	48.4
, ·-	VOLUMETR				
At Stack Conditions, acfm	(Qa)	36,188	36,524	36,786	36,499
At Standard Conditions, dscfm	(Qs)	33,277	33,054	33,130	33,154

Emission Calculations

Location Revere Copper - Rome, NY
Source 2056 Metling Furnace
Project No. AST-2023-2747

Parameter	PM/CPM
-----------	--------

Run Number		Run 1	Run 2	Run 3	Average
Date		6/1/23	6/2/23	6/2/23	
Start Time		13:54	8:10	13:35	
Stop Time		18:04	13:12	17:46	
Run Time, min	(θ)	240.0	240.0	240.0	240.0
	INPUT DATA	4			
Barometric Pressure, in. Hg	(Pb)	30.11	29.93	29.93	29.99
Meter Correction Factor	(Y)	0.983	0.983	0.983	0.983
Orifice Calibration Value	(ΔH @)	1.866	1.866	1.866	1.866
Meter Volume, ft ³	(Vm)	184.136	181.174	183.960	183.090
Meter Temperature, °F	(Tm)	96.5	87.1	97.7	93.8
Meter Temperature, °R	(Tm)	556.2	546.8	557.3	553.4
Meter Orifice Pressure, in. WC	(ΔH)	1.794	1.773	1.782	1.783
Volume H ₂ O Collected, mL	(Vlc)	34.6	46.6	51.5	44.2
Nozzle Diameter, in	(Dn)	0.220	0.220	0.220	0.220
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	24.2	44.0	33.6	33.9
Condensable PM Mass, mg	(M_{CPM})	3.0	5.9	3.6	4.2
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	173.571	172.671	172.014	172.752
Standard Water Volume, ft ³	(Vwstd)	1.632	2.198	2.429	2.086
Moisture Fraction Measured	(BWSmsd)	0.009	0.013	0.014	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.105	0.078	0.092	0.092
Moisture Fraction	(BWS)	0.009	0.013	0.014	0.012
Meter Pressure, in Hg	(Pm)	30.24	30.06	30.06	30.12
Volume at Nozzle, ft ³	(Vn)	190.051	187.363	188.760	188.72
Isokinetic Sampling Rate, (%)	(I)	97.4	97.3	97.6	97.4
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	0.6	0.2	0.4	0.4
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	0.0022	0.0039	0.0030	0.0030
Filterable PM Emission Rate, lb/hr	(PMR)	0.64	1.2	0.88	0.89
Condensable PM Concentration, grain/dscf	(C _{CPM})	2.7E-04	5.3E-04	3.2E-04	3.7E-04
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.079	0.16	0.095	0.11
Total PM Concentration, grain/dscf	(C _{TPM})	0.0024	0.0045	0.0033	0.0034
Total PM Emission Rate, lb/hr	(ER_{TPM})	0.72	1.3	1.0	1.0

Location Revere Copper - Rome, NY

Source 2056 Metling Furnace

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/1/23	6/2/23	6/2/23	
Start Time		13:54	8:10	13:35	
Stop Time		18:04	13:12	17:46	
Run Time, min		240.0	240.0	240.0	240.0
	VELOCITY	HEAD, in. V	WC		
Point 1		0.72	0.70	0.73	0.72
Point 2		0.72	0.70	0.73	0.72
Point 3		0.71	0.69	0.74	0.71
Point 4		0.71	0.70	0.74	0.72
Point 5		0.75	0.69	0.73	0.72
Point 6		0.69	0.67	0.73	0.70
Point 7		0.70	0.69	0.71	0.70
Point 8		0.72	0.65	0.73	0.70
Point 9		0.76	0.70	0.74	0.73
Point 10		0.76	0.70	0.73	0.73
Point 11		0.78	0.75	0.75	0.76
Point 12		0.79	0.77	0.74	0.77
Point 13		0.85	0.78	0.72	0.78
Point 14		0.83	0.78	0.71	0.77
Point 15		0.88	0.82	0.78	0.83
Point 16		0.85	0.80	0.79	0.81
Point 17		0.85	0.83	0.80	0.83
Point 18		0.85	0.85	0.83	0.84
Point 19		0.85	0.85	0.85	0.85
Point 20		0.88	0.85	0.87	0.87
Point 21		0.86	0.85	0.88	0.86
Point 22		0.86	0.84	0.84	0.85
Point 23		0.83	0.85	0.85	0.84
Point 24		0.84	0.86	0.85	0.85
1 0 m 2 i	CALCUL	ATED DATA		0.02	0.02
Square Root of ΔP, (in. WC) ^{1/2}	(ΔP)	0.879	0.873	0.872	0.875
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.11	29.93	29.93	29.99
Static Pressure, in. WC	(Pg)	0.60	0.55	0.60	0.58
Stack Pressure, in. Hg	(Ps)	30.15	29.97	29.97	30.03
Stack Cross-sectional Area, ft ²	(As)	12.31	12.31	12.31	12.31
Temperature, °F	(Ts)	117.2	106.7	112.4	112.1
Temperature, °R	(Ts)	576.9	566.3	572.0	571.746
Moisture Fraction Measured	(BWSmsd)	0.009	0.013	0.014	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.105	0.078	0.092	0.092
Moisture Fraction	(BWS)	0.009	0.013	0.014	0.012
O ₂ Concentration, %	(O_2)	18.7	18.7	18.8	18.7
CO ₂ Concentration, %	(CO_2)	2.0	2.0	2.0	2.0
Molecular Weight, lb/lb-mole (dry)	(Md)	29.07	29.07	29.07	29.07
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.97	28.93	28.92	28.94
Velocity, ft/sec	(Vs)	51.3	50.7	50.9	51.0
releasing, to see	VOLUMETR			50.7	51.0
At Stack Conditions, acfm	(Qa)	37,889	37,403	37,572	37,621
At Standard Conditions, dscfm	(Qa) (Qs)	34,603	34,469	34,238	34,437

Location Revere Copper - Rome, NY
Source 1721 First Run Down Mill

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		14:35	7:50	9:50	
Stop Time		16:03	9:15	11:15	
Run Time, min	(θ)	80.0	80.0	80.0	80.0
	INPUT DATA	A			
Barometric Pressure, in. Hg	(Pb)	30.15	30.10	30.10	30.12
Meter Correction Factor	(Y)	1.003	1.003	1.003	1.003
Orifice Calibration Value	(ΔH @)	1.850	1.850	1.850	1.850
Meter Volume, ft ³	(Vm)	55.620	53.918	55.245	54.928
Meter Temperature, °F	(Tm)	91.7	70.4	82.0	81.4
Meter Temperature, °R	(Tm)	551.4	530.0	541.7	541.0
Meter Orifice Pressure, in. WC	(ΔH)	1.503	1.503	1.541	1.516
Volume H ₂ O Collected, mL	(Vlc)	7.4	18.1	17.5	14.3
Nozzle Diameter, in	(Dn)	0.247	0.247	0.247	0.247
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	2.3	<u>1.9</u>	1.3	1.8
Condensable PM Mass, mg	(M_{CPM})	6.2	3.6	2.3	4.0
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	53.998	54.360	54.508	54.288
Standard Water Volume, ft ³	(Vwstd)	0.349	0.854	0.825	0.676
Moisture Fraction Measured	(BWSmsd)	0.006	0.015	0.015	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.056	0.042	0.049	0.049
Moisture Fraction	(BWS)	0.006	0.015	0.015	0.012
Meter Pressure, in Hg	(Pm)	30.26	30.21	30.21	30.23
Volume at Nozzle, ft ³	(Vn)	56.783	56.853	57.478	57.04
sokinetic Sampling Rate, (%)	(I)	99.0	98.6	98.7	98.8
OGM Calibration Check Value, (+/- 5%)	(Y_{qa})	1.2	0.1	0.2	0.5
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	6.6E-04	5.4E-04	3.7E-04	5.2E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.33	0.27	0.19	0.26
Condensable PM Concentration, grain/dscf	(C_{CPM})	0.0018	0.0010	6.5E-04	0.0011
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.88	0.51	0.33	0.57
Total PM Concentration, grain/dscf	(C _{TPM})	0.0024	0.0016	0.0010	0.0017
Total PM Emission Rate, lb/hr	(ER _{TPM})	1.2	0.78	0.51	0.83

Underlined values were below the MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY
Source 1721 First Run Down Mill

Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		14:35	7:50	9:50	
Stop Time		16:03	9:15	11:15	
Run Time, min		80.0	80.0	80.0	80.0
	VELOCITY	HEAD, in. \	WC		
Point 1		0.39	0.47	0.48	0.45
Point 2		0.40	0.47	0.48	0.45
Point 3		0.38	0.49	0.48	0.45
Point 4		0.39	0.45	0.45	0.43
Point 5		0.39	0.43	0.44	0.42
Point 6		0.38	0.39	0.41	0.39
Point 7		0.38	0.36	0.37	0.37
Point 8		0.36	0.36	0.34	0.35
Point 9		0.44	0.35	0.38	0.39
Point 10		0.45	0.38	0.39	0.41
Point 11		0.42	0.39	0.39	0.40
Point 12		0.40	0.40	0.39	0.40
Point 13		0.39	0.38	0.40	0.39
Point 14		0.37	0.38	0.39	0.38
Point 15		0.36	0.36	0.35	0.36
Point 16		0.35	0.34	0.34	0.34
	CALCUL	ATED DATA	A		
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.625	0.631	0.635	0.630
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.15	30.10	30.10	30.12
Static Pressure, in. WC	(Pg)	-0.20	-0.20	-0.20	-0.20
Stack Pressure, in. Hg	(Ps)	30.14	30.09	30.09	30.10
Stack Cross-sectional Area, ft ²	(As)	28.27	28.27	28.27	28.27
Temperature, °F	(Ts)	95.6	86.7	91.5	91.3
Temperature, °R	(Ts)	555.3	546.4	551.2	550.941
Moisture Fraction Measured	(BWSmsd)	0.006	0.015	0.015	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.056	0.042	0.049	0.049
Moisture Fraction	(BWS)	0.006	0.015	0.015	0.012
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.77	28.67	28.67	28.70
Velocity, ft/sec	(Vs)	35.9	36.1	36.5	36.2
	VOLUMETR				
At Stack Conditions, acfm	(Qa)	60,905	61,226	61,870	61,334
At Standard Conditions, dscfm	(Qs)	57,917	58,539	58,671	58,376

Location Revere Copper - Rome, NY
Source 1723 Reversing Mill
Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		10:40	12:55	15:58	
Stop Time		12:17	14:05	17:05	
Run Time, min	(θ)	60.0	60.0	57.5	59.2
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.20	30.12	30.05	30.12
Meter Correction Factor	(Y)	0.997	0.997	0.997	0.997
Orifice Calibration Value	(ΔH @)	1.568	1.568	1.568	1.568
Meter Volume, ft ³	(Vm)	51.374	47.447	43.281	47.367
Meter Temperature, °F	(Tm)	89.5	94.9	96.9	93.8
Meter Temperature, °R	(Tm)	549.1	554.6	556.6	553.4
Meter Orifice Pressure, in. WC	(ΔH)	2.046	1.683	1.504	1.745
Volume H ₂ O Collected, mL	(Vlc)	18.5	14.4	13.3	15.4
Nozzle Diameter, in	(Dn)	0.215	0.215	0.215	0.215
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	<u>2.8</u>	2.8	<u>1.7</u>	2.4
Condensable PM Mass, mg	(M_{CPM})	3.5	3.5	2.4	3.1
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	49.926	45.496	41.238	45.554
Standard Water Volume, ft ³	(Vwstd)	0.872	0.679	0.627	0.726
Moisture Fraction Measured	(BWSmsd)	0.017	0.015	0.015	0.016
Moisture Fraction @ Saturation	(BWSsat)	0.041	0.050	0.057	0.049
Moisture Fraction	(BWS)	0.017	0.015	0.015	0.016
Meter Pressure, in Hg	(Pm)	30.35	30.24	30.16	30.25
Volume at Nozzle, ft ³	(Vn)	52.047	47.924	43.878	47.95
sokinetic Sampling Rate, (%)	(I)	95.6	96.7	97.0	96.4
OGM Calibration Check Value, (+/- 5%)	(Y_{qa})	-1.8	-0.5	0.1	-0.7
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	8.7E-04	9.5E-04	6.4E-04	8.2E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.18	0.18	0.11	0.16
Condensable PM Concentration, grain/dscf	(C _{CPM})	0.0011	0.0012	9.0E-04	0.0011
Condensable PM Emission Rate, lb/hr	(ER _{CPM})	0.23	0.22	0.16	0.20
Total PM Concentration, grain/dscf	(C _{TPM})	0.0019	0.0021	0.0015	0.0019
Total PM Emission Rate, lb/hr	(ER _{TPM})	0.41	0.40	0.27	0.36

Underlined values contain one or more fractions below MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY

Source 1723 Reversing Mill

Project No. AST-2023-2747
Parameter PM/CPM

ELOCITY	Run 1 5/31/23 10:40 12:17 60.0 HEAD, in. 1.30 1.30 1.30 1.10 1.10	1.10 1.10 1.10 1.10	Run 3 6/1/23 15:58 17:05 57.5 1.10 1.10 1.10 1.10 1.10	Average 59.2 1.17 1.17 1.17		
ELOCITY	10:40 12:17 60.0 YHEAD, in. 1.30 1.30 1.30 1.30 1.10	12:55 14:05 60.0 WC 1.10 1.10 1.10 1.10	15:58 17:05 57.5 1.10 1.10 1.10	59.2 1.17 1.17		
ELOCITY	12:17 60.0 THEAD, in. 1.30 1.30 1.30 1.30 1.10	14:05 60.0 WC 1.10 1.10 1.10 1.10	17:05 57.5 1.10 1.10 1.10	59.2 1.17 1.17		
ELOCITY	60.0 THEAD, in. 1.30 1.30 1.30 1.30 1.10	60.0 WC 1.10 1.10 1.10 1.10 1.10	57.5 1.10 1.10 1.10	1.17 1.17		
ELOCITY	1.30 1.30 1.30 1.30 1.30 1.30	1.10 1.10 1.10 1.10 1.10	1.10 1.10 1.10	1.17 1.17		
	1.30 1.30 1.30 1.30 1.30	1.10 1.10 1.10 1.10	1.10 1.10	1.17		
	1.30 1.30 1.30 1.10	1.10 1.10 1.10	1.10 1.10	1.17		
	1.30 1.30 1.10	1.10 1.10	1.10			
	1.30 1.10	1.10				
	1.10		1.10	1.17		
		1.10	1.10	1.10		
	1.10			1.10		
				1.02		
				1.02		
				1.02		
				0.84		
				0.79		
				0.79		
				0.91		
				0.91		
				0.89		
				0.89		
				0.86		
				0.89		
				0.89		
				0.86		
				0.83		
				0.83		
				0.82		
			0.00			
			0.902	0.969		
				0.840		
				30.12		
				0.16		
				30.14		
				7.07		
				91.4		
				551.045		
				0.016		
				0.016		
				0.049		
` /				20.9		
				0.0		
				28.84		
				28.67		
			32.0	55.5		
				23,554 22,374		
	(ΔP) (Cp) (Pb) (Pg) (Ps) (As) (Ts) WSmsd) 3WSsat) (BWS) (O ₂) (CO ₂) (Md) (Ms) (Vs)	1.10 1.10 1.10 1.10 0.85 0.85 0.85 0.85 1.20 1.20 1.20 1.20 1.10 1.10 1.10 1.10	1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	1.10 1.10 1.10 0.86 1.10 1.10 0.87 1.10 1.10 0.87 1.10 1.10 0.87 0.85 0.79 0.87 0.85 0.79 0.74 0.85 0.80 0.71 1.20 0.80 0.74 1.20 0.81 0.72 1.20 0.80 0.68 1.20 0.80 0.66 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.10 0.80 0.67 1.05 0.78 0.67 1.05 0.78 0.67 1.05 0.80 0.61 1.00 0.80 0.66 1.00 0.80 CALCULATED DATA (ΔP) 1.052 0.952 0.902 (Cp) 0.840 0.840 0.840 (Pb) 30.20 30.12 30.05 (Pg) 0.16 0.16 0.16 (Ps) 30.21 30.13 30.06 (As) 7.07 7.07 7.07 (Ts) 86.3 91.9 96.0 (Ts) 545.9 551.5 555.7 WSmsd) 0.017 0.015 0.015 3WSsat) 0.041 0.050 0.057 (BWS) 0.017 0.015 0.015 3WSsat) 0.041 0.050 0.057 (BWS) 0.017 0.015 0.015 3WSsat) 0.041 0.050 0.057 (BWS) 0.017 0.015 0.015 (O2) 20.9 20.9 20.9 20.9 (CO2) 0.0 0.0 0.0 0.0 (Md) 28.84 28.84 28.84 (Ms) 28.65 28.68 28.67 (Vs) 60.0 54.6 52.0 LUMETRIC FLOW RATE (Qa) 25,441 23,155 22,064		

Location Revere Copper - Rome, NY
Source 1715 Overhauler
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/30/23	5/31/23	5/31/23	
Start Time		14:41	10:21	12:19	
Stop Time		9:55	11:36	13:24	
Run Time, min	(θ)	60.0	60.0	60.0	60.0
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.16	30.15	30.15	30.15
Meter Correction Factor	(Y)	0.983	0.983	0.983	0.983
Orifice Calibration Value	(ΔH @)	1.866	1.866	1.866	1.866
Meter Volume, ft ³	(Vm)	62.536	64.137	59.104	61.926
Meter Temperature, °F	(Tm)	79.0	84.1	88.7	84.0
Meter Temperature, °R	(Tm)	538.7	543.8	548.4	543.6
Meter Orifice Pressure, in. WC	(ΔΗ)	3.613	3.612	3.133	3.453
Volume H ₂ O Collected, mL	(Vlc)	35.5	35.2	36.1	35.6
Nozzle Diameter, in	(Dn)	0.250	0.250	0.250	0.250
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	14.0	50.8	23.5	29.4
Condensable PM Mass, mg	(M_{CPM})	8.9	6.7	2.9	6.2
Copper Mass, ug	(M_{Cu})	4,400.0			4,400.0
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	61.230	62.190	56.765	60.062
Standard Water Volume, ft ³	(Vwstd)	1.676	1.660	1.702	1.680
Moisture Fraction Measured	(BWSmsd)	0.027	0.026	0.029	0.027
Moisture Fraction @ Saturation	(BWSsat)	0.023	0.026	0.027	0.026
Moisture Fraction	(BWS)	0.023	0.026	0.027	0.026
Meter Pressure, in Hg	(Pm)	30.43	30.42	30.38	30.41
Volume at Nozzle, ft ³	(Vn)	62.592	63.934	58.726	61.75
Isokinetic Sampling Rate, (%)	(I)	96.3	98.3	98.1	97.6
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	-1.6	-0.1	-0.1	-0.6
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	0.0035	0.013	0.0064	0.0075
Filterable PM Emission Rate, lb/hr	(PMR)	1.2	4.2	1.9	2.4
Condensable PM Concentration, grain/dscf	(C_{CPM})	0.0022	0.0017	7.9E-04	0.0016
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.75	0.55	0.24	0.52
Total PM Concentration, grain/dscf	(C_{TPM})	0.0058	0.014	0.0072	0.0091
Total PM Emission Rate, lb/hr	(ER_{TPM})	1.9	4.8	2.2	3.0
Copper Concentration, ug/dscm	(C_{Cu})	2,538			2,538
Copper Emission Rate, lb/hr	(ER_{Cu})	0.37			0.37

Location Revere Copper - Rome, NY

Source 1715 Overhauler
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/30/23	5/31/23	5/31/23	
Start Time		14:41	10:21	12:19	
Stop Time		9:55	11:36	13:24	
Run Time, min		60.0	60.0	60.0	60.0
,	VELOCITY	HEAD, in. V			
Point 1		0.94	0.86	1.10	0.97
Point 2		0.96	0.79	1.10	0.95
Point 3		0.68	0.77	1.00	0.82
Point 4		0.83	0.77	1.00	0.87
Point 5		0.86	0.77	1.05	0.89
Point 6		0.78	0.80	1.05	0.88
Point 7		1.00	0.77	1.00	0.92
Point 8		1.00	0.75	0.55	0.77
Point 9		1.00	0.90	0.59	0.83
Point 10		0.95	0.88	0.50	0.78
Point 11		1.00	0.78	0.56	0.78
Point 12		1.05	0.80	0.50	0.78
Point 13		0.50	0.80	1.05	0.78
Point 14		0.56	0.30	1.05	0.78
Point 15		0.50	1.00	1.03	
					0.83
Point 16		0.48	1.05	1.00	0.84
Point 17		1.00	1.00	1.05	1.02
Point 18		1.10	1.10	0.52	0.91
Point 19		1.10	1.10	0.42	0.87
Point 20		1.00	0.95	0.46	0.80
Point 21		1.05	0.95	0.45	0.82
Point 22		1.00	0.90	0.46	0.79
Point 23		1.05	0.95	0.46	0.82
Point 24		1.05	1.00	0.46	0.84
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ATED DATA			
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.938	0.939	0.860	0.912
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.16	30.15	30.15	30.15
Static Pressure, in. WC	(Pg)	-0.50	-0.60	-0.65	-0.58
Stack Pressure, in. Hg	(Ps)	30.12	30.11	30.10	30.11
Stack Cross-sectional Area, ft ²	(As)	12.57	12.57	12.57	12.57
Temperature, °F	(Ts)	69.0	72.0	73.6	71.5
Temperature, °R	(Ts)	528.6	531.7	533.3	531.184
Moisture Fraction Measured	(BWSmsd)	0.027	0.026	0.029	0.027
Moisture Fraction @ Saturation	(BWSsat)	0.023	0.026	0.027	0.026
Moisture Fraction	(BWS)	0.023	0.026	0.027	0.026
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.58	28.56	28.54	28.56
Velocity, ft/sec	(Vs)	52.8	53.0	48.7	51.5
**	VOLUMETR				
At Stack Conditions, acfm	(Qa)	39,813	39,971	36,697	38,827
At Standard Conditions, dscfm	(Qs)	39,075	38,880	35,533	37,829

EXHIBIT H-1 REVERE COMMISSIONING PLAN

Coreless Furnace Commissioning Plan

Last Updated: 6/29/2023

1 Pre-Commissioning Plan

To prepare for the commissioning of the furnace, the required vendors will need to be contacted to assist with start-up. Our first call will be to our furnace vendor, Inductotherm. They will need to mobilize a team for the commissioning. The installation vendor, EMSCO, will also need to be on-site in case any install related issues arise.

After contacting the necessary vendors to learn of their availability, a commissioning date will be set. Revere will ensure our team has sufficient coverage in terms of safety, maintenance, supervision, production, engineering, training, and process engineering. Revere will also confirm that the final tasks needed for running the furnace are completed. This includes safety precautions such as fence grounding, baghouse damper functionality, bus bar protection, and lock out tag out.

2 Commissioning Timeline

3 Commissioning

Inductotherm will need to be on-site first, for a day or two, to perform preliminary testing and observe equipment functionality. When Inductotherm is completed with testing, our refractory supplier, St. Gobain and their team will lead us on the first lining of the furnace. The lining also involves Gradmatic, who will train us to the functionality of the lining equipment. After the lining is complete, we will sinter the refractory and put the first charge of metal in the furnace. The process will be videotaped to assist with training and documentation. The first few weeks will be filled with training, documentation, quality evaluations, and general tuning of the new equipment. The auto tilt-pour control, refractory scanning tool and leak detection will need to be tested for the first time. The furnace controls and charging

system will be tested and adjusted as well. All computer software will be turned on and configured so we can see the status of the various systems, as well as monitor our production variables. During the first few weeks, it is expected that we will pour from the new furnace occasionally.

4 Site Acceptance Test

As part of the commissioning, and while working through the various issues, a complete site acceptance test will be performed. The intent of this test is to ensure every part of the system has been received, installed, and is functioning correctly per the contract. The table below lists all systems and tests we expect to perform in the first few weeks.

System	#	Check Point
General	1	Ensure all items identified on PO are present/delivered.
	2	Review overall machine layout and key components.
	3	Review overall dimensions per print.
	4	Inspect general workmanship (connections, welds, water, etc)
	5	Review Documentation (data sheets, drawings, certs, manuals)
	6	Review electrical connection type, size, and location per print.
	7	Review hydraulic connections
	8	Review other connections (i.e. water)
	9	The furnace has the ability to melt 33,000 lbs/hour (after the second heat).
Electrical Power	10	Transformers (form, fit, function)
	11	Transformers Soak Test
	12	Power Supply (form, fit, function)
	13	Check electrical connections with Infrared
Furnace	14	Demonstrate front tilt
	15	Demonstrate back tilt
	16	Demonstrate emergency set back
	17	Demonstrate emergency e-stop
	18	Verify load cells function correctly and read the correct weights within specification range.
	19	Demonstrate furnace reaches 7,000 kW
	20	Pressure test and/or demonstrate coil is watertight
	21	Shunts
	22	J-leads
	23	Demonstrate furnace lid actuation
	24	Verify integrity of the duct work connection to the furnace hood
	25	Verify fumes are being collected by the hood and exhaust system. Demonstrate dampers are
		working correctly during front and back tilt.
	26	Demonstrate various types of scrap load and melt in the furnace as originally described.
Furnace Controls & Software	27	Demonstrate all control functions from all control stations.
	28	Inspect control components for integrity.
	29	Inspect cabinets for hazard and dust integrity
	30	Demonstrate safety interlocks are functioning
	31	Test/Demonstrate Melt Manager Plus software
	32	Demonstrate all programs work as expected (sinter, charge, pour, melt, hold, etc)

	33	Ensure all interfaces with systems are working correctly (vibratory conveyor, tilt pour control, furnace, temperature reader, scoreboard read-out, etc)
	34	Verify all data is accessible to Revere (Key metrics)
	35	Verify all alarms are working correctly and test.
	36	Review user interface and ease of navigation
iSense	37	Inspect sensors for integrity and functionality.
isense .	38	Ensure all data is accessible to Revere
	39	Ensure all data is accessible to Revere Ensure all data is accessible to mobile devices
	40	
	40	Demonstrate functions by disconnecting something like a capacitor so it creates a fault, the system finds it, and directs appropriate inspection/work.
	41	Review user interface and ease of navigation
Hydraulics	42	Hydraulic components are leak free
	43	Hydraulic system is leak free
	44	Demonstrate all hydraulic systems meet operational criteria.
	45	Demonstrate all redundant pumps and valves function correctly.
	46	Demonstrate the oil coolers maintain the correct temperature set-points.
	47	Demonstrate all proportional/servo valves are tuned and functioning properly. Verify the hydraulics are responsive and not chattering from entrapped air within the system.
	48	Verify appropriate isolation and lock out valves
Water System	49	Ensure all systems are free of leaks.
	50	Ensure all systems are maintaining temperature set-points.
	51	Demonstrate all emergency city water valves function properly.
	52	Demonstrate all fans and motors work properly
	53	Demonstrate the misting works properly
	54	Ensure both loops work - furnace and power
	55	Demonstrate pump changeover
	56	Demonstrate emergency generator operation
Tilt/Pour Control	57	Demonstrate the functionality of the system
	58	Ensure feedback to the furnace is correct
	59	Ensure probes work correctly
	60	Ensure laser is working correctly
Leak Detection	61	Demonstrate EMMLD and the plug leak detection system are functioning correctly.
Push-out Device	62	Demonstrate the refractory push-out device works in an efficient manner.
Safety	63	Ensure all safety features are functional.
	64	Perform safety risk assessment and test safety features.
	65	Perform noise test to verify the noise levels of the equipment are within the stated requirements.

5 Impact on Downstream Processes

The lots produced during the commissioning will only impact certain production machines in the downstream processes. The lots will be directed to the Bar Mill Value Stream and will impact the operations below.

	Additional runtime for metal processing from coreless furnace comissioning				Ī										
				Month 1			Month 2			Total operating he with coreless furr commissioning m ran through production		ss furnace ning metal rough			
Sources and Pollutants	Machine #	June 2023 Operating hours	add'l hr per lot	Wk1	Wk2	Wk3	Wk4 lots	Total add'l hours	Wk5	Wk6	Wk7	Wk8	Total add'l hours	month 1	month 2
				7	7	7	7		26	26	26	26		hrs	hrs
U-CAST1 (EP00040) - Casting Furnaces To S. Baghouse		354	1.35	9.5	9.5	9.5	9.5	37.8	35.1	35.1	35.1	35.1	140.4	354	354
U-ROLL1 (EP00030) - Hot Mill to Mist Eliminator	1706	168	0.25	1.8	1.8	1.8	1.8	7.0	6.5	6.5	6.5	6.5	26.0	175	194
U-ROLL1 (EP00029) - First Run Down Mill to Mist Eliminator	1721	352	0.2	1.4	1.4	1.4	1.4	5.6	5.2	5.2	5.2	5.2	20.8	358	373
U-OVER1 (EP00031) - Overhauler to Wet Scrubber	1715	352	0.17	1.17	1.17	1.17	1.17	4.7	4.3	4.3	4.3	4.3	17.3	357	369
U-ANNE1 (EP 00189/00190) - Tray Style/Coil Anneal (No Control)	464	336	17.5	20.8	20.8	20.8	20.8	83.2	36.0	36.0	36.0	36.0	144.0	419	480
cake heat furnace (natural gas emissions only)	1701	168	0.25	1.75	1.75	1.75	1.75	7.0	6.5	6.5	6.5	6.5	26.0	175	194

EXHIBIT 1
CLIMATE LEADERSHIP AND COMMUNITY PROTECTION ACT (CLCPA)
ANALYSIS

Revere Copper Products Inc. (Rome, New York)

Facility Impact Upon New York State's Climate Leadership and Community Protection Act (CLCPA)

July 2023

Project No.: 0692098

Signature Page

July 2023

Revere Copper Products Inc. (Rome, New York)

Facility Impact Upon New York State's Climate Leadership and Community Protection Act (CLCPA)

Leather Williams Gracey a. Karatas

Heather Williams
Senior Consultant

Tracey A. Karatas, P.E. *Principal Consultant*

Gary Keating

Partner-in-Charge

ERM Consulting & Engineering, Inc.

345 Woodcliff Drive 2nd Floor Fairport, New York 14450

© Copyright 2023 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

1.	FACI	LITY AND	D BUSINESS OVERVIEW	1
2.	PENI	DING PER	RMIT APPLICATION	2
3.	CLCF	PA ANAL	YSIS	3
	3.1 3.2 3.3 3.4	Project CLCPA	tory Background	3 5
	3.5	Summa	ary of GHG Emissions from Mobile Sources at Facility	8
4.	IDEN	TIFICATI	ON OF ALTERNATIVES AND MITIGATION	9
	4.1	Current 4.1.1 4.1.2	Projects That Will Reduce GHG Emissions	9
	4.2	Commit	tted Projects That Will Reduce GHG Emissions	10
	4.3	Projects 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7	S Currently Under Evaluation Hot Mill Cake Furnace Steam Efficiency Study Facility Energy Assessment IGS Generator Controls Upgrades Solar Array Project Improvement/Automation of Natural Gas Metering Electric Mobile Equipment	11 11 11 12
5.	5.1 5.2	Facility Facility	EMISSIONS OF CO-POLLUTANTS Emissions of GHG Emissions from Stationary Sources Emissions of Co-Pollutants from Stationary Sources	13 13
6.	KEFE	KENCE	INFORMATION	16

List of Appendices

APPENDIX A	SUMMARIES OF CALCULATED VALUES FOR UPSTREAM AND DIRECT
	EMISSIONS FROM GHG EMISSION SOURCE CATEGORIES
APPENDIX B	CALCULATIONS FOR POTENTIAL TO EMIT
APPENDIX C	CALCULATIONS FOR PAST ACTUAL & PROJECTED EMISSIONS
APPENDIX D	CALCULATIONS FOR MOBILE SOURCES
APPENDIX E	CALCULATIONS FOR POTENTIAL GHG EMISSION REDUCTIONS

List of Tables

Table 3-1: Summary of Facility PTE for GHG Emissions from Stationary Sources	5
Table 3-2: Summary of Facility Past Actual and Future Projected Emissions of GHG from Stationary	
Sources	7
Table 3-3: Summary of Future Projected Emissions of GHG from Mobile Sources	8
Table 4-1: eGRID Emission Factors for Electricity Generation	10
Table 5-1: Summary of Facility PTE for Emissions of Co-Pollutants (HAPs) from Stationary Sources	13
Table 5-2: Summary of Facility Past Actual and Future Projected Emissions of Co-Pollutants (HAPs) f	rom
Stationary Sources	14

ACRONYMS AND ABBREVIATIONS

CO2e Carbon Dioxide Equivalents
DAC Disadvantaged Community

ERM Consulting & Engineering, Inc.

ERP Emission Rate Potential
GHG Greenhouse gases
GWP Global Warming Potential
HAP Hazardous Air Pollutant

lb/yr Pounds per year

NYSDEC New York State Department of Environmental Conservation

PTE Potential-to-Emit tpy Tons per year

1. FACILITY AND BUSINESS OVERVIEW

Revere Copper Products, Inc. ("Revere") owns and operates an existing facility located in Rome, New York ("Revere facility" or "Rome facility"). Revere is 100% employee owned and employs 360 people at the Rome facility.

The Rome facility recycles post-consumer copper materials, producing copper coil, sheet, plate, strip and bar products. 99% of the copper feedstock used by Revere is recycled; Revere's products are 100% recyclable. More than 50% of the copper produced by Revere is used in the production of electric vehicle and charging station components, electrical grid upgrades and transmission (e.g., electrical bus bars), and electric cables and data centers. (NOTE: These industries will continue to require a secure domestic source of copper). A significant percentage of Revere's products are also used in the building trades.

Equipment/operations conducted at the facility that are subject to permitting requirements include boilers, induction furnaces, annealing units, metal coating, surface treatment and cleaning, rolling and metal cutting. The facility operations also include emission sources that are exempt from permitting requirements including (but not limited to) diesel and natural gas fired emergency engines, building heaters and tanks.

The Rome facility currently operates under an Air State Facility Permit (NYSDEC Permit ID # 6-3013-00091/00039) that became effective on 24 March 2015 (i.e., "Ren 1/Mod 1" version).

2. PENDING PERMIT APPLICATION

On 8 February 2023, the facility submitted an Air State Facility permit renewal application that included several "modifications" as defined by 6 NYCRR 200.1(aq). These modifications included (but were not limited to) the following changes:

- Replacement of existing 2057 Casting Furnace (Emission Source 01257) with 2728 Casting Furnace (to be permitted as Emission Source 02728). The new 2728 Casting Furnace (an induction furnace) is estimated to provide a 23.3% increase in the casting output over the production rate for 2022.
- Deletion of Permit Conditions 9 and 10 [reflecting facility-wide limitations for sulfur dioxide (SO2) emissions and fuel oil usage, with the underlying requirement of 6 NYCRR 201-7].
- Replacement of the burners in Boilers 1 3 (Emission Sources 00BR1, 000BR2 and 00BR3, respectively) to enable use of No. 2 oil rather than No. 6 oil.
- Deletion of requirements for 40 CFR 63 Subpart JJJJJJ, based on the facility's intent to operate Boilers 1 -3 as "gas fired boilers" as defined under 40 CFR 63 Subpart JJJJJJ. (Under this definition, the facility will use No. 2 oil only during a natural gas curtailment or supply interruption).

Other changes described in the permit application include the removal of Billet Furnace 1187 (Emission Source 01187) and the Granco Furnace (Emission Source GRANC).

As part of the effort to replace the existing 2057 Melting Furnace, Revere has also replaced a 94 HP natural gas-fired emergency generator with a new 335 HP natural gas fired emergency generator.

The Department has provided comments regarding the permit application and as a result, Revere is resubmitting a complete and updated permit application. This CLCPA analysis is an attachment to the updated permit application.

3. CLCPA ANALYSIS

Protection Act (CLCPA)

3.1 Regulatory Background

In July 2019, Governor Andrew Cuomo signed the Climate Leadership and Community Protection Act (CLCPA), Chapter 106 of the Laws of 2019. When issuing permits, Section 7(2) of the CLCPA requires all state agencies to consider "whether such decisions are inconsistent with, or will interfere with, the attainment of the statewide greenhouse gas (GHG) emission limits established in Article 75 of the environmental conservation law." On 14 December 2022, the NYSDEC issued the final version of NYSDEC Program Policy DAR-21 ("The Climate Leadership and Community Protection Act and Air Permit Applications").

For purposes of the CLCPA, statewide GHG emissions include upstream out-of-state GHG emissions associated with the generation of electricity imported into the State, or the extraction, transmission, and use of fossil fuels imported into the State, and any downstream emissions attributable to the project.

To address section 7(3) of the CLCPA, the NYSDEC is required to "prioritize reductions of GHG emissions and co-pollutants in Disadvantaged Communities". If a facility is located in or potentially impacts a Disadvantaged Community" (DAC), it is understood that the CLCPA analysis should provide calculations for all co-pollutants. "Co-pollutants" are defined to be Hazardous Air Pollutants (HAP) emitted by GHG sources.

Per DAR-21, the CLCPA analysis may be requested for the following types of permit actions received by the Department after the issuance date of DAR-21:

- 1. New Title V and Air State Facility (ASF) permits;
- 2. Modifications to Title V and ASF permits;
- 3. Renewals of Title V and ASF permits; and
- 4. Air Facility Registrations where the NYSDEC determines an analysis is necessary or appropriate to ensure CLCPA consistency such as projects with significant GHG emissions.

A CLCPA analysis was included in the permit renewal application that was submitted on 8 February 2023. In letters dated 27 February 2023 and 28 March 2023, the NYSDEC provided comments regarding the CLCPA analysis that was included in the application.

This document is intended to replace the CLCPA analysis that was provided in the permit renewal application submitted on 8 February 2023.

3.2 Project Scope

Per DAR-21, "the applicable portions of the project include any new or modified emission sources that have the potential to emit GHG, including increases and decreases in emissions of GHG from existing equipment. In addition, the project scope includes any upstream, downstream, and indirect emissions known to be attributable to the project, including upstream out-of-state emissions from fossil fuel production, transmission, and imported electricity."

Based on the written guidance received from the NYSDEC, this CLCPA analysis has been performed for all sources of GHG emissions at the facility. The affected operations include the following:

- Boilers 1 -3 (Emission Sources 00BR1, 00BR2 and 00BR3), that will operate in the future as "gas fired boilers", firing No. 2 only in the event of a natural gas curtailment or supply interruption.
- Cake Furnace (a.k.a. "Walking Beam Furnace", Emission Source 01701), firing natural gas.

- Two small combustion units exempt from permitting requirements that are used to produce "DX gas", firing natural gas.
- Other facility emission sources firing natural gas, including but not limited to process furnaces, water heaters and building heaters.
- Emergency Engines, firing natural gas.
- Emergency Engines, firing diesel.
- Mobile sources.

3.3 CLCPA Emission Calculations

GHG emissions for stationary combustion sources were calculated on a worst-case Potential-to-Emit (PTE) basis. Pursuant to the definition of "Potential to Emit" in 6 NYCRR 200.1(bl), the PTE calculations for the facility's emission sources that fire/use a fossil fuel were based on the maximum heat input rating (or maximum design flow rate) for each unit and a maximum of 8760 hours of operation per year.

In accordance with DAR-21, ERM calculated the past actual emissions of GHG. The actual GHG emissions were calculated using fuel supply records as well as gas meter readings located within the facility. Per DAR-21, "the past actual emissions are defined as the highest 24-month average GHG emissions during the five years preceding the date the permit application was received unless another period is more representative". Based on the guidance, the 5-year period for consideration included calendar years 2018 - 2022.

Projected actual emissions of GHG were also calculated. In this case, the "future operating scenario" reflected operations after (1) start-up of the new 2728 Casting Furnace, (2) conversion of Boilers 1 - 3 to No. 2 oil and operation as "gas fired boilers" as defined under 40 CFR 63 Subpart JJJJJJ, and (3) replacement of the 94 HP natural gas-fired emergency generator with the new 335 HP natural gas fired emergency generator. The calculations for the projected actual emissions did not include any current or potential projects to mitigate or reduce GHG emissions.

In general, the GHG emission calculations considered (1) direct emissions resulting from the combustion of natural gas, No. 6 fuel oil and No. 2 fuel oil, as well as (2) "upstream emissions" associated with the extraction, production, and transmission of natural gas and fuel oils imported into New York State. To calculate the direct emissions of each individual GHG that resulted from the combustion of a fossil fuel, ERM used the emission factors listed in 40 CFR Part 98 Subpart C, Tables C-1 & C-2. To calculate the upstream emissions, ERM used the emission factors provided in the Appendix of the "2022 NYS Statewide GHG Report". This table provides the current upstream emission factors for each individual GHG, as well as an emission factor for total carbon dioxide equivalents (CO2e) based upon 20-year global warming potential (GWP) values for each GHG.

Current as well as projected actual GHG emissions were also estimated for (1) mobile sources that are operated onsite by Revere, as well as (2) other vendor vehicles that routinely travel into and out of the facility. Maps of the primary truck routes used by vendor trucks and vehicles (as well as the calculated round-trip miles for each route) are included in Section 6.0 ("REFERENCE INFORMATION") of this document.

For each type of emission source, emission calculations were completed for carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_20). The total quantity of CO2e was calculated by multiplying the calculated emissions of each individual GHG by its respective 20-year GWP value listed in 6 NYCRR 496.5.

Because the Rome facility is located in a DAC, calculations were also completed for co-pollutants (Hazardous Air Pollutants) associated with stationary sources of GHG emissions. Calculations for all co-pollutants were calculated on a PTE basis, past actual basis and projected emissions basis.

Appendix A-1 provides summaries of all calculated GHGs and co-pollutants from stationary emission sources on a PTE basis. Specifically, Table A-1.1 provides a summary of the calculated PTE values for the facility's "current operating scenario", while Table A-1.2 provides a summary of the calculated PTE values for the facility's "future operating scenario". Detailed calculations for the PTE values shown in these tables are provided in Appendix B.

Appendix A-2 provides a summary of the past actual annual emissions of GHGs and co-pollutants from stationary emission sources. Specifically, Table A-2.1 provides a summary of the past actual emissions of GHGs for calendar years 2018 through 2022. Based upon the total GHG emissions reflected in Table A-2.1, the baseline period of 1/1/2020 – 12/31/2021 was identified to be the 24-month period with the highest amount of GHG emissions. Table A-2.2 provides a summary of the average actual annual emissions of GHGs and co-pollutants for the baseline period. Detailed calculations for past actual annual emissions of GHGs and co-pollutants are provided in Appendix C.

Appendix A-3 provides a summary of the projected actual annual emissions of GHGs and co-pollutants from the facility's stationary emission sources. Detailed calculations for the projected annual emissions are also included in Appendix C.

Appendix A-4 provides a summary of the past actual and projected emissions of GHGs that result from mobile sources. For all mobile sources that are owned and operated by Revere (i.e., "onsite vehicles"), Table A-4 provides a summary of the past actual emissions of GHGs for calendar years 2018 through 2022, as well as the future projected emissions. For vehicles that are operated by vendors and service providers that travel into and out of the facility ("offsite vehicles"), Table A-4 includes the future projected emissions only. Detailed calculations for the past actual and projected annual emissions are provided in Appendix D.

3.4 Summary of GHG Emissions from Stationary Sources at the Facility

3.4.1 Facility PTE for GHG Emissions from Stationary Sources

For each stationary source type at the facility, Appendix A-1 provides a summary of the calculated PTE values for upstream and direct GHG emissions. Table A-1.1 provides the PTE values for the "current operating scenario", while Table A-1.2 provides the PTE values for the "future operating scenario".

Table 3-1 below provides a high-level summary of the GHG emissions information in Tables A-1.1 and A-1.2. CO2e values shown in this table include both upstream and direct emissions.

Table 3-1: Summary of Facility PTE for GHG Emissions from Stationary Sources

	PTE for GHG U		PTE for GHG Under "Future Operating Scenario"		
Description of Stationary Sources	(tons of CO2e)	% of Total	(tons of CO2e)	% of Total	
Boilers 1 – 3	129,070	56%	129,070	56%	
Cake Furnace	47,350	21%	47,350	21%	
Emission Sources Firing Natural Gas (to Supply DX Gas)	5,480	2.4%	5,480	2.4%	

	PTE for GHG Under "Current Operating Scenario"		PTE for GHG Under "Futur Operating Scenario"		
Description of Stationary Sources	(tons of CO2e)	% of Total	(tons of CO2e)	% of Total	
Other Facility Sources, Firing Natural Gas	47,450	21%	47,450	21%	
Emergency Engines < 600 HP, Firing Diesel	58	0.025%	58	0.025%	
Emergency Engines >600 HP, Firing Diesel	929	0.40%	929	0.40%	
Emergency Engines, Firing Natural Gas	42	0.018%	122	0.053%	
TOTAL PTE FOR GHG FROM STATIONARY SOURCES	230,370	100%	230,450	100%	

Based on the PTE values for the facility's stationary sources of GHG emissions, the "current operating scenario" could result in potential emissions (including direct and indirect emissions) of approximately 230,370 short tons of CO2e per year (~ 209,000 metric tonnes of CO2e per year), while the "future operating scenario" could result in potential emissions of approximately 230,450 short tons of CO2e per year (~ 209,070 metric tonnes of CO2e per year). Under both operating scenarios, Boilers 1 – 3 and the Cake Furnace account for 77% of the potential emissions of GHGs from the facility's stationary sources. The facility's "other combustion sources" (excluding emergency engines and small combustion units used to generate DX gas) account for an additional 21% of the potential emissions of GHGs on a CO2e basis.

While Revere has proposed to change the operation of the Boilers 1-3 to operate as "gas-fired boilers", it is important to note that the PTE for these three boilers is the same under the "current operating scenario" and the "future operating scenario". The increase of 80 short tons per year of CO2e is due solely to the replacement of the 94 HP natural gas-fired emergency generator with a new 335 HP natural gas fired emergency generator.

3.4.2 Past Actual Emissions and Future Projected Emissions of GHG from Stationary Sources

For each stationary source type at the facility, Appendix A-2 (Table A-2.2) provides a summary of the calculated past average actual emissions for the baseline period (2020 – 2021), while Appendix A-3 (Table A-3) provides a summary of the future projected emissions. Values are provided for both upstream and direct GHG emissions.

Table 3-2 below provides a high-level summary of the GHG emissions information in Tables A-2.2 and A-3. CO2e values shown in this table include both upstream and direct emissions.

Facility Impact Upon New York State's Climate Leadership and Community Protection Act (CLCPA)

Table 3-2: Summary of Facility Past Actual and Future Projected Emissions of GHG from Stationary Sources

	Past Actual Emiss Baseline		Future Projected Emissions of GHG		
Description of Stationary Sources	(tons of CO2e) % of Total		(tons of CO2e)	% of Total	
Boilers 1 – 3	23,920	34%	23,000	28%	
Cake Furnace ²	17,320 ²	25% ²	14,160	18%	
Emission Sources Firing Natural Gas (to Supply DX Gas)	4,294	6.2%	4,291	5.3%	
Other Facility Sources, Firing Natural Gas	24,110	35%	39,400	49%	
Emergency Engines < 600 HP, Firing Diesel	3.1	0.004%	4.0	0.005%	
Emergency Engines >600 HP, Firing Diesel	26	0.04%	23	0.03%	
Emergency Engines, Firing Natural Gas	0.85	0.001%	2.7	0.003%	
TOTAL EMISSIONS OF GHG FROM STATIONARY SOURCES	69,680	100%	80,810	100%	

¹ Baseline period = 2020 - 2021.

As shown in Table 3-2 above, the average actual annual emissions of direct and indirect emissions from the facility's stationary sources of GHG were 69,680 short tons of CO2e per year (~ 63,210 metric tonnes of CO2e per year) during the baseline period. During the baseline period, Boilers 1 – 3 and the Cake Furnace accounted for 59% of the actual emissions of GHGs from the facility's stationary sources. The facility's "other combustion sources" (excluding emergency engines and small combustion units used to generate DX gas) accounted for an additional 35% of the actual emissions of GHGs on a CO2e basis.

The projected actual emissions from the facility's stationary sources under the "future operating scenario" is expected to result in an estimated 80,810 short tons of CO2e per year ($\sim 73,310$ metric tonnes of CO2e per year). With respect to the projected actual emissions, Boilers 1-3 and the Cake Furnace account for approximately 46% of the total emissions of GHGs on a CO2e basis, while the facility's "other combustion sources" (excluding emergency engines and small combustion units used to generate DX gas) account for 49% of the total emissions of GHGs on a CO2e basis. It is important to emphasize that the calculated values for the projected actual emissions do not include any current or potential projects to mitigate or reduce GHG emissions.

When compared against the baseline emissions, the proposed changes could result in an increase of approximately 11,130 tons per year of CO2e per year (~10,098 metric tonnes of CO2e per year).

² The data shown in this table suggests that the projected GHG emissions from the Cake Furnace will show a reduction against the baseline period, Based upon a review of the natural gas usage data for calendar years 2018 – 2022, the natural gas usage in 2020 (which is part of the baseline period for the facility) is higher than more recent years and does not correlate with the facility's production levels. Revere has projected that the natural gas usage for the Cake Furnace will show a 23.3% increase in natural gas usage when compared to the usage in 2022.

3.5 Summary of GHG Emissions from Mobile Sources at Facility

For each mobile source type at the facility, Appendix A-4 (Table A-4) provides a summary of the calculated past actual emissions for onsite mobile vehicles for calendar years 2018 – 2022, as well as the future projected estimated emissions for both onsite and offsite vehicles. (Please note that past actual values are not available for offsite vehicles). Values are provided for both upstream and direct GHG emissions.

Table 3-3 below provides a high-level summary of the current actual emissions for 2022 as well as the projected actual emissions information shown in Table A-4. CO2e values shown in this table include both upstream and direct emissions.

Table 3-3: Summary of Future Projected Emissions of GHG from Mobile Sources

	2022 Actual Emis	ssions of GHG	Estimated Future Projected Emissions of GHG		
Description of Mobile Sources	(tons of CO2e)	% of Total	(tons of CO2e)	% of Total	
Onsite Mobile Sources Operated by Revere, Firing Propane	872	88%	1,070	89%	
Onsite Mobile Sources Operated by Revere, Firing Diesel	75	7.6%	88	7%	
Onsite Mobile Sources Operated by Revere, Firing Gasoline	27	2.7%	30	2.5%	
Offsite Mobile Sources Operated by Vendors & Service Providers, Firing Diesel **	13	1.3%	16	1.3%	
Offsite Mobile Sources, Operated by Vendors & Service Providers, Firing Gasoline ***	0.21	0.02%	0.23	0.02%	
TOTAL EMISSIONS OF GHG FROM MOBILE SOURCES	987	100%	1,210	100%	

^{**} Values shown for 2022 represent estimates for "current operations".

As shown in Table 3-3 above, the projected actual emissions from mobile sources under the "future operating scenario" is expected to result in an estimated increase of 220 short tons of CO2e per year (~200 metric tonnes of CO2e per year).

4. IDENTIFICATION OF ALTERNATIVES AND MITIGATION

4.1 Current Projects That Will Reduce GHG Emissions

At the time of this assessment, the following active projects at the facility are expected to reduce emissions of GHG.

4.1.1 Boiler Control System and Change in Boiler Fuels

Boilers 1 – 3 provide process steam to the entire facility. In Fall 2021, Revere initiated a project to replace the programmable logic control (PLC) systems on all three boilers. The PLC systems for Boilers 1 and 2 have already been upgraded; the PLC for Boiler 3 will be upgraded in August 2023.

The new control system will provide tighter process control as well as advanced operational features. The project is expected to improve boiler efficiency, reliability and safety. The new controls (along with a new Balance of Plant system) will reduce natural gas consumption.

Concurrent with the boiler control system upgrade, Revere is eliminating the use of No. 6 oil. In the future, Revere will operate the three boilers as "gas fired boilers" as defined under 40 CFR 63 Subpart JJJJJJ, where the facility will use No. 2 oil only during a natural gas curtailment or supply interruption.

It is important to note that the change from No. 6 oil to No. 2 oil will reduce energy use, as No. 6 oil required constant heating and pumping to maintain viscosity.

Based upon estimates provided by Revere personnel, the activities described above are expected to reduce natural gas consumption associated with boiler operations by 5%, resulting in a 5% decrease in the projected GHG emissions from the boilers. This activity could reduce the projected actual emissions for Boilers 1 – 3 by approximately 1,150 short tons of CO2e per year (~ 1,040 metric tonnes of CO2e per year), reducing the projected emissions of CO2e from the facility by 1.5%.

This project is expected to be completed in the third quarter of 2023. The budget for this project is \$440,000, with a current expenditure of \$300,000 to date.

4.1.2 Facility Re-lamping

The majority of lighting fixtures at the facility contain 500W or 1000W Metal Halide and Mercury Vapor lamps. In 2015, Revere began a project to replace older lighting fixtures with 150 to 250W LED lamps and fixtures. In the office areas, replacement and retrofitting of tube lighting is also underway. Where appropriate, motion sensors are also being installed to further reduce electrical demand.

This project is expected to reduce the electrical demand of the lighting fixtures by at least 60%. LED fixtures require less maintenance, reducing the labor demand as well as fuel consumption by maintenance equipment (i.e., scissor lift, man lifts). Upon completion, the project will result in an estimated reduction of 1,971.754 MW per year of electricity.

Table 4-1 below provides a summary of the current eGRID data (for year 2021) published by the United States Environmental Protection Agency (USEPA). Data is shown only for electrical generation in the local NPCC Upstate NY eGRID sub-region and the state of New York. These values consider direct emissions only.

Table 4-1: eGRID Emission Factors for Electricity Generation

EGrid Region	USEPA eGRID Emission Factors for Region (based on 2021 Data for Direct Emissions)						
	kg CO2/MWh (output)	kg CH4/MWh (output)	kg N2O/MWh (output)	kg CO2e/MWh (output)			
NPCC Upstate NY	105.725	0.007	0.001	106.153			
New York	206.543	0.012	0.001	207.931			

¹ Total CO2e calculated using the 20-year global warming potential (GWP) values for each GHG.

Considering the eGRID data for the NPCC Upstate NY sub-region and the estimated reduction of 1,971.754 MW per year of electricity, the relamping project will result in an estimated reduction of 230.2 short tons of *direct* CO2e emissions (~ 208.9 metric tonnes of CO2e) that would otherwise be generated by the power generating facility. (Please note that this value does not include the reduction of upstream emissions). The emission reduction was calculated using the methodology shown below.

Reduction in CO2e Generated by Power Generation Facility = (1,971.754 MWh/yr) x (106.153 kg CO2e/MWh) x [2.2 lb/ kg] x [ton/ 2000 lb] = 230.2 short tons of CO2e

At the present time, approximately 52% of the facility has been converted to LED fixtures. Because the replacement of the fixtures will be done on an "as needed" basis, the replacement of the remaining 48% of fixtures is expected to take another three years.

4.2 Committed Projects That Will Reduce GHG Emissions

Emission sources or activities that are not subject to permitting requirements are not subject to Part 212 per §212-1.4(a) ["...process emission sources that are exempt or trivial under sections 201-3.2 and 201-3.3..."]. Air dispersion modeling is not required for the emission sources identified in the following table.

4.2.1 Hot Mill Cake Furnace

The Cake Furnace (Emission Source 01701) is the largest consumer of natural gas by the facility's production equipment. Excluding natural gas used by Boilers 1-3, the cake furnace accounted for 23% of the facility's usage of natural gas in 2022. To reduce natural gas usage, the following project has been approved and will be completed.

4.2.1.1 Replacement of Burner Control System on Cake Furnace

Revere will replace the burner control systems (which are 1960's vintage technology) with a new control system that can monitor and automatically adjust the furnace operating conditions. Currently, the pressure control of the heating chambers is not automatic and relies on manual adjustment. A new control system would provide instantaneous control and adjustment of the furnace and temperature, thus reducing natural gas consumption.

Based upon estimates provided by Revere personnel, the replacement of the burner control system could reduce natural gas consumption of the Cake Furnace by 10%. This activity could reduce the projected

actual emissions from the Cake Furnace by approximately 1,420 short tons of CO2e per year (~ 1,280 metric tonnes of CO2e per year), reducing the projected emissions of CO2e from the facility by 1.9%.

Based upon a preliminary cost estimate from Fives North American, an upgrade to the burner control system could cost \$1,000,000 to \$1,500,000.

4.3 Projects Currently Under Evaluation

At the time of this assessment, the following projects are being **evaluated** to determine the cost and potential opportunity for GHG reductions. Once this information is available, Revere will evaluate the project costs and benefits based on the availability of capital funds.

4.3.1 Hot Mill Cake Furnace

4.3.1.1 Installation of Recuperator on Cake Furnace

As described above, Revere will replace the burner control system on the Cake Furnace. In late June 2023, Bloom Engineering began to evaluate the feasibility of retrofitting the Cake Furnace with a recuperator (i.e., a countercurrent heat exchanger used to recover heat). If feasible and cost effective, a recuperator could be used to recover waste heat from the exhaust gas, whereupon it could be used to preheat the air within the furnace, thus reducing the amount of natural gas needed to bring the furnace to operating temperature. Studies have shown that recuperators can reduce fuel usage by 30 to 60%. Based upon these values, the installation of a recuperator on the Cake Furnace could reduce the projected emissions from the Cake Furnace by 4,300 to 8,500 short tons ($\sim 3,900-7,700$ metric tonnes of CO2e per year), reducing the projected emissions of CO2e from the facility by 5.6-11.2%.

The installation of a recuperator can only be done after the burner control system is upgraded. As of the date of this evaluation, Bloom has not yet collected and analyzed burner data. Consequently, a proposed project scope and budgetary cost estimate are not yet available.

4.3.2 Steam Efficiency Study

Applied Combustion has been requested to conduct a study of Revere's steam generation and delivery systems. The scope of the study will include an analysis of piping, insulation, overall system efficiency, and recommendations for system improvements and re-design. Through this study, Revere hopes to identify opportunities to deenergize or control parts of the system when not needed, therefore reducing the steam demand upon (and therefore natural gas usage by) Boilers 1-3.

4.3.3 Facility Energy Assessment

By the end of 2023, Revere will select an appropriate contractor(s) to conduct an energy conservation study of the plant to help identify opportunities to further reduce electricity and natural gas consumption. The results of the assessment will be evaluated for capital project expenditures.

4.3.4 IGS Generator Controls Upgrades

In the third quarter of 2023, Revere plans to initiate a project to evaluate the two small boilers and controls that are used to produce DX gas used in facility operations. The current boilers that are used to produce DX gas are late model and less efficient than current technology. New controls or equipment would reduce fuel consumption.

Revere plans to consider the upgrade/replacement of these gas fired boilers, as well as the potential use of an alternate gas.

If a new inert gas could be used in the process without sacrificing product quality, then the two small boilers could be eliminated. The removal of both gas boilers would reduce the facility emissions by 4,291 short tons (~ 3,893 metric tonnes of CO2e per year), reducing the projected emissions of CO2e from the facility by 5.7%.

If the boiler controls were upgraded, it is expected that the natural gas usage could be reduced by 20%, the emissions from these units could be reduced by 860 short tons (~ 780 metric tonnes of CO2e per year), reducing the projected emissions of CO2e from the facility by 1.1%.

4.3.5 Solar Array Project

Revere has approximately 5 acres of available space that is considered a brownfield. Based upon discussions with the electrical power broker and Forefront Power, this amount of space could potentially be used to generate about 1 megawatt of power via a solar array. The facility could have immediate availability of interconnection to the grid.

A complete assessment of electrical gains, as well as environmental impact will need to be thoroughly researched before embarking on this opportunity.

4.3.6 Improvement/Automation of Natural Gas Metering

In order to obtain better information regarding the facility use of natural gas, Revere plans to complete an assessment of the natural gas meters located throughout the facility. Through this project, Revere will develop a plan to (1) replace old meters and identify locations for additional meters, and (2) tie natural gas use information into a data historian. Revere will aim to have meters replaced and an evaluation of the natural gas usage across the plant completed within one year.

With better process data, the facility will be able to evaluate the natural gas usage of specific pieces of process equipment.

4.3.7 Electric Mobile Equipment

Revere has a complete fleet of propane and petroleum fueled mobile equipment. Revere plans to contact Raymond Corporation to discuss the potential conversion of all (or a portion of) the fleet with an electric powered fleet.

Revere's capital spending budget for mobile equipment now includes replacement with electric vehicles. Given capital constraints, vehicle replacement will occur in a phased approach as equipment is retired.

5. CLCPA CONSISTENCY & EMISSIONS OF CO-POLLUTANTS

5.1 Facility Emissions of GHG Emissions from Stationary Sources

In 6 NYCRR §496.4, the Department set the 2030 and 2050 statewide GHG emission limits at 245.87 and 61.47 million metric tons of CO₂e, respectively.

Based on the calculations for the facility's stationary sources, the "future operating scenario" could result in an increase of 80 tons per year of CO2e per year (~73 metric tonnes per year) on a PTE basis, and an actual increase of 11,130 tons of CO2e per year (~10,100 metric tonnes of CO2e per year) above the baseline period. Revere has identified various projects at the facility that are currently underway (or have been recently approved) that will reduce GHG emissions. Revere has also identified other projects that are currently being evaluated to determine the cost and potential opportunity for GHG reductions.

5.2 Facility Emissions of Co-Pollutants from Stationary Sources

In addition to GHGs, this analysis has also considered the co-pollutants (HAPs) that are generated by each source of GHG. Emissions of all co-pollutants were calculated on a PTE basis, past actual basis and projected annual emissions basis.

For each stationary source type at the facility, Appendix A-1 includes a summary of the calculated PTE values for individual co-pollutants. Table A-1.1 includes the PTE values for the current operating scenario, while Table A-1.2 includes the PTE values for the future operating scenario.

Table 5-1 below provides a high-level summary of the PTE values for total co-pollutants (HAPs) shown in Tables A-1.1 and A-1.2.

Table 5-1: Summary of Facility PTE for Emissions of Co-Pollutants (HAPs) from Stationary Sources

Description of Stationary Sources	PTE for Co-Pol Current Operat		PTE for Co-Pollutants Under Future Operating Scenario		
	(tons of HAPs)	% of Total	(tons of HAPs)	% of Total	
Boilers 1 – 3	1.1	56%	1.1	56%	
Cake Furnace	0.42	20%	0.42	20%	
Emission Sources Firing Natural Gas (to Supply DX Gas)	0.049	2.4%	0.049	2.4%	
Other Facility Sources, Firing Natural Gas	0.42	20%	0.42	20%	
Emergency Engines < 600 HP, Firing Diesel	0.001	0.050%	0.001	0.050%	
Emergency Engines >600 HP, Firing Diesel	0.007	0.33%	0.007	0.33%	
Emergency Engines, Firing Natural Gas	0.017	0.81%	0.048	2.3%	

Description of Stationary Sources	PTE for Co-Pollutants Under Current Operating Scenario		PTE for Co-Pollutants Unde Future Operating Scenario	
	(tons of HAPs)	% of Total	(tons of HAPs)	% of Total
TOTAL PTE FOR HAPS FROM STATIONARY SOURCES	2.058	100%	2.089	100%

Based on the PTE values for the facility's stationary sources of GHG emissions, the "current operating scenario" could result in potential emissions of approximately 2.058 short tons of HAPs per year, while the "future operating scenario" could result in potential emissions of approximately 2.089 short tons of HAPs per year. Under both operating scenarios, Boilers 1 – 3 and the Cake Furnace account for 76% of the potential emissions of HAPs from the facility's stationary sources. The facility's "other combustion sources" (excluding emergency engines and small combustion units used to generate DX gas) account for an additional 20% of the potential emissions of HAPs on a CO2e basis.

It is important to note that the increase of 0.030 short tons per year of HAPs is due solely to the replacement of the 94 HP natural gas-fired emergency generator with a new 335 HP natural gas fired emergency generator.

For each stationary source type at the facility, Appendix A-2 (Table A-2.2) includes a summary of the calculated past average actual emissions of individual co-pollutants for the baseline period (2020 – 2021), while Appendix A-3 (Table A-3) includes a summary of the future projected emissions for individual co-pollutants.

Table 3-2 below provides a high-level summary of the co-pollutant emissions information in Tables A-2.2 and A-3.

Table 5-2: Summary of Facility Past Actual and Future Projected Emissions of Co-Pollutants (HAPs) from Stationary Sources

Description of Stationary Sources	Past Actual Em		Future Projected Emissions of Co-Pollutants	
	(tons of HAPs)	% of Total	(tons of HAPs)	% of Total
Boilers 1 – 3	0.21	34%	0.20	28%
Cake Furnace ²	0.15 ²	25% ²	0.13	17%
Emission Sources Firing Natural Gas (to Supply DX Gas)	0.038	6.2%	0.038	5.3%
Other Facility Sources, Firing Natural Gas	0.21	35%	0.30	49%
Emergency Engines < 600 HP, Firing Diesel	0.0001	0.009%	0.0001	0.010%
Emergency Engines >600 HP, Firing Diesel	0.0002	0.031%	0.0002	0.023%
Emergency Engines, Firing Natural Gas	0.0003	0.054%	0.0011	0.15%

Facility Impact Upon New York State's Climate Leadership and Community Protection Act (CLCPA)

Description of Stationary Sources	Past Actual Em		Future Projected Co-Pollu	
	(tons of HAPs)	% of Total	(tons of HAPs)	% of Total
TOTAL EMISSIONS OF HAPS FROM STATIONARY SOURCES	0.62	100%	0.72	100%

¹ Baseline period = 2020 - 2021.

As shown in Table 5-2 above, the average actual annual emissions of co-pollutants from the facility's stationary sources of GHG was 0.62 short tons of HAPs per year during the baseline period. During the baseline period, Boilers 1-3 and the Cake Furnace accounted for 59% of the actual emissions of HAPs from the facility's stationary sources. The facility's "other combustion sources" (excluding emergency engines and small combustion units used to generate DX gas) accounted for an additional 35% of the actual emissions of HAPs.

The projected actual emissions from the facility's stationary sources under the "future operating scenario" is expected to result in an estimated 0.72 short tons of HAPs per year. With respect to the projected actual emissions, Boilers 1 – 3 and the Cake Furnace account for approximately 46% of the total emissions of HAPs, while the facility's "other combustion sources" (excluding emergency engines and small combustion units used to generate DX gas) account for 49% of the total emissions of HAPs. It is important to emphasize that the calculated values for the projected actual emissions do not include any current or potential projects to mitigate or reduce HAP emissions.

Considering the limited amount of HAPs that are projected to be generated (0.72 tons per year) by the GHG emission sources, it does not appear that the Rome facility would cause or contribute to a disproportionate HAP impact on any DAC. It should be noted that the projects identified by Revere to reduce emissions of GHG will also serve to reduce emissions of HAPs.

² The data shown in this table suggests that the projected HAP emissions from the Cake Furnace will show a reduction against the baseline period, Based upon a review of the natural gas usage data for calendar years 2018 – 2022, the natural gas usage in 2020 (which is part of the baseline period for the facility) is higher than more recent years and does not correlate with the facility's production levels. Revere has projected that the natural gas usage for the Cake Furnace will show a 23.3% increase in natural gas usage when compared to the usage in 2022.

6. REFERENCE INFORMATION

The following reference information is contained in this section:

Reference 1: Combustion Processes – Summary of USEPA AP-42 Emission Factors for Products of Combustion Types/Fuels

Reference 2: Summary of USEPA AP-42 Emission Factors for Products of Combustion from Natural Gas-Fired Engines

Reference 3-A: Map of Primary Local Truck Route Within ¼-Mile of Facility Used for Delivery/Pick-up and Return

Reference 3-B: Map of Truck Route Used for Metal Shipment

Reference 3-C: Map of Truck Route Used for Receipt of Scrap Copper

Reference 3-D: Map of Truck Route Used for Delivery of Parts & Materials

Reference 3-E: Map of Truck Route Used for Pick-up of Waste (Waste Management)

Reference 3-F: Map of Truck Route Used for Pick-up of Waste (Dumpsters)

CAS No.	Air Contaminant	НАР?	HTAC?	Conservative* A Factor for Combus Gas (lb/ 10 ⁶ scf)	stion of Natural	Conservative* AP-42 Emission Factor for Combustion of Propane 2	Factor for Dis	tillate No. 2 Fuel nbustion ³	Factor for Dis Oil Con	* AP-42 Emission tillate No. 6 Fuel nbustion ⁴ (lb/MMBtu)	Conservative* A Factor for Unco Engines < (Ib/ MMBtu fuel input)	ntrolled Diesel	Conservative* A Factor for Uncor Engines > (Ib/ MMBtu fuel input)	ntrolled Diesel		tural Gas-fired pe of Engine
HAP Pollutants - Poly	vcyclic Organic Matter		•	=		•	•	•		•	-	•	•		-	
50-32-8	Benzo(a)pyrene	HAP @	HTAC (POM)	< 1.2E-06	1.2E-09	< 1.2E-09					< 1.88E-07	1.20E-09	< 2.57E-07	1.64E-09	5.68E-09	3.61E-11
53-70-3	Dibenzo(a,h)anthracene	HAP @	HTAC (POM)	< 1.2E-06	1.2E-09	< 1.2E-09	1.67E-06	1.21E-08	1.67E-06	1.11E-08	< 5.83E-07	3.71E-09	< 3.46E-07	2.20E-09		1
56-49-5	3-Methylchloranthrene	HAP @	HTAC (POM)	< 1.8E-06	1.8E-09	< 1.8E-09										ŀ
56-55-3	Benz(a)anthracene	HAP @	HTAC (POM)	< 1.8E-06	1.8E-09	< 1.8E-09	4.01E-06	2.91E-08	4.01E-06	2.67E-08	1.68E-06	1.07E-08	6.22E-07	3.96E-09	3.36E-07	2.14E-09
57-97-6	7,12-Dimethylbenz(a)anthracene	HAP @	HTAC (POM)	< 1.6E-05	1.6E-08	< 1.6E-08	2 445 05	4 505 07	2 445 25	4 445 07	4 405 06	0.005.00	4.505.05	2 005 00	4 225 06	0.455.00
83-32-9	Acenaphthene Phenanathrene	HAP @	HTAC (POM)	< 1.8E-06	1.8E-09	< 1.8E-09	2.11E-05	1.53E-07	2.11E-05	1.41E-07	< 1.42E-06	9.03E-09	4.68E-06	2.98E-08	1.33E-06	8.46E-09
85-01-8 86-73-7	Fluorene	HAP @	HTAC (POM)	1.7E-05 2.8E-06	1.7E-08 2.7E-09	1.7E-08 2.7E-09	1.05E-05 4.47E-06	7.61E-08 3.24E-08	1.05E-05 4.47E-06	7.00E-08 2.98E-08	2.94E-05 2.92E-05	1.87E-07 1.86E-07	4.08E-05 1.28E-05	2.60E-07 8.14E-08	1.04E-05 5.67E-06	6.62E-08 3.61E-08
91-20-3	Naphthalene	HAP @	HTAC (POM)	6.1E-04	6.0E-07	6.0E-07	1.13E-03	8.19E-06	1.13E-03	7.53E-06	8.48E-05	5.40E-07	1.30E-04	8.27E-07	9.71E-05	6.18E-07
91-57-6	2-Methylnaphthalene	HAP @	HTAC (POM)	2.4E-05	2.4E-08	2.4E-08	1.152 05	0.152 00	1.152 05	7.552 00	0.402 03	5.402 07	1.502 04	0.272 07	3.32E-05	2.11E-07
120-12-7	Anthracene	HAP @	HTAC (POM)	< 2.4E-06	2.4E-09	< 2.4E-09	1.22E-06	8.84E-09	1.22E-06	8.13E-09	1.87E-06	1.19E-08	1.23E-06	7.83E-09	7.18E-07	4.57E-09
129-00-0	Pyrene	HAP @	HTAC (POM)	5.0E-06	4.9E-09	4.9E-09	4.25E-06	3.08E-08	4.25E-06	2.83E-08	4.78E-06	3.04E-08	3.71E-06	2.36E-08	1.36E-06	8.65E-09
191-24-2	Benzo(g,h,i)perylene	HAP @	HTAC (POM)	< 1.2E-06	1.2E-09	< 1.2E-09	2.26E-06	1.64E-08	2.26E-06	1.51E-08	< 4.89E-07	3.11E-09	< 5.56E-07	3.54E-09	4.14E-07	2.63E-09
192-97-2	Benzo(e)pyrene	HAP @	HTAC (POM)												4.15E-07	2.64E-09
193-39-5	Indeno(1,2,3-cd)pyrene	HAP @	HTAC (POM)	< 1.8E-06	1.8E-09	< 1.8E-09	2.14E-06	1.55E-08	2.14E-06	1.43E-08	< 3.75E-07	2.39E-09	< 4.14E-07	2.63E-09	9.93E-09	6.32E-11
198-55-0	Perylene	HAP @	HTAC (POM)					<u> </u>	ļ	ļ					4.97E-09	3.16E-11
205-99-2	Benzo(b)fluoranthene	HAP @	HTAC (POM)	< 1.8E-06	1.8E-09	< 1.8E-09	4 0 4 F 0 C	2 545 00	4 0 4 5 0 6	2 225 00	< 9.91E-08	6.31E-10	1.11E-06	7.06E-09	1.66E-07	1.06E-09
206-44-0 207-08-9	Fluoranthene Benzo(k)fluoranthene	HAP @	HTAC (POM)	< 3.0E-06 < 1.8E-06	2.9E-09 1.8E-09	< 2.9E-09 < 1.8E-09	4.84E-06	3.51E-08	4.84E-06	3.23E-08	7.61E-06 < 1.55E-07	4.84E-08 9.86E-10	4.03E-06 < 2.18E-07	2.56E-08 1.39E-09	1.11E-06 4.26E-09	7.06E-09 2.71E-11
208-96-8	Acenaphthylene	HAP @	HTAC (POM)		1.6E-09	1.01-03	2.53E-07	1.83E-09	2.53E-07	1.69E-09	< 5.06E-06	3.22E-08	9.23E-06	5.87E-08	5.53E-06	3.52E-08
218-01-9	Chrysene	HAP @	HTAC (POM)	< 1.8E-06	1.8E-09	< 1.8E-09	2.33E-07 2.38E-06	1.72E-08	2.38E-06	1.59E-08	3.53E-07	2.25E-09	1.53E-06	9.73E-09	6.93E-07	4.41E-09
2050-67-1	Dichlorobiphenyl	HAP @	HTAC (POM)				1		1			1				
2051-24-3	Decachlorobiphenyl	HAP @	HTAC (POM)				<u> </u>		<u> </u>							
3268-87-9	Octachlorodibenzo-p-dioxin (OCDD)	HAP @	HTAC (POM)				3.10E-09	2.25E-11	3.10E-09	2.07E-11						1
	Benzo(b,k)fluoranthene	НАР @	HTAC (POM)				1.48E-06	1.07E-08	1.48E-06	9.87E-09						
	Hexachlorobiphenyl	HAP @	HTAC (POM)													i
	Heptachlorobiphenyl	HAP @	HTAC (POM)									1				i .
	Heptachlorodibenzo-p-dioxins	HAP @	HTAC (POM)		1			1								i
	Heptachlorodibenzo-p-furans	HAP @	HTAC (POM)		<u> </u>			<u> </u>		<u> </u>		ļ				
	Hexachlorodibenzo-p-dioxins	HAP @	HTAC (POM) HTAC (POM)				1	<u> </u>		<u> </u>		 				
	Hexachlorodibenzo-p-furans Monochlorobiphenyl	HAP @	HTAC (POM)													
	Octachlorodibenzo-p-dioxins	HAP @	HTAC (POM)													
	Octachlorodibenzo-p-furans	HAP @	HTAC (POM)													
	Pentachlorobiphenyl	HAP @	HTAC (POM)													ı
	Pentachlorodibenzo-p-dioxins	HAP @	HTAC (POM)													1
	Pentachlorodibenzo-p-furans	HAP @	HTAC (POM)													1
	Tetrachlorobiphenyl	HAP @	HTAC (POM)													<u> </u>
	2,3,7,8-Tetrachlorodibenzo-p-dioxins	HAP @	HTAC (POM)		<u> </u>			ļ								<u> </u>
	Tetrachlorodibenzo-p-dioxins	HAP @	HTAC (POM)		!			!						<u> </u>		<u> </u>
	2,3,7,8-Tetrachlorodibenzo-p-furans	HAP @	HTAC (POM)		!											
	Tetrachlorodibenzo-p-furans Trichlorobiphenyl	HAP @	HTAC (POM) HTAC (POM)		<u> </u>		1	<u> </u>	1	<u> </u>		<u> </u>		!		1
	Polycyclic Aromatic Hydrocarbons	HAP @	HTAC (POM)		!			! !		<u> </u>		-			1.41E-04	8.97E-07
	TOTAL POLYCYCLIC ORGANIC MATTER	HAP@	HTAC (POM)	< 7.0E-04	6.8E-07	< 6.8E-07	1.19E-03	8.63E-06	1.19E-03	7.94E-06	1.68E-04	1.07E-06	2.12E-04	1.35E-06	2.99E-04	1.91E-06
								,								
Other Speciated HAP	Pollutants															
50-00-0	Formaldehyde	HAP	HTAC	7.5E-02	7.4E-05	7.4E-05	3.30E-02	2.39E-04	3.30E-02	2.20E-04	1.18E-03	7.51E-06	7.89E-05	5.02E-07	5.52E-02	3.51E-04
51-28-5	Dinitrophenol	HAP											ļ			
56-23-5	Carbon Tetrachloride	HAP	HTAC	ļ	<u> </u>			-		<u> </u>		-			6.07E-05	3.86E-07
67-56-1	Methanol	HAP				 		<u> </u>		 	-	<u> </u>	1		3.06E-03	1.95E-05
67-66-3 71-43-2	Chloroform Benzene	HAP HAP	HTAC	2.1E-03	2.1E-06	2.1E-06	2.14E-04	1.55E-06	2.14E-04	1.43E-06	9.33E-04	5.94E-06	7.76E-04	4.94E-06	4.71E-05 1.94E-03	3.00E-07 1.23E-05
71-43-2	Bromomethane	HAP	HIAC 	2.1E-U3	Z.1E-Ub	Z.1E-Ub	Z.14E-U4	1.33E-Ub	Z.14E-U4	1.43E-Ub	9.55E-U4	J.94E-Ub	7.70E-U4	4.94E-UD	1.94E-03	1.23E-U5
74-83-3	Chloromethane	HAP		1				<u> </u>		 	1	 	1			
75-00-3	Chloroethane	HAP		Ì						1	İ	1	1		1.87E-06	1.19E-08
75-01-4	Vinyl Chloride	HAP	HTAC		!			İ		!		!			2.47E-05	1.57E-07
75-07-0	Acetaldehyde	HAP	HTAC					<u> </u>			7.67E-04	4.88E-06	2.52E-05	1.60E-07	8.36E-03	5.32E-05
75-09-2	Methylene Chloride	HAP													1.47E-04	9.35E-07
75-34-3	1,1-Dichloroethane	HAP			ļ			<u> </u>		<u> </u>		1	<u> </u>		3.91E-05	2.49E-07
75-56-9	Propylene oxide	HAP			<u> </u>			 				<u> </u>	ļ			
78-87-5	1,2-Dichloropropane	HAP	HTAC		<u> </u>	 		 		 	-	 	1		4.46E-05	2.84E-07
79-00-5	1,1,2-Trichloroethane	HAP	HTAC		 		1	 	1	 		 	 		5.27E-05	3.35E-07
79-01-6 79-34-5	Trichloroethene 1,1,2,2-Tetrachloroethane	HAP	HTAC HTAC	1	 	 	}	 	}	 	 	 	+		6.63E-05	4.22E-07
87-86-5	Pentachlorophenol	HAP	HIAC 	1		 		 		 	1	 	 		6.63E-05 	4.22E-U/
88-06-2	2,4,6-Trichlorophenol	HAP		1						 	1	1	1			<u> </u>
91-20-3	Naphthalene	HAP @	HTAC (POM)	6.1E-04	6.0E-07	6.0E-07	1.13E-03	8.19E-06	1.13E-03	7.53E-06	8.48E-05	5.40E-07	1.30E-04	8.27E-07	9.71E-05	6.18E-07
92-52-4	Biphenyl	HAP			İ			i		<u> </u>		l			2.12E-04	1.35E-06
95-47-6	o-Xylene	HAP														
98-86-2	Acetophenone	HAP			į			<u> </u>				<u> </u>				<u> </u>
100-02-7	4-Nitrophenol	HAP			<u> </u>		1	ļ				<u> </u>	ļ			
100-41-4	Ethylbenzene	HAP			į	<u> </u>	6.36E-05	4.61E-07	6.36E-05	4.24E-07				İ	1.08E-04	6.87E-07

				Conservative* A		Conservative* Emission Fact			AP-42 Emission illate No. 2 Fuel		AP-42 Emission	Conservative* A		Conservative* A		Conservative* Factor for Nat	tural Gas-fired
				Gas	1	Combustion of P	Propane ²	Oil Com	bustion ³	Oil Con	nbustion ⁴	Engines < (lb/ MMBtu	600 HP ⁵ 	Engines > (lb/ MMBtu	600 нр ⁶	unkno (lb/ MMBtu	own) ⁷
CAS No.	Air Contaminant	HAP?	HTAC?	(lb/ 10 ⁶ scf)	(lb/MMBtu)	(lb,	/MMBtu)	(lb/ 10 ³ Gal)	(lb/MMBtu)	(lb/ 10 ³ Gal)	(lb/MMBtu)	fuel input)	(lb/hp-hr)	fuel input)	(lb/hp-hr)	fuel input)	(lb/hp-hr)
100-42-5	Styrene	HAP			! !								I I			5.48E-05	3.49E-07
106-93-4	Ethylene Dibromide	HAP	HTAC													7.34E-05	4.67E-07
106-99-0	1,3-Butadiene	HAP	HTAC									< 3.91E-05	2.49E-07			8.20E-04	5.22E-06
107-02-8	Acrolein	HAP	HTAC									< 9.25E-05	5.89E-07	7.88E-06	5.01E-08	7.78E-03	4.95E-05
107-06-2 108-88-3	1,2-Dichloroethane Toluene	HAP HAP	HTAC 	3.4E-03	3.3E-06		3.3E-06	6.20E-03	4.49E-05	6.20E-03	4.13E-05	4.09E-04	2.60E-06	2.81E-04	1.79E-06	4.22E-05 9.63E-04	2.68E-07 6.13E-06
108-90-7	Chlorobenzene	HAP		3.4E-03	3.3E-00		3.3E=00	0.20E-03	4.49E-03	0.20E-03	4.13E-03	4.09E-04	2.00E-00	2.01E-04	1.79E-00	4.44E-05	2.82E-07
108-95-2	Phenol	HAP			! !						!			1		4.21E-05	2.68E-07
110-54-3	Hexane	HAP		1.8E+00	1.8E-03		1.8E-03									1.11E-03	7.06E-06
117-81-7	bis(2-ethylhexyl)phthalate	HAP															
123-38-6	Propanal	HAP															
127-18-4	Tetrachloroethene	HAP	HTAC														
540-84-1	2,2,4-Trimethylpentane	HAP														8.46E-04	5.38E-06
542-75-6 1330-20-7	1,3-Dichloropropene	HAP HAP	HTAC 		<u> </u>			1.09E-04	7.005.07	4 005 04	7 275 07	2.85E-04	1.015.06	4.035.04	4 225 06	4.38E-05 2.68E-04	2.79E-07
7440-36-0	Xylenes Antimony	HAP				 		1.09E-04	7.90E-07	1.09E-04 5.25E-03	7.27E-07 3.50E-05	2.85E-04	1.81E-06	1.93E-04	1.23E-06	2.08E-04	1.71E-06
7440-38-2	Arsenic	HAP	HTAC	2.0E-04	2.0E-07		2.0E-07		4E-06	1.32E-03	8.80E-06						
1 35 2		"	(As cmpds)						00		2.232.00			1		ĺ	
7440-41-7	Beryllium	HAP	HTAC (Be cmpds)	< 1.2E-05	1.2E-08	< 2	1.2E-08		3E-06	2.78E-05	1.85E-07						
7440-43-9	Cadmium	HAP	HTAC (Cd cmpds)	1.1E-03	1.1E-06	-	1.1E-06		3E-06	3.98E-04	2.65E-06						
7440-47-3	Chromium	HAP	HTAC (Cr cmpds)	1.4E-03	1.4E-06	-	1.4E-06		3E-06	8.45E-04	5.63E-06						
	Chromium VI	HAP (part of Cr)	HTAC (Cr VI cmpds)							2.48E-04	1.65E-06						
7440-48-4	Cobalt	HAP		8.4E-05	8.2E-08	8	8.2E-08			6.02E-03	4.01E-05						
7439-92-1	Lead	CRITERIA /	HTAC	5.E-04	5E-07	4	4.9E-07		9E-06	1.51E-03	1.01E-05						
7439-96-5	Manganese	HAP HAP	(Pb cmpds) HTAC	3.8E-04	3.7E-07	3	3.7E-07		6E-06	3.00E-03	2.00E-05		<u> </u>				
7439-97-6	Mercury	HAP	(Mn cmpds) HTAC	2.6E-04	2.5E-07		2.5E-07		3E-06	1.13E-04	7.53E-07		<u> </u> 				
7440-02-0	Nickel	HAP	(Hg cmpds) HTAC	2.1E-03	2.1E-06		2.1E-06		3E-06	8.45E-02	5.63E-04						
			(Ni cmpds)														
7647-01-0	Hydrogen chloride	HAP															
7782-49-2	Selenium	HAP		2.4E-05	2.4E-08		2.4E-08		1.5E-05	6.83E-04	4.55E-06						
7782-50-5	Chlorine	HAP			į												
	TOTAL HAPs = NOTE: "Naphthalene" is included in "POM". To avoid double counting, the value for its contribution to POM has been subtracted			< 1.9E+00	1.9E-03	< 1	1.9E-03		3.44E-04	1.45E-01	9.65E-04	< 3.87E-03	2.46E-05	1.57E-03	1.00E-05	8.18E-02	5.20E-04
	out. MAXIMUM VALUE OF INDIVIDUAL HAPs = COMPOUND WITH MAXIMUM VALUE =			1.8E+00	1.8E-03 xane)	(Hexar	1.8E-03	(Forma	2.39E-04 ldehyde)	(Form:	5.63E-04 aldehyde)	1.18E-03	7.51E-06 Idehyde)	7.76E-04	4.94E-06 zene)	5.52E-02	3.51E-04 dehyde)
	- CONTROUND WITH IVIAAIIVIOIVI VALUE =			(не		(Hexal		(i oi illa	.uciiyucj	(101111		(i oi illa		(Bei		(i oiillai	uciiyuc/
Non-HAP Pollutants	T			1	1	1					1		1	_	1	T	
65-85-0	Benzoic Acid	non-HAP			 	 							 	 			
66-25-1 67-64-1	Hexanal Acetone	non-HAP non-HAP		1	<u>; </u>	 					i		i i	 	i		
71-55-6	1,1,1-Trichloroethane	non-HAP			<u> </u>	l i		2.36E-04	1.71E-06	2.36E-04	1.57E-06		 	 			
74-82-8	Methane	non-HAP		Ì	<u> </u>	 			,	552 07	2.57.2.00		1	†	! !		
74-84-0	Ethane	non-HAP		3.1E+00	3.0E-03		3.0E-03						1			1.05E-01	6.68E-04
74-98-6	Propane	non-HAP		1.6E+00	1.6E-03		1.6E-03						<u> </u>			4.19E-02	2.67E-04
75-28-5	Isobutane	non-HAP											ļ	L		3.75E-03	2.39E-05
75-69-4	Trichlorofluoromethane	non-HAP			<u> </u>						!		<u> </u>				
78-84-2	Isobutyraldehyde	non-HAP		1	!	 							 	.			
78-93-3 86-74-8	Methyl ethyl ketone Carbazole	non-HAP non-HAP		 	<u> </u> 	 					<u> </u>		<u> </u>	 	<u> </u>		
88-75-5	2-Nitrophenol	non-HAP		 	! !	+					<u> </u>		<u> </u>	 	! 		
91-58-7	2-Nitrophenoi 2-Chloronaphthalene	non-HAP			<u> </u> 									 			
95-57-8	2-Chlorophenol	non-HAP		Ì									1	1			
95-63-6	1,2,4-Trimethylbenzene	non-HAP														1.11E-04	7.06E-07
100-52-7	Benzaldehyde	non-HAP															
104-87-0	p-Tolualdehyde	non-HAP															
106-97-8	Butane	non-HAP		2.1E+00	2.1E-03		2.1E-03					-				4.75E-03	3.02E-05
108-67-8	1,3,5-Trimethylbenzene	non-HAP		ļ	<u> </u> 	 							<u> </u>		<u> </u>	3.38E-05	2.15E-07
108-87-2	Methylcyclohexane	non-HAP		3.65.00	2.55.00		2 5 5 02						 	-	<u> </u>	1.23E-03	7.83E-06
109-66-0 110-82-7	n-Pentane Cyclobeyane	non-HAP		2.6E+00	2.5E-03		2.5E-03				i		<u>i</u>	 	<u> </u> 	2.60E-03 3.08E-04	1.65E-05 1.96E-06
110-82-7	Cyclohexane n-Nonane	non-HAP non-HAP		1	i 	 					<u>i</u>		<u> </u>	 	i I	3.08E-04 1.10E-04	1.96E-06 7.00E-07
111-65-9	n-Octane	non-HAP		1										 		3.51E-04	2.23E-06
115-07-1	Propylene	non-HAP		Ì								2.58E-03	1.64E-05	2.79E-03	1.78E-05	3.31L 04	
		non-HAP			!						!				!	2.27E-04	1.44E-06
287-92-3	Cyclopentane	HOH-HAP			<u> </u>						<u> </u>		<u> </u>	<u> </u>		2.27 L 04	11112 00

REFERENCE 1

COMBUSTION PROCESSES - SUMMARY OF USEPA AP-42 EMISSION FACTORS FOR PRODUCTS OF COMBUSTION

CAS No.	Air Contaminant	HAP?	HTAC?	Conservative* A Factor for Combus Gas (lb/ 10 ⁶ scf)	stion of Natural	Conservative* AP-42 Emission Factor for Combustion of Propane	Factor for Di Oil Co		Factor for Dis Oil Con	* AP-42 Emission tillate No. 6 Fuel nbustion ⁴		ntrolled Diesel	Conservative* A Factor for Uncor Engines > ((lb/ MMBtu fuel input)	ntrolled Diesel	Factor for Na Engines (Ty	AP-42 Emission tural Gas-fired pe of Engine own) ⁷
526-73-8	1,2,3-Trimethylbenzene	non-HAP						!			1				3.54E-05	2.25E-07
529-20-4	o-Tolualdehyde	non-HAP						ļ								
540-49-0	1,2-Dibromoethene	non-HAP			!			į								
4170-30-3	Crotonaldehyde	non-HAP			İ	į		!								
7440-39-3	Barium	non-HAP		4.4E-03	4.3E-06	4.3E-06		į	2.57E-03	1.71E-05						
7440-50-8	Copper	non-HAP		8.5E-04	8.3E-07	8.3E-07		6E-06	1.76E-03	1.17E-05						
7439-98-7	Molybdenum	non-HAP		1.1E-03	1.1E-06	1.1E-06		į	7.87E-04	5.25E-06						
7440-62-2	Vanadium	non-HAP	HTAC	2.3E-03	2.3E-06	2.3E-06		ł	3.18E-02	2.12E-04						
7440-66-6	Zinc	non-HAP		2.9E-02	2.8E-05	2.8E-05		4E-06	2.91E-02	1.94E-04						
25321-22-6	Dichlorobenzene	non-HAP		1.2E-03	1.2E-06	1.2E-06		į								
	Butyr/Isobutyraldehyde	non-HAP						ŀ							4.37E-04	2.78E-06
	Fluoride	non-HAP							3.73E-02	2.49E-04						
7723-14-0	Phosphorous	non-HAP							9.46E-03	6.31E-05						

* Where AP-42 has indicated that the emission factor is less than a specified value, have assumed that the contaminant is emitted at the specified value.

@ Compound qualifies as Polycyclic Organic Matter (POM).

NOTE: Naphthalene is a listed HAP as well as part of "TOTAL POM", and thus appears twice in the table above.

¹ Emission factors for natural gas are taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-3 & 1.4-4.

Where AP-42 provides a value in units of lb/10⁶ scf, the value was converted to lb/MMBtu as follows:

(EF, lb/MMBtu) = (EF, lb/10⁶ scf) x (scf /1020 Btu) x [10⁶ Btu/MMBtu]

NOTE: The footnotes to AP-42 Tables 1.4-3 & 1.4.4 indicate that a value of 1020 Btu/scf should be used to convert the emission factor (in lb/10⁶ scf) to lb/MMBtu.

² Emission factors for propage are assumed to be the same as natural gas

NOTE: Per AP-42, "1.5 Liquified Petroleum Gas Combustion", Table 1.5-1 states that "...TOC emissions are assumed to be the same, on a heat input basis, as for natural gas combustion". While Section 1.5 of AP-42 does not provide any information regarding speciated HAPs, the emissions of HAPs (which are presumably a subset of TOC) are assumed to be the same on a heat input basis as natural gas.

³ Emission factors for No. 2 fuel oil are taken from AP-42, Section 1.3 ("Fuel Oil Combustion"), Tables 1.3-9 & 1.3-10. [NOTE: The footnote to Table 1.3-9 (which contains all organic compounds) states that the data is from residual oil fired boilers]. Where AP-42 provides a value in units of lb/10³ gal, the value was converted to lb/MMBtu as follows:

(EF, lb/MMBtu) = (EF, lb/10³ Gal) / (138 MMBtu/ 10³ gal)

where, 138 MMBtu/10³ gal = HHV of No. 2 Fuel Oil (REF: 40 CFR Part 98, Subpart C Table C-1)

⁴ Emission factors for No. 6 fuel oil are taken from AP-42, Section 1.3 ("Fuel Oil Combustion"), Tables 1.3-9 & 1.3-11.

Where AP-42 provides a value in units of lb/10³ gal, the value was converted to lb/MMBtu as follows:

(EF, lb/MMBtu) = (EF, lb/ 10^3 Gal) / (150 MMBtu/ 10^3 gal)

where, 150 MMBtu/10³ gal = HHV of No. 6 Fuel Oil (REF: 40 CFR Part 98, Subpart C Table C-1)

⁵ Emission factors for uncontrolled diesel engines less than 600 HP are taken from AP-42, Section 3.3 ("Gasoline and Diesel Industrial Engines"), Table 3.3-2.

Where AP-42 provides a value in units of lb/MMBtu of fuel input, an estimated value for lb/hp-hr output was conservatively estimated by assuming a 40% efficiency for the engine. Specifically, (EF, lb/hp-hr) = (EF, lb/MMBtu fuel input) x [0.002545 MMBtu/hp] / 0.4

⁶ Emission factors for uncontrolled diesel engines greater than 600 HP are taken from AP-42, Section 3.4 ("Large Stationary Diesel and All Stationary Dual-fuel Engines"), Tables 3.4-3 and 3.4-4.

Where AP-42 provides a value in units of lb/MMBtu of fuel input, an estimated value for lb/hp-hr output was conservatively estimated by assuming a 40% efficiency for the engine. Specifically,

(EF, lb/hp-hr) = (EF, lb/MMBtu fuel input) x [0.002545 MMBtu/hp] / 0.4

⁷ Emission factors for natural gas fired engines taken from AP-42, Section 3.2 ("Natural Gas-fired Reciprocating Engines"), Tables 3.2-1, 3.2-2 & 3.2-3. Values conservatively reflect the highest emission factor for all natural gas-fired engines (2-stroke, 4-stroke, rich/lean burn). Emission factors for the individual types of natural gas fired engines is provided in a separate table.

Where AP-42 provides a value in units of lb/MMBtu of fuel input, an estimated value for lb/hp-hr output was conservatively estimated by assuming a 40% efficiency for the engine. Specifically,

(EF, lb/hp-hr) = (EF, lb/MMBtu fuel input) x [0.002545 MMBtu/hp] / 0.4

AP-42 Emission Facto	or for Natural Gas-fired Engines				Footoolo	Fk	
				2 Studio Dieb		n Factors	Word Coss
				2-Stroke Rich	4-Stroke Lean Burn Engines	4-Stroke Rich Burn Engines	Worst-Case
				Burn Engines	(lb/MMBtu fuel	(lb/MMBtu fuel	Emission Factor
CAS No.	HAP Pollutants	HAP?	HTAC?	(lb/MMBtu fuel input) ¹	input) ¹	input) ¹	(lb/MMBtu
		HAF;	IIIAC:	input)	iliput)	iliput)	input) ²
-	rcyclic Organic Matter	IIAD @	HTAC (POM)	E COE 00			F 69F 00
50-32-8 56-55-3	Benzo(a)pyrene Benzo(a)anthracene	HAP @	HTAC (POM)	5.68E-09 3.36E-07			5.68E-09 3.36E-07
83-32-9	Acenaphthene	HAP @	HTAC (POM)	1.33E-06	1.25E-06		1.33E-06
85-01-8	Phenanthrene	HAP @	HTAC (POM)	3.53E-06	1.04E-05		1.04E-05
86-73-7	Fluorene	HAP @	HTAC (POM)	1.69E-06	5.67E-06		5.67E-06
91-20-3	Naphthalene	HAP	HTAC (POM)	9.63E-05	7.44E-05	< 9.71E-05	9.71E-05
91-57-6	2-Methylnaphthalene	HAP @	HTAC (POM)	2.14E-05	3.32E-05		3.32E-05
120-12-7	Anthracene	HAP @	HTAC (POM)	7.18E-07			7.18E-07
129-00-0	Pyrene	HAP @	HTAC (POM)	5.84E-07	1.36E-06		1.36E-06
191-24-2	Benzo(g,h,i)perylene	HAP @	HTAC (POM)	2.48E-08	4.14E-07		4.14E-07
192-97-2	Benzo(e)pyrene	HAP @	HTAC (POM)	2.34E-08	4.15E-07		4.15E-07
193-39-5	Indeno(1,2,3-cd)pyrene	HAP @	HTAC (POM)	9.93E-09			9.93E-09
198-55-0	Perylene	HAP @	HTAC (POM)	4.97E-09			4.97E-09
205-99-2	Benzo(b)fluoranthene	HAP @	HTAC (POM)	8.51E-09	1.66E-07		1.66E-07
206-44-0	Fluoranthene	HAP @	HTAC (POM)	3.61E-07	1.11E-06		1.11E-06
207-08-9	Benzo(k)fluoranthene	HAP @	HTAC (POM)	4.26E-09			4.26E-09
208-96-8	Acenaphthylene	HAP @	HTAC (POM)	3.17E-06	5.53E-06		5.53E-06
218-01-9	Chrysene	HAP @	HTAC (POM)	6.72E-07	6.93E-07		6.93E-07
	Polycyclic Aromatic Hydrocarbons	HAP @	HTAC (POM)	1.34E-04	2.69E-05	1.41E-04	1.41E-04
	TOTAL POLYCYCLIC ORGANIC MATTER	HAP @	HTAC (POM)	2.64E-04	1.62E-04	2.38E-04	2.99E-04
Other Constant 1995) Rollistanto						
Other Speciated HAP		LIAD	LITAC	F F2F 02	F 20F 02	2.055.02	F F2F 02
50-00-0 56-23-5	Formaldehyde Carbon Tetrachloride	HAP	HTAC HTAC	5.52E-02 6.07E-05	5.28E-02 < 3.67E-05	2.05E-02	5.52E-02 6.07E-05
67-56-1			HIAC	2.48E-03		< 1.77E-05	3.06E-03
67-66-3	Methanol Chloroform	HAP		4.71E-05	2.50E-03 < 2.85E-05	3.06E-03 < 1.37E-05	4.71E-05
71-43-2	Benzene	HAP	HTAC	1.94E-03	4.40E-04	1.58E-03	1.94E-03
75-00-3	Chloroethane	HAP		1.546-05	1.87E-06	1.361-03	1.87E-06
75-01-4	Vinyl Chloride	HAP	HTAC	2.47E-05	1.49E-05	< 7.18E-06	2.47E-05
75-07-0	Acetaldehyde	HAP	HTAC	7.76E-03	8.36E-03	2.79E-03	8.36E-03
75-09-2	Methylene Chloride	HAP		1.47E-04	2.00E-05	4.12E-05	1.47E-04
75-34-3	1,1-Dichloroethane	HAP		3.91E-05	< 2.36E-05	< 1.13E-05	3.91E-05
78-87-5	1,2-Dichloropropane	HAP	HTAC	4.46E-05	< 2.69E-05	< 1.30E-05	4.46E-05
79-00-5	1,1,2-Trichloroethane	HAP	HTAC	5.27E-05	< 3.18E-05	< 1.53E-05	5.27E-05
79-34-5	1,1,2,2-Tetrachloroethane	HAP	HTAC	6.63E-05	< 4.00E-05	2.53E-05	6.63E-05
91-20-3	Naphthalene	HAP	HTAC (POM)	9.63E-05	7.44E-05	< 9.71E-05	9.71E-05
92-52-4	Biphenyl	HAP		3.95E-06	2.12E-04		2.12E-04
100-41-4	Ethylbenzene	HAP		1.08E-04	3.97E-05	< 2.48E-05	1.08E-04
100-42-5	Styrene	HAP		5.48E-05	< 2.36E-05	< 1.19E-05	5.48E-05
106-93-4	Ethylene Dibromide	HAP	HTAC	7.34E-05	< 4.43E-05	< 2.13E-05	7.34E-05
106-99-0	1,3-Butadiene	HAP	HTAC	8.20E-04	2.67E-04	6.63E-04	8.20E-04
107-02-8	Acrolein	HAP	HTAC	7.78E-03	5.14E-03	2.63E-03	7.78E-03
107-06-2	1,2-Dichloroethane	HAP	HTAC	4.22E-05	< 2.36E-05	< 1.13E-05	4.22E-05
108-88-3	Toluene	HAP		9.63E-04	4.08E-04	5.58E-04	9.63E-04
108-90-7	Chlorobenzene	HAP		4.44E-05	< 3.04E-05	< 1.29E-05	4.44E-05
108-95-2	Phenol 	HAP		4.21E-05	2.40E-05		4.21E-05
110-54-3	Hexane	HAP		4.45E-04 8.46F-04	1.11E-03 2.50E-04	***	1.11E-03 8.46F-04
540-84-1	2,2,4-Trimethylpentane		LITAC	0.102 0.1		< 1.27E-05	4.38E-05
542-75-6 1330-20-7	1,3-Dichloropropene Xylenes	HAP	HTAC 	4.38E-05 2.68E-04	< 2.64E-05 1.84E-04	< 1.27E-05 1.95E-04	4.38E-05 2.68E-04
1550-20-7		TIPAT					
	TOTAL HAPs =			7.97E-02	< 7.23E-02	< 3.25E-02	8.18E-02
	NOTE: "Naphthalene" is included in "POM".						
	To avoid double counting, the value for its						
	contribution to POM has been subtracted						
	out.						
	MAXIMUM VALUE OF INDIVIDUAL HAPS = COMPOUND WITH MAXIMUM VALUE =			5.52E-02 (Formaldehyde)	5.28E-02 (Formaldehyde)	2.05E-02 (Formaldehyde)	5.52E-02 (Formaldehyde)
	COMPOUND WITH MAXIMOM VALUE -			(Formaldenyde)	(Formaluellyue)	(Formaldenyde)	(Formaluenyue)
Non-HAP Pollutants							
74-84-0	Ethane	non-HAP		7.09E-02	1.05E-01	7.04E-02	1.05E-01
74-98-6	Propane	non-HAP		2.87E-02	4.19E-02		4.19E-02
75-28-5	Isobutane	non-HAP		3.75E-03			3.75E-03
95-63-6	1,2,4-Trimethylbenzene	non-HAP		1.11E-04	1.43E-05		1.11E-04
106-97-8	Butane	non-HAP	1	4.75E-03	5.41E-04		4.75E-03
108-67-8	1,3,5-Trimethylbenzene	non-HAP		1.80E-05	3.38E-05		3.38E-05
108-87-2	Methylcyclohexane	non-HAP		3.38E-04	1.23E-03		1.23E-03
109-66-0	n-Pentane Cycloboxana	non-HAP	1	1.53E-03	2.60E-03		2.60E-03
110-82-7	Cyclohexane	non-HAP	1	3.08E-04	1 10E-04		3.08E-04
111-84-2 111-65-9	n-Nonane	non-HAP	1	3.08E-05 7.44E-05	1.10E-04 3.51E-04		1.10E-04 3.51E-04
287-92-3	n-Octane Cyclopentane	non-HAP	1	9.47E-05	2.27E-04		3.51E-04 2.27E-04
526-73-8	1,2,3-Trimethylbenzene	non-HAP		3.54E-05	2.30E-05		3.54E-05
320 / 3-0	Butyr/Isobutyraldehyde			4.37E-04	1.01E-04	4.86E-05	4.37E-04
	Daty./130batyraidellyde		į.		1.012-04	7.00L-03	571.04

 $^{^{\}rm 1}$ Values from AP-42, "3.2 Natural Gas-fired Reciprocating Engines", Tables 3.2-1, 3.2-2 & 3.2-3.

² Highest emission factor chosen as a worst-case representation for all natural gas-fired engines (2-stroke, 4-stroke, rich/lean burn).

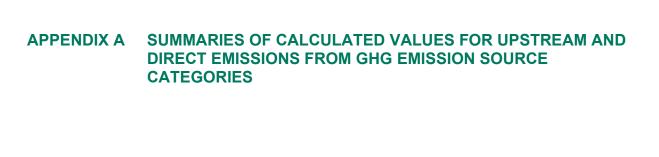
REFERENCE 3-A: MAP OF PRIMARY LOCAL TRUCK ROUTE WITHIN 1/4-MILE OF FACILITY USED FOR DELIVERY / PICK-UP AND RETURN

(¼ mile from Revere Copper Products Inc.. to Intersection of Gansevoort Ave and Seneca Street)

REFERENCE 3-B: MAP OF TRUCK ROUTE USED FOR METAL SHIPMENT

REFERENCE 3-C: MAP OF TRUCK ROUTE USED FOR RECEIPT OF SCRAP COPPER

REFERENCE 3-D: MAP OF TRUCK ROUTE USED FOR DELIVERY OF PARTS & MATERIALS



REFERENCE 3-E: MAP OF TRUCK ROUTE USED FOR PICK-UP OF WASTE (WASTE MANAGEMENT)

REFERENCE 3-F: MAP OF TRUCK ROUTE USED FOR PICK-UP OF WASTE (DUMPSTERS)

					TO EMIT FOI																	POTENT	IAL TO EMIT FOR HAZARDOUS (= HAZARDOUS)			R)													
GHG DURCE NO.	DESCRIPTION OF STATIONARY SOURCES	TYPE OF EMISSIONS	CO2	CH4	N2O	TOTAL CO2e 1	TOTAL POM	Formate hyde Cor	poor thorite	d chordon	Benzene	horse thank	My Chloride Ace	colde myde Met	hylene Chloride	horoethone 1,7 Dich	otopiopie Triplocet	note 1.1.2.1 hore	phrodere Bioheend	stwiterzene Star	ne Ethyle	ene Jibromide	godene Richem 3.3	2 Dichloroe than	ere chorotetrer	Phenol	Headure 1	inethile 12	ethorogene	5 Antime	ont Arsenic	Berylium	odmium chron	Jurn Coppet	lead	Montgoness	Mercuri Mich	Selenii	gr / 4
o	oilers, Firing Natural Gas r No. 6 Oil	Upstream	1.66E+04	4.77E+02	1.9E-01	5.67E+04																																	
	Annual Use of Fuel Oil imited by PC # 9)	Direct	7.22E+04	1.7E+00	3.3E-01	7.23E+04	2.0E-03 5.5E	-02		1.3	E-03							1.9E-0	1.1E-	04				1.0E-02		1.1E+	+00		1.8E-04	8.8E-03	2.2E-03 4.7E	-05 6.7E-	04 1.4E-03	1.0E-02	2.5E-03	5.0E-03 1.9E-	-04 1.4E-01	1.1E-03	1.1E+00
	ake Furnace, Firing Natural as	Upstream	6.10E+03	1.75E+02	7.0E-02	2.08E+04																																	
		Direct	2.65E+04	5.0E-01	5.0E-02	2.65E+04	1.5E-04 1.7E	-02		4.7	'E-04							1.4E-0						7.6E-04		4.0E-	-01				4.4E-05 2.7E	-06 2.4E-	04 3.1E-04	1.9E-05	1.1E-04	8.5E-05 5.8E-	-05 4.7E-04	5.3E-06	4.2E-01
	mission Sources Firing latural Gas (to Supply DX	Upstream	7.05E+02	2.02E+01	8.1E-03	2.41E+03																																	
G	ias)	Direct	3.06E+03	5.8E-02	5.8E-03	3.07E+03	1.8E-05 1.9E	-03		5.4	E-05							1.6E-0						8.7E-05		4.6E-	-02				5.1E-06 3.1E	-07 2.8E-	05 3.6E-05	2.2E-06	1.3E-05	9.8E-06 6.7E-	-06 5.4E-05	6.2E-07	4.9E-02
	other Facility Combustion ources Firing Natural Gas	Upstream			7.0E-02																																		
		Direct	2.65E+04				1.6E-04 1.7E	-02		4.7	E-04							1.4E-0						7.6E-04		4.0E-	-01				4.5E-05 2.7E	-06 2.5E-	04 3.1E-04	1.9E-05	1.1E-04	8.5E-05 5.8E-	-05 4.7E-04	5.3E-06	4.2E-01
	mergency Engines < 600 IP, Firing Diesel	Upstream	8.59E+00																																				
•	.,, i i i i g z i coci	Direct	4.35E+01		3.5E-04		4.5E-05 3.2E	-04		2.5	E-04		2.0E-04					2.3E-0				1.0E-05	2.5E-05	1.1E-04					7.6E-05										1.0E-03
	mergency Engines >600 IP, Firing Diesel	Upstream		1.12E+00		2.31E+02																																	
•	.,, i i i i g z i coci	Direct					9.0E-04 3.4E	-04		3.3	E-03		1.1E-04					5.5E-0					3.4E-05	1.2E-03					8.2E-04										6.7E-03
	mergency Engines, Firing latural Gas	Upstream	5.47E+00	1.57E-01	6.3E-05	1.87E+01																																	
.,		Direct	2.38E+01	4.5E-04	4.5E-05	2.38E+01	6.1E-05 1.1E	-02 1.2E-05	6.2E-04 9	0.6E-06 3.9	E-04 3.8E-	5.0E-0	5 1.7E-03	3.0E-05	8.0E-06	9.1E-06 1	.1E-05 1.3E-	05 2.0E-0	4.3E-05 2.2E-	05 1.1E-05	1.5E-05	1.7E-04	1.6E-03 8.6E-06	6 2.0E-04	9.0E-06 8.6E	-06 2.3E-	04 1.7E-04	8.9E-06	5.5E-05										1.7E-02
Т	OTAL PTE FOR ALL STATION	ARY SOURCES OF GHG	1.6E+05	8.5E+02	7.9E-01	2.3E+05	3.3E-03 1.0E	-01 1.2E-05	6.2E-04 9	0.6E-06 6.2	E-03 3.8E-	7 5.0E-0	5 2.0E-03	3.0E-05	8.0E-06	9.1E-06 1	.1E-05 1.3E-	05 2.8E-0	4.3E-05 1.3E-	04 1.1E-05	1.5E-05	1.8E-04	1.6E-03 8.6E-06	6 1.4E-02	9.0E-06 8.6E	-06 1.9E+	1.7E-04	8.9E-06	1.1E-03	8.8E-03	2.3E-03 5.2E	-05 1.2E-	03 2.1E-03	1.0E-02	2.8E-03	5.2E-03 3.1E	04 1.4E-01	1.2E-03	2.1E+0

					O EMIT FOR ASES (TONS																			AL TO EMIT FO			TONS/YR)														
G CE DESCRIPTION C STATIONARY SOUI	RCES EM		CO2	CH4	N2O	TOTAL CO2e 1	40	Tal Poly For	oddenyk Carbon Child	nderhand cho	ndform Rentere	Chlorize:thank	uny thorde	ature make mermin	ne Chloride	gorgetrone 1,2 Dighter	odeodore Tidhor	sethane 1,1,2,2 Tetrachi	treethane h	pheny Eth	nyther terne	e Ethylere	Dibromide	dere Accolein	3.2-Dichlorozetho	are duere	hordbentene pher	od Hestore	224 Titresti	gentale Jetharan	genes Antimo	W Arsenic	Beryllum	codmium C	gornium Cob	odit Leed	Mortgare	Mercury	Nickel	Şeleriur	/ °/ ₄
Boilers, Firing Natura (No. 2 Oil as Back-up)	· ·	ream 1.	.66E+04	4.77E+02	1.9E-01	5.67E+04																																			
Operated as "Gas-Fir Boilers" Under 40 CFI Subpart JJJJJ)		t 7.	.22E+04	1.36E+00	1.4E-01	7.23E+04	4.2E-04	4 4.5E-02			1.3E-03							3.76	i-04						2.1E-0	13		1.1E+00			1	1.2E-04 7.3E	E-06 6.7E-	04 8.5E-0	4 5.1E-05	3.0E-04	2.3E-04 1.	.6E-04 1.	.3E-03 1	5E-05 1	1E+0
Cake Furnace, Firing	Natural Upst	ream 6.	.10E+03	1.75E+02	7.0E-02	2.08E+04																																			
Gas	Dire	ct 2.	.65E+04	5.0E-01	5.0E-02	2.65E+04	1.5E-04	4 1.7E-02			4.7E-04							1.46	-04						7.6E-0	14		4.0E-01			4	1.4E-05 2.7E	E-06 2.4E-	04 3.1E-0	4 1.9E-05	1.1E-04	8.5E-05 5.8	.8E-05 4.	.7E-04 5	3E-06 4	1.2E-0
Emission Sources Firi			.05E+02	2.02E+01	8.1E-03	2.41E+03																																			
Natural Gas (to Supp Gas)	Dire	t 3.	.06E+03	5.8E-02	5.8E-03	3.07E+03	1.8E-05	5 1.9E-03			5.4E-05							1.68	-05						8.7E-0	15		4.6E-02			ī	5.1E-06 3.1E	-07 2.8E-	05 3.6E-0	5 2.2E-06	1.3E-05	9.8E-06 6.	.7E-06 5.	.4E-05 6	2E-07 4	1.9E-0
Other Facility Combu		ream 6.	.11E+03	1.75E+02	7.0E-02	2.09E+04																																			
Sources, Firing Natur	al Gas Dire	t 2.	.65E+04	5.0E-01	5.0E-02	2.66E+04	1.6E-04	4 1.7E-02			4.7E-04							1.46	-04						7.6E-0	14		4.0E-01			4	1.5E-05 2.7E	E-06 2.5E-	04 3.1E-0	4 1.9E-05	1.1E-04	8.5E-05 5.3	.8E-05 4.	.7E-04 5	3E-06 4	1.2E-
Emergency Engines <	600 Upst	ream 8.	.59E+00	7.00E-02	1.5E-04	1.45E+01																																			
HP, Firing Diesel	Dire	ct 4.	.35E+01	1.8E-03	3.5E-04	4.37E+01	4.5E-05	5 3.2E-04			2.5E-04		2.0E-04	1				2.38	-05			1	.0E-05 2	2.5E-05	1.1E-0	14				7.6E-0	5									1	1.0E-0
Emergency Engines >	600 Upst	ream 1.	.37E+02	1.12E+00	2.3E-03	2.31E+02																																			
HP, Firing Diesel	Dire	t 6.	.93E+02	2.8E-02	5.6E-03	6.97E+02	9.0E-04	4 3.4E-04			3.3E-03		1.1E-04	1				5.58	-04				3	3.4E-05	1.2E-0	13				8.2E-0	4									6	6.7E-
Emergency Engines, F	iring Upst	ream 1.	.58E+01	4.52E-01	1.81E-04	5.38E+01																																			
Natural Gas	Dire	t 6.	.85E+01	1.29E-03	1.29E-04	6.86E+01	1.8E-04	4 3.2E-02	3.6E-05 1.8E	E-03 2.8E-05	1.1E-03 1	.1E-06 1.4E	-05 4.9E-03	8.6E-05 2	.3E-05 2.	.6E-05 3.1	1E-05 3.9	E-05 4.8E	-02 1.2E-0	4 6.3E-05	5 3.2E-05	4.3E-05 4	.8E-04 4	1.6E-03 2.5E	-05 5.7E-04	2.6E-0	5 2.5E-05	6.5E-04 5	5.0E-04 2.6I	-05 1.6E-0	4									4	4.8E-
TOTAL PTE FOR ALL S		SOURCES 1	1.6E+05	8.5E+02	5.9E-01	2.3E+05	1.9E-03	3 1.1E-01	3.6E-05 1.8E	E-03 2.8E-05	7.0E-03 1	.1E-06 1.4E	-05 5.2E-03	8 8.6E-05 2	.3E-05 2.	.6E-05 3.1	1E-05 3.9	E-05 4.9E	-02 1.2E-0	4 6.3E-05	5 3.2E-05	4.3E-05 4	.9E-04 4	1.6E-03 2.5E	-05 5.5E-0	3 2.6E-0	5 2.5E-05	1.9E+00 5	5.0E-04 2.6I	-05 1.1E-0	3 0.0E+00 2	2.2E-04 1.3E	-05 1.2E-	03 1.5E-0	3 9.0E-05	5.4E-04	4.1E-04 2.	.8E-04 2.	.3E-03 2	.6E-05 2	2.1E+/

 ${\it Differences \ between \ Current \ \ Operating \ Scenario \ and \ Future \ Operating \ Scenario \ are \ shown \ in \ blue.}$

7/20/2023

¹ In accordance with DAR-21, the CO2e value has been calculated using the 20-year global warming potential (GWP) values listed in 6 NYCRR 496.5. (NOTE: These values differ from the 100-yr GWP values that are used for permitting and New Source Review evaluations).

² Per ECL § 75-0101, "co-pollutants" are defined as Hazardous Air Pollutants produced by greenhouse gas emissions sources.

³ Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

TABLE A-2.1. ACTUAL EMISSIONS OF GHG FOR FIVE-YEAR PERIOD

			AC	TUAL EMIS	SIONS IN 20	018	AC	TUAL EMIS	SIONS IN 20)19	AC	TUAL EMIS	SIONS IN 20)20	AC	TUAL EMIS	SIONS IN 20	021	AC	TUAL EMIS	SIONS IN 20)22
				(TON	S/YR)			(TON	IS/YR)			(TON	IS/YR)			(TON	S/YR)			(TON	S/YR)	
GHG SOURCE NO.	DESCRIPTION OF STATIONARY SOURCES	TYPE OF EMISSIONS	CO2	CH4	N2O	TOTAL CO2e 1	CO2	CH4	N2O	TOTAL	CO2	CH4	N2O	TOTAL CO2e 1	CO2	CH4	N2O	TOTAL	CO2	CH4	N2O	TOTAL CO2e 1
NO.																						
1-A	Boilers, Firing Natural Gas	Upstream Emissions	2.70E+03	7.74E+01	3.1E-02	9.20E+03	3.11E+03	8.92E+01	3.6E-02	1.06E+04	3.34E+03	9.56E+01	3.8E-02	1.14E+04	2.71E+03	7.76E+01	3.1E-02	9.23E+03	1.31E+03	3.75E+01	1.5E-02	4.46E+03
		Direct Emissions	1.17E+04	2.2E-01	2.2E-02	1.17E+04	1.35E+04	2.5E-01	2.5E-02	1.35E+04	1.45E+04	2.7E-01	2.7E-02	1.45E+04	1.18E+04	2.2E-01	2.2E-02	1.18E+04	5.67E+03	1.1E-01	1.1E-02	5.69E+03
1-B	Boilers, Firing No. 6 Oil	Upstream Emissions	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00	0.00E+00	1.15E+01	1.12E-01	2.0E-04	2.10E+01	9.77E+01	9.52E-01	1.7E-03	1.78E+02	0.00E+00	0.00E+00	0.0E+00	0.00E+00
		Direct Emissions	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00	0.00E+00	7.74E+01	3.1E-03	6.2E-04	7.78E+01	6.55E+02	2.6E-02	5.2E-03	6.59E+02	0.00E+00	0.0E+00	0.0E+00	0.00E+00
2	Cake Furnace, Firing Natura Gas	Upstream Emissions	1.29E+03	3.70E+01	1.5E-02	4.40E+03	2.06E+03	5.90E+01	2.4E-02	7.02E+03	3.16E+03	9.07E+01	3.6E-02	1.08E+04	1.30E+03	3.72E+01	1.5E-02	4.43E+03	1.48E+03	4.24E+01	1.7E-02	5.05E+03
		Direct Emissions	5.60E+03	1.1E-01	1.1E-02	5.62E+03	8.94E+03	1.7E-01	1.7E-02	8.96E+03	1.37E+04	2.6E-01	2.6E-02	1.38E+04	5.64E+03	1.1E-01	1.1E-02	5.65E+03	6.42E+03	1.2E-01	1.2E-02	6.44E+03
3	Emission Sources Firing Natural Gas (to Supply DX	Upstream Emissions	5.52E+02		6.3E-03	1.88E+03	5.53E+02	1.58E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03
	Gas)	Direct Emissions	2.40E+03	4.5E-02	4.5E-03	2.40E+03	2.40E+03	4.5E-02	4.5E-03	2.40E+03	2.40E+03	4.5E-02	4.5E-03	2.41E+03	2.40E+03	4.5E-02	4.5E-03	2.41E+03	2.40E+03	4.5E-02	4.5E-03	2.41E+03
4	Other Facility Combustion Sources, Firing Natural Gas	Upstream Emissions	2.09E+03		2.4E-02	7.12E+03	2.05E+03	5.87E+01	2.3E-02	6.98E+03	1.83E+03	5.26E+01	2.1E-02	6.25E+03	4.38E+03	1.26E+02	5.0E-02	1.49E+04	4.27E+03		4.9E-02	1.46E+04
		Direct Emissions	9.05E+03	1.7E-01	1.7E-02	9.07E+03	8.89E+03	1.7E-01	1.7E-02	8.91E+03	7.96E+03	1.5E-01	1.5E-02	7.97E+03	1.90E+04	3.6E-01	3.6E-02	1.91E+04	1.86E+04	3.5E-01	3.5E-02	1.86E+04
5	Emergency Engines <600 HP, Firing Diesel	Upstream Emissions	6.63E-01	5.41E-03	1.1E-05	1.12E+00	9.45E-01	7.70E-03	1.6E-05	1.60E+00	4.52E-01	3.68E-03	7.7E-06	7.63E-01	4.52E-01	3.68E-03	7.7E-06	7.63E-01	4.17E-01	3.40E-03	7.1E-06	7.05E-01
		Direct Emissions	3.36E+00	1.4E-04	2.7E-05	3.37E+00	4.78E+00	1.9E-04	3.9E-05	4.81E+00	2.29E+00	9.3E-05	1.9E-05	2.30E+00	2.29E+00	9.3E-05	1.9E-05	2.30E+00	2.11E+00	8.6E-05	1.7E-05	2.12E+00
6	Emergency Engines >600 HP, Firing Diesel	Upstream Emissions	4.44E+00	3.62E-02	7.6E-05	7.50E+00	4.71E+00	3.84E-02	8.1E-05	7.96E+00	4.14E+00	3.37E-02	7.1E-05	6.99E+00	3.67E+00	2.99E-02	6.3E-05	6.20E+00	8.22E-02	6.70E-04	1.4E-06	1.39E-01
		Direct Emissions	2.25E+01	9.1E-04	1.8E-04	2.26E+01	2.39E+01	9.7E-04	1.9E-04	2.40E+01	2.09E+01	8.5E-04	1.7E-04	2.11E+01	1.86E+01	7.5E-04	1.5E-04	1.87E+01	4.16E-01	1.7E-05	3.4E-06	4.18E-01
7	Emergency Engines, Firing Natural Gas	Upstream Emissions	9.02E-02	2.6E-03	1.0E-06	3.08E-01	1.63E-01	4.69E-03	1.87E-06	5.58E-01	7.71E-02	2.21E-03	8.85E-07	2.63E-01	1.43E-01	4.09E-03	1.64E-06	4.86E-01	6.02E-02	1.72E-03	6.90E-07	2.05E-01
		Direct Emissions	3.92E-01	7.4E-06	7.4E-07	3.92E-01	7.10E-01	1.3E-05	1.3E-06	7.11E-01	3.35E-01	6.3E-06	6.3E-07	3.36E-01	6.19E-01	1.2E-05	1.2E-06	6.20E-01	2.61E-01	4.9E-06	4.9E-07	2.62E-01
	TOTAL EMISSIONS		3.5E+04	1.9E+02	1.3E-01	5.1E+04	4.2E+04	2.2E+02	1.5E-01	6.0E+04	4.8E+04	2.6E+02	1.8E-01	6.9E+04	4.9E+04	2.6E+02	1.8E-01	7.0E+04	4.1E+04	2.2E+02	1.5E-01	5.9E+04
						51.470				60.345				69.112		•		70.248		•	•	59.090

TABLE A-2.2. EMISSIONS FOR BASELINE PERIOD (= HIGHEST OF 2-YEAR CONSECUTIVE PERIOD)

Baseline Period: 2020 - 2021 AVERAGE ACTUAL EMISSIONS OF AVERAGE ACTUAL EMISSIONS OF CO-POLLUTANTS FOR BASELINE PERIOD (TONS/YR) 2 GREENHOUSE GASES FOR BASELINE PERIOD (= HAZARDOUS AIR POLLUTANT SOURCE DESCRIPTION OF ΤΟΤΔΙ NO. STATIONARY SOURCES CO2e 1 1-A Boilers, Firing Natural Gas Upstream 3.02E+03 8.66E+01 3.5E-02 1.03E+0 Emissions 1.31E+04 2.5E-01 2.5E-02 1.31E+0 7.7E-05 8.3E-03 2.3E-04 2.9E-05 2.3E-04 1-B Boilers, Firing No. 6 Oil 5.46E+01 5.32E-01 9.3E-04 Upstream Emissions 1.5E-02 2.9E-03 3.68E+02 1.8E-05 3.2E-06 1.7E-05 9.2E-0 .6E-06 7.8E-05 2.0E-05 4.1E-07 5.9E-06 1.2E-05 8.9E-05 Direct 2 Cake Furnace, Firing Natural Upstream 2.23E+03 6.40E+01 2.6E-02 7.61E+ Emissions Direct Gas 9.69E+03 1.8E-01 1.8E-02 9.71E+0 5.7E-05 6.1E-03 1.7E-04 5.0E-05 1.5E-01 1.6E-05 9.8E-07 9.0E-05 1.1E-04 6.8E-06 4.1E-05 3.1E-05 2.1E-05 1.7E-04 2.0E-0 2.8E-0 **Emission Sources Firing** 5.53E+02 1.59E+01 6.3E-03 Natural Gas (to Supply DX Emissions 2.40E+03 4.5E-02 4.5E-03 2.41E+0 1.4E-05 1.5E-03 4.2E-05 1.2E-05 3.6E-02 Gas) Direct 6.9E-0 4.0E-06 2.4E-07 2.2E-05 2.8E-05 1.7E-06 5.2E-06 4.2E-05 4.8E-0 Other Facility Emission 8.91E+01 3.6E-02 Upstream 3.11E+03 Sources, Firing Natural Gas Emissions Direct 1 35F+04 2.5E-01 2.5E-02 1.35E+04 7.9E-05 8.5E-03 2.4E-04 6.9E-05 3.9E-04 2.0E-01 2.3E-05 1.4E-06 1.2E-04 1.6E-04 9.5E-06 4.3E-05 2.9E-05 2.4E-04 2.7E-06 2.1E-01 3.68E-03 7.7E-06 Emergency Engines <600 Upstream 4.52E-01 7.63E-0 **HP**, Firing Diesel 2.29E+00 9.3E-05 1.9E-05 2.30E+00 2.4E-06 1.7E-05 1.3E-05 1.1E-05 1.2E-06 .0E-06 Emergency Engines >600 3.91E+00 3.18E-02 6.7E-05 Upstream HP, Firing Diesel Emissions 8.0E-04 1.6E-04 1.99E+01 2.6E-05 9.4E-05 3.1E-06 1.6E-05 3.4E-0 .6E-0 Emissions Emergency Engines, Firing Upstream 1.10E-01 3.15E-03 1.3E-06 3.75E-0 **Natural Gas** Emissions Direct 4.77E-01 9.0E-06 9.0E-07 4.78E-0 2.3E-04 2.5E-07 7.9E-06 7.6E-09 1.0E-07 3.4E-05 6.0E-07 1.6E-07 1.8E-07 2.2E-07 2.7E-07 4.0E-07 8.7E-07 4.4E-07 3.0E-07 3.4E-06 3.2E-05 1.7E-07 3.9E-06 1.2E-06 1.3E-05 1.9E-07 2.2E-07 .7E-07 4.5E-06 3.5E-06 .1E-0 TOTAL ACTUAL EMISSIONS 4.81E+04 2.57E+02 1.79E-01 2.7E-04 2.5E-02 2.5E-07 1.3E-05 1.9E-07 8.0E-04 7.6E-09 1.0E-07 1.0E-0

7/20/2023 A-2_SUMMARY_PAST ACTUAL

¹ In accordance with DAR-21, the CO2e value has been calculated using the 20-year global warming potential (GWP) values listed in 6 NYCRR 496.5. (NOTE: These values differ from the 100-yr GWP values that are used for permitting and New Source Review evaluations).

² Per ECL § 75-0101, "co-pollutants" are defined as Hazardous Air Pollutants produced by greenhouse gas emissions sources.

³ Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

TABLE A-3. SUMMARY OF PROJECTED ACTUAL EMISSIONS FOR STATIONARY SOURCES - FUTURE OPERATING SCENARIO

		GREE	NHOUSE G	JAL EMISSI ASES FOR F NARIO (TO	UTURE														PF			CO-POLLUTAI		R) ²												
G CE DESCRIPTION OF STATIONARY SOURCES	TYPE OF EMI		CH4	N2O	TOTAL		OTAL POM FOR	nakembe carbon than	the thoroid Chic	rotorn Renzer	k Charaeth	ane Viny Choride	petalde myte metrylene	Spride 1. 1. Dictions	settare 1,7 Juliaration	S. J. October 1.51. 1.50 .	ethate aghtholere sigh	eny Ethyl	gertere sprene tith	Nere Dride	butadiene Accolein	3,2 Dichargeth	directe Char	de nend	Hexun	2 /2 ^{1/4} triplett	gre 3.3. do droper Dichloropoper	ne ⁵ Artif	mony Arse	nic Bergium	admium Chronium	Coholt	od mor	garlese Meccury	nickel 55	glenium
Boilers, Firing Natural Gas	Upstream Emissions	2.96E+03	8.49E+01	3.4E-02	1.01E+04	1																														\top
	Direct Emissions	1.29E+04	2.4E-01	2.4E-02	1.29E+04	7.5E-0	05 8.1E-03			2.3E-04						6.6E-	05					3.7E-0	14	1	1.9E-01				2.2E-05	1.3E-06 1.2E-	04 1.5E-04 9.1	E-06 5E-05	4.1E-05	2.8E-05 2.3E-	04 2.6E-0	06 2.0E-
Boilers, Firing No. 6 Oil	Upstream	0.00E+00	0.00E+00	0.0E+00	0.00E+00)																														1
	Direct -	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.0E+0	0.0E+00			0.0E+00						0.0E+	00	0.0E+00				0.0E+0	00				0.0E+00	0.0E+00	0.0E+00	0.0E+00 0.0E+	0.0E+00 0.0	E+00 0.0E+0	0.0E+00	0.0E+00 0.0E+	00 0.0E+0	0.0E
Cake Furnace, Firing Natura		1.82E+03	5.23E+01	2.1E-02	6.22E+03	3																														+
Gas	Emissions Direct	7.92E+03	1.5E-01	1.5E-02	7.93E+03	3 4.6E-0	05 5.0E-03			1.4E-04						4.1E-	05					2.3E-0	14	1	1.2E-01				1.3E-05	8.0E-07 7.3E-	05 9.3E-05 5.6	E-06 3.3E-0	5 2.5E-05	1.7E-05 1.4E-	04 1.6E-0)6 1.3
Emission Sources Firing	Emissions Upstream	5.53E+02	1.59E+01	6.3E-03	1.89E+03	3																														+
Natural Gas (to Supply DX Gas)	Direct	2.40E+03	4.5E-02	4.5E-03	2.41E+03	3 1.4E-0	05 1.5E-03	1		4.2E-05						1.2E-	05					6.9E-0	05	3	3.6E-02				4.0E-06	2.4E-07 2.2E-	05 2.8E-05 1.7	E-06 1E-05	7.7E-06	5.2E-06 4.2E-	05 4.8E-0)7 3.
Other Facility Emission	Emissions Upstream	5.07E+03	1.45E+02	5.8E-02	1.73E+04	1																														+
Sources, Firing Natural Gas	Direct	2.20E+04	4.1E-01	4.1E-02	2.20E+04	1 1.3E-0	04 1.4E-02	!		3.9E-04						1.1E-	04					6.3E-0	14	3	3.3E-01				3.7E-05	2.2E-06 2.0E-	04 2.6E-04 1.6	E-05 9E-05	7.0E-05	4.8E-05 3.9E-	04 4.4E-0)6 3.
Emergency Engines <600	Emissions Upstream	5.86E-01	4.78E-03	1.0E-05	9.90E-01	L																														+
HP, Firing Diesel	Emissions Direct	2.96E+00	1.2E-04	2.4E-05	2.98E+00	3.1E-0	06 2.1E-05	i		1.7E-05		1.4E-	05			1.5E-	06			7.1E-07	1.7E-06	7.5E-0	16				5.2E-06									7.
Emergency Engines >600	Emissions Upstream	3.41E+00	2.78E-02	5.8E-05	5.76E+00	0																														+
HP, Firing Diesel	Emissions Direct	1.73E+01	7.0E-04	1.4E-04	1.73E+0	1 2.2E-0	05 8.4E-06	5		8.2E-05		2.7E-	06			1.4E-	05				8.4E-07	3.0E-0	05				2.0E-05									1.
Emergency Engines, Firing		3.53E-01	1.01E-02	4.0E-06	1.20E+00)																														+
Natural Gas	Emissions Direct	1.53E+00	2.9E-05	2.9E-06	1.54E+00	3.9E-0	06 7.2E-04	8.0E-07 4.0E-	05 6.2E-07	2.5E-05	2.5E-08 3.	2E-07 1.1E-	04 1.9E-06 5	5.1E-07 5.9I	E-07 6.9E-07	8.7E-07 1.3E-	06 2.8E-06	1.4E-06	7.2E-07 9.6E-0	7 1.1E-05	1.0E-04 5.	5E-07 1.3E-0	5.8E-07	5.5E-07 1	1.5E-05	1.1E-05 5.7E-07	3.5E-06									1
TOTAL PROJECTED EN	Emissions	5.56E+04																																		4

¹ In accordance with DAR-21, the CO2e value has been calculated using the 20-year global warming potential (GWP) values listed in 6 NYCRR 496.5. (NOTE: These values differ from the 100-yr GWP values that are used for permitting and New Source Review evaluations).

7/20/2023

Per ECL § 75-0101, "co-pollutants" are defined as Hazardous Air Pollutants produced by greenhouse gas emissions sources.

Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION APPENDIX A-4: SUMMARY OF ESTIMATED GHG EMISSIONS ASSOCIATED WITH MOBILE SOURCES

TABLE A-4. SUMMARY OF ESTIMATED GHG EMISSIONS FROM MOBILE SOURCES

			AC	TUAL EMISS (TON		18	AC	TUAL EMISS (TON		19		ACTUAL EMISS (TONS			AC	TUAL EMIS: (TON	SIONS IN 20 S/YR))21	AC	TUAL EMISS (TON)22	PRO	JECTED ACT (TON	UAL EMISSI IS/YR)	IONS
GHG SOURCE NO.	DESCRIPTION OF ONSITE MOBILE SOURCES	TYPE OF EMISSIONS	CO2	CH4	N2O	TOTAL CO2e 1	CO2	CH4	N2O	TOTAL CO2e 1	CO2	CH4	N2O	TOTAL CO2e ¹	CO2	CH4	N2O	TOTAL CO2e ¹	CO2	CH4	N2O	TOTAL CO2e 1	CO2	CH4	N2O	TOTAL CO2e ¹
M-1	Onsite Mobile Sources	Upstream	1.38E+02	9.91E-01	2.2E-03	2.22E+02	1.37E+02	9.82E-01	2.1E-03	2.20E+02	1.62E+02	1.16E+00	2.5E-03	2.60E+02	1.53E+02	1.10E+00	2.4E-03	2.46E+02	1.58E+02	1.14E+00	2.5E-03	2.55E+02	1.95E+02	1.40E+00	3.1E-03	3.13E+02
	Operated by Revere, Firing Propane	Emissions Direct	5.23E+02	2 5F-02	5.0E-02	5 38F+02	5.18E+02	2.5E-02	4 9F-02	5.33E+02	6.13E+02	2.9E-02	5.8E-02	6.31E+02	5.81E+02	2.8E-02	5.5E-02	5 98F+02	6.00E+02	2.9E-02	5.7E-02	6.18E+02	7.38E+02	3.5E-02	7.0E-02	7.60E+02
	Торинс	Emissions	3.232102	2.52 02	3.02 02	3.301102	3.101102	2.52 02	4.52 02	J.JJL 102	0.131102	2.52 02	J.0L 02	0.511102	3.012102	2.02 02	3.3L 02	3.302102	0.002102	2.52 02	3.76 02	0.101.02	7.302102	3.32 02	7.02 02	7.002102
M-2	Onsite Mobile Sources	Upstream	1.03E+01	8.42E-02	1.8E-04	1.74E+01	1.04E+01	8.50E-02	1.8E-04	1.76E+01	1.02E+01	8.30E-02	1.7E-04	1.72E+01	1.07E+01	8.76E-02	1.8E-04	1.82E+01	1.11E+01	9.05E-02	1.9E-04	1.88E+01	1.30E+01	1.06E-01	2.2E-04	2.20E+01
		Emissions																								
	Diesel	Direct Emissions	5.22E+01	2.1E-03	4.2E-04	5.25E+01	5.28E+01	2.1E-03	4.3E-04	5.31E+01	5.15E+01	2.1E-03	4.2E-04	5.18E+01	5.44E+01	2.2E-03	4.4E-04	5.47E+01	5.62E+01	2.3E-03	4.6E-04	5.65E+01	6.58E+01	2.7E-03	5.3E-04	6.61E+01
M-3	Onsite Mobile Sources	Upstream	7.50E+00	4.96E-02	1.3E-04	1.17E+01	6.73E+00	4.45E-02	1.1E-04	1.05E+01	4.01E+00	2.65E-02	6.8E-05	6.25E+00	4.95E+00	3.27E-02	8.4E-05	7.72E+00	5.05E+00	3.34E-02	8.5E-05	7.87E+00	5.55E+00	3.67E-02	9.4E-05	8.66E+00
		Emissions																								
	Gasoline	Direct	2.78E+01	1.2E-03	2.4E-03	2.86E+01	2.50E+01	1.1E-03	2.1E-03	2.56E+01	1.49E+01	6.4E-04	1.3E-03	1.53E+01	1.84E+01	7.8E-04	1.6E-03	1.88E+01	1.87E+01	8.0E-04	1.6E-03	1.92E+01	2.06E+01	8.8E-04	1.8E-03	2.11E+01
		Emissions																								
M-4	Offsite Mobile Sources	Upstream																	1.86E+00	1.51E-02	3.2E-05	3.14E+00	2.34E+00	1.91E-02	4.0E-05	3.95E+00
	Operated by Vendors & Service Providers, Firing	Emissions Direct																	9.40E+00	3.8E-04	7.6E-05	9.46E+00	1.18E+01	4.8E-04	9.6E-05	1.19E+01
	Diesel ²	Emissions																	3.40L100	J.8L-04	7.0L-03	J.40L100	1.101/01	4.8L-04	J.0L-03	1.132101
M-5	Offsite Mobile Sources	Upstream																	3.90E-02	2.58E-04	6.6E-07	6.09E-02	4.29E-02	2.84E-04	7.3E-07	6.70E-02
	Operated by Vendors &	Emissions																								
	Service Providers, Firing Gasoline ²	Direct Emissions																	1.45E-01	6.2E-06	1.2E-05	1.49E-01	1.59E-01	6.8E-06	1.4E-05	1.63E-01
	TOTAL EMISSIONS		7.6E+02	1.2E+00	5.5E-02	8.7E+02	7.5E+02	1.1E+00	5.4E-02	8.6E+02	8.6E+02	1.3E+00	6.3E-02	9.8E+02	8.2E+02	1.3E+00	6.0E-02	9.4E+02	8.6E+02	1.3E+00	6.2E-02	9.9E+02	1.1E+03	1.6E+00	7.6E-02	1.2E+03

¹ In accordance with DAR-21, the CO2e value has been calculated using the 20-year global warming potential (GWP) values listed in 6 NYCRR 496.5. (NOTE: These values differ from the 100-yr GWP values that are used for permitting and New Source Review evaluations).

² Values for 2022 represent estimates for "current operations".

APPENDIX B	CALCULATIONS FOR POTENTIAL TO EMIT	

www.erm.com Version: 1.1 Project No.: 0692098 Client: Revere Copper Products Inc. July 2023

EMISSION SOURCES

SOURCES	EMISSION SOURCE ID	MAXIMUM HEAT INPUT (MMBtu/hr)
BOILER 1	00BR1	42.0
BOILER 2	00BR2	42.0
BOILER 3	00BR3	57.2
TOTAL ALL BOILERS		141.2

POTENTIAL TO EMIT CALCULATIONS FOR BOILERS FIRING NATURAL GAS, No. 2 FUEL OIL AND No. 6 FUEL OIL

0 Process Information

		COMMENTS
Maximum Potential Operating Hours (hrs/yr) =	8760	
Maximum Heat Input Rating for Boilers (MMBtu/hr) =	141.2	
Maximum Fuel Usage <u>Assuming No Fuel</u> <u>Limitations</u> (MMBtu/yr) =	1.24E+06	FUTURE SCENARIO
Maximum Allowable Usage of "Fuel Oil" (gal/yr) =	3,360,000	CURRENT SCENARIO: Permit Condition 9 [with the underlying requirement of 6 NYCRR 201-7] limits the usage of "fuel oil" to 3,360,000 gallons/yr on a rolling 12-month basis.
HHV of No. 6 Oil (MMBtu/gal)	0.150	High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1. NOTE: This value is higher than the HHV listed in New York State's "2022 GHG Report" (i.e., 0.091 MMBtu/gal), resulting in a more conservative estimate of GHG emissions.
Maximum <u>Allowable</u> No. 6 Fuel Oil Usage (MMBtu/yr) =	5.04E+05	= (Maximum Allowable Usage of "Fuel Oil", gal/yr) x (HHV of No. 6 Oil, MMBtu/gal)

	Natural Gas	No. 6 Fuel Oil	No. 2 Fuel Oil	COMMENTS
Maximum Fuel Usage	1.24E+06	5.04E+05	1.24E+06	No. 6 Oil: Permit Condition 9 [with the underlying requirement of 6 NYCRR 201-7] limits the usage of "fuel oil" to 3,360,000 gallons/yr on
(MMBtu/yr) =				a rolling 12-month basis.
				No. 2 Oil: In the permit renewal application submitted on 2/8/23, the facility has requested that the "fuel oil" limitation in Permit
				Condition 9 be removed.

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas, No. 6 Fuel Oil and No. 2 Fuel Oil

		PTE FOR NA	ATURAL GAS	TOTAL CO2e	PTE FOR No	o. 6 FUEL OIL (L	JSAGE LIMITED	BY PC #9) TOTAL CO2e		PTE FOR No	. 2 FUEL OIL	TOTAL CO2e	
	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	11,183	109	0.19	20,423	14,599	119	0.25	24,638	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	24.632	2.40E-01	4.2E-04	44.985	32.156	2.62E-01	5.5E-04	54.269	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	3.33E+07	9.54E+05	3.8E+02	1.14E+08	1.24E+07	1.21E+05	2.1E+02	2.27E+07	3.98E+07	3.24E+05	6.8E+02	6.71E+07	= (Maximum Fuel Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	1.66E+04	4.77E+02	1.9E-01	5.68E+04	6.21E+03	6.05E+01	1.1E-01	1.13E+04	1.99E+04	1.62E+02	3.4E-01	3.36E+04	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	1.66E+04	4.00E+04	5.0E+01	5.67E+04	6.21E+03	5.08E+03	2.78E+01	1.13E+04	1.99E+04	1.36E+04	8.99E+01	3.36E+04	= (Upstream Emissions, ton/yr) x (20-yr GWP)

Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

2 PTE - Direct GHG Emissions from Boilers Using Natural Gas, No. 6 Fuel Oil or No. 2 Fuel Oil

		PTE FOR NA	ATURAL GAS		PTE FOR No	. 6 FUEL OIL (L	SAGE LIMITED	BY PC #9)		PTE FOR No	. 2 FUEL OIL		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		75.10	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		165.2	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	1.44E+08	2.7E+03	2.7E+02		8.33E+07	3.3E+03	6.7E+02		2.01E+08	8.2E+03	1.6E+03		= (Maximum Fuel Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	7.22E+04	1.4E+00	1.4E-01		4.16E+04	1.7E+00	3.3E-01		1.01E+05	4.1E+00	8.2E-01		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	7.22E+04	1.1E+02	3.6E+01	7.23E+04	4.16E+04	1.4E+02	8.8E+01	4.19E+04	1.01E+05	3.4E+02	2.2E+02	1.01E+05	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

1.17E+05

3 PTE - Summary of Total GHG Emissions from Boilers Using Natural Gas, No. 6 Fuel Oil or No. 2 Fuel Oil

8.06E+04

3.6E+04

7.8E+01

		PTE FOR NA	TURAL GAS	_	PTE FOR No	. 6 FUEL OIL (L	ISAGE LIMITED	BY PC #9)		PTE FOR No	. 2 FUEL OIL		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Upstream Emissions (tons/yr)	1.66E+04	4.77E+02	1.9E-01	5.67E+04	6.21E+03	6.05E+01	1.1E-01	1.13E+04	1.99E+04	1.62E+02	3.4E-01	3.36E+04	= Values calculated in Section 1
Combustion Emissions (tons/yr)	7.22E+04	1.4E+00	1.4E-01	7.23E+04	4.16E+04	1.7E+00	3.3E-01	4.19E+04	1.01E+05	4.1E+00	8.2E-01	1.01E+05	= Values calculated in Section 2
Total Emissions (tons/yr)	8.88E+04	4.78E+02	3.27E-01	1.29E+05	4.78E+04	6.22E+01	4.38E-01	5.32E+04	1.21E+05	1.66E+02	1.16E+00		= (Upstream GHG Emissions, tons/yr) + (Combustion GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	8.88E+04	4.0E+04	8.6E+01	1.29E+05	4.78E+04	5.2E+03	1.2E+02	5.32E+04	1.21E+05	1.4E+04	3.1E+02	1.35E+05	= (Total Emissions, ton/yr) x (20-yr GWP)

1.0E+02

4.82E+04

1.3E+04

2.8E+02

= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

Vaues shown in **red** are higher than comparable value for Natural Gas.

Total Emissions as CO2e (metric tonnes/yr)

4 PTE - Total GHG Emissions from Boilers Under Current and Future Operating Scenarios

		NT OPERATING S NATURAL GAS / AGE OF FUEL OIL	No. 6 FUEL OIL		NATURA	AL GAS / No. 2	ENARIO FOR BO FUEL OIL AS BA FIRED BOILERS	CKUP	
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Upstream Emissions (tons/yr)	1.66E+04	4.77E+02	1.9E-01	5.67E+04	1.66E+04	4.77E+02	1.9E-01	5.67E+04	
Combustion Emissions (tons/yr)	7.22E+04	1.7E+00	3.3E-01	7.23E+04	7.22E+04	1.4E+00	1.4E-01	7.23E+04	
Total Emissions (tons/yr)	8.88E+04	4.8E+02	4.4E-01		8.88E+04	4.8E+02	3.3E-01	1.29E+05	
Total Emissions as CO2e (tons/yr)	8.88E+04	4.0E+04	1.2E+02	1.29E+05	8.88E+04	4.0E+04	8.6E+01	1.29E+05	
						•			
Total Emissions as CO2e (metric tonnes/yr)	8.06E+04	3.6E+04	1.0E+02	1.17E+05	8.06E+04	3.6E+04	7.8E+01	1.17E+05	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4.7E+03

4.34E+04

For Future Operation: Assume PTE = PTE for Natural Gas. The permit renewal application states that the facility will convert from No. 6 oil to No. 2 oil, and the three boilers will be operated as "gas-fired boilers" as defined under 40 CFR 63 Subpart JJJJJJ. Under this definition, the facility can only fire liquid fuel during a natural gas curtailment or supply interruption.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

^{**} For Current Operation: values = max {calculated values for Natural Gas and No. 6 Fuel Oil}.

5 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by Boilers

							POTENT	IAL TO EMIT FO	OR CO-POLLUTA	•	OOUS AIR POLLU	JTANTS)								
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Hexane	Xylenes	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07		3.3E-06	1.8E-03			2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	8.4E-01	9.1E+01	2.5E+00	7.4E-01		4.1E+00	2.2E+03			2.4E-01	1.5E-02	1.3E+00	1.7E+00	1.0E-01	6E-01	4.6E-01	3.2E-01	2.5E+00	2.9E-02	2.3E+03
Emissions (ton/yr)	4.2E-04	4.5E-02	1.3E-03	3.7E-04		2.1E-03	1.1E+00			1.2E-04	7.3E-06	6.7E-04	8.5E-04	5.1E-05	3E-04	2.3E-04	1.6E-04	1.3E-03	1.5E-05	1.1E+00

							POTENT		R CO-POLLUTA	•	OOUS AIR POLLU	JTANTS)								
	TOTAL DOM	Formaldehyde	Benzene	Nanhthalene	Ethylbenzene	Toluene	Hexane	Xylenes	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	Пехапе	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06			1.01E-05				4.55E-06	
Emissions (lb/yr)	4.00E+00	1.11E+02	7.19E-01	3.80E+00	2.14E-01	2.08E+01		3.66E-01	1.76E+01	4.44E+00	9.34E-02	1.34E+00	2.84E+00	2.02E+01	5.07E+00	1.01E+01	3.80E-01	2.84E+02	2.29E+00	4.85E+02
Emissions (ton/yr)	2.00E-03	5.54E-02	3.60E-04	1.90E-03	1.07E-04	1.04E-02		1.83E-04	8.82E-03	2.22E-03	4.67E-05	6.69E-04	1.42E-03	1.01E-02	2.54E-03	5.04E-03	1.90E-04	1.42E-01	1.15E-03	2.43E-01

Current Operating Scenario NATURAL GAS / No. 6 FUEL OIL (USAGE OF FUEL OIL LIMITED BY PC #9)

										NTS (= HAZARD		•								
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Hexane	Xylenes	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL
Emissions (ton/yr)	2.00E-03	5.54E-02	1.3E-03	1.90E-03	1.07E-04	1.0E-02	1.1E+00	1.83E-04	8.82E-03	2.22E-03	4.67E-05	6.69E-04	1.42E-03	1.01E-02	2.54E-03	5.04E-03	1.90E-04	1.42E-01	1.15E-03	1.1E+00

Future Operating Scenario NATURAL GAS / No. 2 FUEL OIL AS BACKUP (OPERATED AS "GAS-FIRED BOILERS") **

		POTENTIAL TO EMIT FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS) FUTURE OPERATING SCENARIO FOR BOILERS: NATURAL GAS / No. 2 FUEL OIL AS BACK-UP (OPERATED AS "GAS-FIRED BOILER")																		
												TOTAL								
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Hexane	Xylenes	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	, , , , , , ,	3.3E-06	1.8E-03	,	,	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06		
Emissions (lb/yr)	8.4E-01	9.1E+01	2.5E+00	7.4E-01		4.1E+00	2.2E+03			2.4E-01	1.5E-02	1.3E+00	1.7E+00	1.0E-01	6E-01	4.6E-01	3.2E-01	2.5E+00	2.9E-02	2.3E+03
Emissions (ton/yr)	4.2E-04	4.5E-02	1.3E-03	3.7E-04		2.1E-03	1.1E+00			1.2E-04	7.3E-06	6.7E-04	8.5E-04	5.1E-05	3E-04	2.3E-04	1.6E-04	1.3E-03	1.5E-05	1.1E+00

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX B-2: CALCULATIONS FOR POTENTIAL TO EMIT - CAKE FURNACE FIRING NATURAL GAS

EMISSION SOURCES

EMISSION SOURCE FIRING NATURAL GAS	EMISSION SOURCE ID	MAXIMUM HEAT INPUT (MMBtu/hr)
Cake Furnace (1701 Walking Beam Furnace)	01701	51.8

POTENTIAL TO EMIT CALCULATIONS FOR FACILITY-WIDE SOURCES FIRING NATURAL GAS

0 Process Information

		COMMENTS
Maximum Potential Operating Hours (hrs/yr) =	8760	
Maximum Heat Input Rating for Cake Furnace (MMBtu/hr) =	51.8	
Maximum Natural Gas Usage (MMBtu/yr) =	4.54E+05	= (Maximum Heat Input Rating for All Sources, MMBtu/hr) x (Maximum Potential Operating Hours, hrs/yr)

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		GREENHO	USE GASES		
	CO ₂	CH₄	N₂O	TOTAL CO2e (20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.22E+07	3.50E+05	1.4E+02	4.16E+07	= (Maximum Natural Gas Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	6.10E+03	1.75E+02	7.0E-02	2.08E+04	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Upstream Emissions as CO2e (tons/yr)	6.10E+03	1.47E+04	1.8E+01	2.08E+04	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 PTE - Direct GHG Emissions from Combustion of Natural Gas by Facility-Wide Sources

		GREENHO	USE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	5.30E+07	1.0E+03	1.0E+02		= (Maximum Natural Gas Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	2.65E+04	5.0E-01	5.0E-02		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Combustion Emissions as CO2e (tons/yr)	2.65E+04	4.2E+01	1.3E+01	2.65E+04	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 PTE - Total GHG Emissions from Use of Natural Gas by Facility-Wide Sources

		GREENHO	USE GASES	_	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	3.3E+04	1.8E+02	1.2E-01		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	3.3E+04	1.5E+04	3.2E+01	4.7E+04	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	3.0E+04	1.3E+04	2.9E+01	4.3E+04	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Combustion of Natural Gas by Facility-Wide Sources

		POTENTIAL TO EMIT FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)															
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	4.9E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	3.1E-01	3.3E+01	9.3E-01	2.7E-01	1.5E+00	8.0E+02	8.9E-02	5.3E-03	4.9E-01	6.2E-01	3.7E-02	2.2E-01	1.7E-01	1.2E-01	9.3E-01	1.1E-02	8.4E+02
Emissions (ton/yr)	1.5E-04	1.7E-02	4.7E-04	1.4E-04	7.6E-04	4.0E-01	4.4E-05	2.7E-06	2.4E-04	3.1E-04	1.9E-05	1.1E-04	8.5E-05	5.8E-05	4.7E-04	5.3E-06	4.2E-01

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX B-3: CALCULATIONS FOR POTENTIAL TO EMIT - EMISSION SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)

EMISSION SOURCES

EMISSION SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)	EMISSION SOURCE ID	MAXIMUM HEAT INPUT (MMBtu/hr)
DX Unit in Rolling Mill		3.69
DX Unit in Bar Mill		2.30
TOTAL ALL SOURCES		5.99

POTENTIAL TO EMIT CALCULATIONS FOR FACILITY-WIDE SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)

0 Process Information

		COMMENTS
Maximum Potential Operating Hours	8760	
(hrs/yr) =		
Maximum Heat Input Rating for All Sources	6.0	
(MMBtu/hr) =		
Maximum Natural Gas Usage (MMBtu/yr) =	5.2E+04	= (Maximum Heat Input Rating for All Sources, MMBtu/hr) x (Maximum Potential
		Operating Hours, hrs/yr)

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		GREENHOU	SE GASES		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.41E+06	4.05E+04	1.6E+01	4.82E+06	= (Maximum Natural Gas Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	7.05E+02	2.02E+01	8.1E-03	2.41E+03	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Upstream Emissions as CO2e (tons/yr)	7.05E+02	1.70E+03	2.1E+00	2.41E+03	= (Upstream Emissions, ton/yr) x (20-yr GWP)

Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 PTE - Direct GHG Emissions from Combustion of Natural Gas by DX Sources

		GREENHOU	SE GASES	_	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	6.13E+06	1.2E+02	1.2E+01		= (Maximum Natural Gas Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	3.06E+03	5.8E-02	5.8E-03		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Combustion Emissions as CO2e (tons/yr)	3.06E+03	4.8E+00	1.5E+00	3.1E+03	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 PTE - Total GHG Emissions from DX Sources

		GREENHOUS	SE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	3.8E+03	2.0E+01	1.4E-02		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	3.8E+03	1.7E+03	3.7E+00	5.5E+03	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	3.4E+03	1.5E+03	3.3E+00	5.0E+03	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from DX Sources

		POTENTIAL TO EMIT FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)															
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	4.9E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	3.6E-02	3.9E+00	1.1E-01	3.1E-02	1.7E-01	9.3E+01	1.0E-02	6.2E-04	5.7E-02	7.2E-02	4.3E-03	2.6E-02	2.0E-02	1.3E-02	1.1E-01	1.2E-03	9.7E+01
Emissions (ton/yr)	1.8E-05	1.9E-03	5.4E-05	1.6E-05	8.7E-05	4.6E-02	5.1E-06	3.1E-07	2.8E-05	3.6E-05	2.2E-06	1.3E-05	9.8E-06	6.7E-06	5.4E-05	6.2E-07	4.9E-02

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

EMISSION SOURCES

OTHER FACILITY COMBUSTION SOURCES FIRING NATURAL GAS	EMISSION SOURCE ID	MAXIMUM HEAT INPUT (MMBtu/hr)
Galvanizing Furnace	< <exempt>></exempt>	9.7
1727 Lee Wilson Anneal	< <exempt>></exempt>	1.2
1728 Lee Wilson Anneal	< <exempt>></exempt>	1.2
2381 Ebner Anneal	< <exempt>></exempt>	1.6
2382 Ebner Anneal	< <exempt>></exempt>	1.6
1154 Bright Anneal	< <exempt>></exempt>	1.5
1738 Strand Anneal	< <exempt>></exempt>	4.2
464 Tray Style/Coil Anneal	< <exempt>></exempt>	1.5
Building Heater (Maint. office)	< <exempt>></exempt>	0.225
Building Heater (Maint. Storage)	< <exempt>></exempt>	0.074
Building Heater (Operations Building)	< <exempt>></exempt>	0.491
2 Building Heaters (Main office)(2.0 MMBtu/hr- heater)	< <exempt>></exempt>	4.0
Building Heater (Bldg 21 Cast Shop)	< <exempt>></exempt>	0.113
22 Unit Heaters (1 MMBtu/hr-heater)	< <exempt>></exempt>	22
10 Water Heaters (0.25 MMBtu/hr-heater)	< <exempt>></exempt>	2.5
TOTAL ALL SOURCES		51.9

POTENTIAL TO EMIT CALCULATIONS FOR FACILITY-WIDE SOURCES FIRING NATURAL GAS

0 Process Information

		COMMENTS
Maximum Potential Operating Hours (hrs/yr) =	8760	
Maximum Heat Input Rating for All Sources (MMBtu/hr) =	51.9	
Maximum Natural Gas Usage (MMBtu/yr) =	4.55E+05	= (Maximum Heat Input Rating for All Sources, MMBtu/hr) x (Maximum Potential Operating Hours, hrs/yr)

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		GREENHO	USE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.22E+07	3.51E+05	1.4E+02	4.17E+07	= (Maximum Natural Gas Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	6.11E+03	1.75E+02	7.0E-02	2.09E+04	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Upstream Emissions as CO2e (tons/yr)	6.11E+03	1.47E+04	1.9E+01	2.09E+04	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

2 PTE - Direct GHG Emissions from Combustion of Natural Gas by Facility-Wide Sources

		GREENHO	USE GASES	_	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	5.31E+07	1.0E+03	1.0E+02		= (Maximum Natural Gas Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	2.65E+04	5.0E-01	5.0E-02		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Combustion Emissions as CO2e (tons/yr)	2.65E+04	4.2E+01	1.3E+01	2.7E+04	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 PTE - Total GHG Emissions from Use of Natural Gas by Facility-Wide Sources

		GREENHO	USE GASES	_	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	3.3E+04	1.8E+02	1.2E-01		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	3.3E+04	1.5E+04	3.2E+01	4.7E+04	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	3.0E+04	1.3E+04	2.9E+01	4.3E+04	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Combustion of Natural Gas by Facility-Wide Sources

		POTENTIAL TO EMIT FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)															
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	4.9E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	3.1E-01	3.3E+01	9.4E-01	2.7E-01	1.5E+00	8.0E+02	8.9E-02	5.3E-03	4.9E-01	6.2E-01	3.7E-02	2.2E-01	1.7E-01	1.2E-01	9.4E-01	1.1E-02	8.4E+02
Emissions (ton/yr)	1.6E-04	1.7E-02	4.7E-04	1.4E-04	7.6E-04	4.0E-01	4.5E-05	2.7E-06	2.5E-04	3.1E-04	1.9E-05	1.1E-04	8.5E-05	5.8E-05	4.7E-04	5.3E-06	4.2E-01

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

PROJECT IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA)
APPENDIX B-5: CALCULATIONS FOR POTENTIAL TO EMIT- EMERGENCY ENGINES < 600 hP FIRING DIESEL

EMISSION SOURCES

DIESEL FIRED EMERGENCY ENGINE < 600 hP	EMISSION SOURCE ID	hP
EMERGENCY GENERATOR (POWERHOUSE - 1960 GM)	< <exempt>></exempt>	168
TOTAL ALL DIESEL EMERGENCY ENGINES < 600 hP		168

POTENTIAL TO EMIT CALCULATIONS FOR EMERGENCY ENGINES FIRING DIESEL

0 Process Information

		COMMENTS
Maximum No. of Potential Operating Hours (hrs/yr) =	500	
Total Nominal Power Output for All Emergency Engines	168	
(hP/hr) =		
Total Nominal Power Output for All Emergency Engines	0.43	= (Total Nominal Power Output for Emergency Engines, hP/hr) x [0.002544 MMBtu/
(MMBtu/hr) =		hp/hr]
Efficiency	40%	Estimated
(%) =		
Maximum Diesel Usage	1.1	= (Total Nominal Power Output for All Emergency Engines, MMBtu/hr) / (Engine
(MMBtu/hr) =		Efficiency)
Maximum Diesel Usage	534	= (Maximum Diesel Usage, MMBtu/hr) x (Maximum No. of Potential Operating Hours,
(MMBtu/yr) =		hrs/yr)

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Diesel

		GREENHOUS	SE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	
Emission Factor (g/MMBtu) ¹	14,599	119	0.25	24,638	
Emission Factor (lb/MMBtu)	32.156	2.62E-01	5.5E-04	54.269	= (Emission Factor, g/MMBtu) x [lb / 454 g]
Emissions (lb/yr)	17,179	140	2.9E-01	28,993	= (Maximum Diesel Usage, MMBtu/yr) x (Emission Factor, lb/MMBtu)
Emissions (ton/yr)	8.59	7.00E-02	1.5E-04	14.5	= (Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Emissions as CO2e (tons/yr)	8.59	5.88	3.9E-02	14.5	= (Emissions, ton/yr) x (20-yr GWP)

 $^{^{1}}$ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 PTE- Direct GHG Emissions from Combustion of Diesel by Emergency Engines

		GREENHOUS	SE GASES		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Emission Factor (kg/MMBtu) ¹	73.96	3.0E-03	6.0E-04		
Emission Factor (lb/MMBtu)	162.7	6.6E-03	1.3E-03		= (Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Emissions (lb/yr)	86,927	3.5E+00	7.1E-01		= (Maximum Diesel Usage, MMBtu/yr) x (Emission Factor, lb/MMBtu)
Emissions (ton/yr)	43.5	1.8E-03	3.5E-04		= (Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Emissions as CO2e (tons/yr)	43.5	1.5E-01	9.3E-02	43.7	= (Emissions, ton/yr) x (20-yr GWP)

Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 PTE - Total GHG Emissions from Use of Diesel Oil by Emergency Engines

		GREENHOUS	E GASES	_	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	52.1	7.2E-02	5.0E-04		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	52.1	6.0	1.3E-01	58.2	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	47.2	5.5	1.2E-01	52.8	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Combustion of Diesel oil

		POTENTIAL TO EMIT FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)										
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	1,3-Butadiene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²		
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04			
Emissions Diesel (lb/yr)	8.98E-02	6.30E-01	4.98E-01	4.10E-01	4.53E-02	2.09E-02	4.94E-02	2.19E-01	1.52E-01	2.07E+00		
Emissions (ton/yr)	4.49E-05	3.15E-04	2.49E-04	2.05E-04	2.27E-05	1.04E-05	2.47E-05	1.09E-04	7.61E-05	1.03E-03		

Emission factors (lb/MMBtu fuel input) from AP-42, Section 3.4 ("Large Stationary Diesel And All Stationary Dual-fuel Engines"), Tables 3.4-3.

NOTE: "Naphthalene" is included in "POM". To avoid double counting in TOTAL HAPs, the value for its "individual" contribution has been subtracted out.

PROJECT IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA)
APPENDIX B-6: CALCULATIONS FOR POTENTIAL TO EMIT - EMERGENCY ENGINES > 600 hP FIRING DIESEL

EMISSION SOURCES

DIESEL FIRED EMERGENCY ENGINES > 600 hP	EMISSION SOURCE ID	hP
EMERGENCY GENERATOR (SOAP HOUSE - 1999 CATERPILLAR)	< <exempt>></exempt>	2,680
TOTAL ALL DIESEL EMERGENCY ENGINES > 600 hP		2,680

POTENTIAL TO EMIT CALCULATIONS FOR EMERGENCY ENGINES FIRING DIESEL

0 Process Information

		COMMENTS
Maximum No. of Potential Operating Hours (hrs/yr) =	500	
Total Nominal Power Output for All Emergency Engines	2,680	
(hP/hr) =		
Total Nominal Power Output for All Emergency Engines	6.82	= (Total Nominal Power Output for Emergency Engines, hP/hr) x [0.002544 MMBtu/ hp/hr]
(MMBtu/hr) =		
Efficiency	40%	Estimated
(%) =		
Maximum Diesel Usage	17.0	= (Total Nominal Power Output for All Emergency Engines, MMBtu/hr) / (Engine Efficiency)
(MMBtu/hr) =		
Maximum Diesel Usage	8,522	= (Maximum Diesel Usage, MMBtu/hr) x (Maximum No. of Potential Operating Hours,
(MMBtu/yr) =		hrs/yr)

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Diesel

		GREENHO	USE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	NOTES
Emission Factor (g/MMBtu) ¹	14,599	119	0.25	24,638	
Emission Factor (lb/MMBtu)	32.156	2.62E-01	5.5E-04	54.269	= (Emission Factor, g/MMBtu) x [lb / 454 g]
Emissions (lb/yr)	274,050	2,234	4.7E+00	462,500	= (Maximum Diesel Usage, MMBtu/yr) x (Emission Factor, lb/MMBtu)
Emissions (ton/yr)	137	1.12	2.3E-03	231	= (Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Emissions as CO2e (tons/yr)	137	93.8	6.2E-01	231	= (Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 PTE- Direct GHG Emissions from Combustion of Diesel by Emergency Engines

		GREENHO	USE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Emission Factor (kg/MMBtu) ¹	73.96	3.0E-03	6.0E-04		
Emission Factor (lb/MMBtu)	162.7	6.6E-03	1.3E-03		= (Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Emissions (lb/yr)	1,386,697	5.6E+01	1.1E+01		= (Maximum Diesel Usage, MMBtu/yr) x (Emission Factor, lb/MMBtu)
Emissions (ton/yr)	693	2.8E-02	5.6E-03		= (Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		
Emissions as CO2e (tons/yr)	693	2.36	1.5E+00	697	= (Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 PTE - Total GHG Emissions from Use of Diesel Oil by Emergency Engines

		GREENHO	JSE GASES		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	830	1.1E+00	8.0E-03		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	830	96.2	2.1E+00	929	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	753	87.3	1.9E+00	842	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Combustion of Diesel oil

		POTENTIAL TO EMIT FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)											
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²				
Emission Factor Diesel (lb/MMBtu) ¹	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04					
Emissions Diesel (lb/yr)	1.80E+00	6.72E-01	6.61E+00	2.15E-01	1.11E+00	6.72E-02	2.39E+00	1.64E+00	1.34E+01				
Emissions (ton/yr)	9.01E-04	3.36E-04	3.31E-03	1.07E-04	5.54E-04	3.36E-05	1.20E-03	8.22E-04	6.71E-03				

¹ Emission factors (lb/MMBtu fuel input) from AP-42, Section 3.4 ("Large Stationary Diesel And All Stationary Dual-fuel Engines"), Tables 3.4-3.

NOTE: "Naphthalene" is included in "POM". To avoid double counting in TOTAL HAPs, the value for its "individual" contribution has been subtracted out.

PROJECT IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX B-7: CALCULATIONS FOR POTENTIAL TO EMIT - EMERGENCY ENGINES FIRING NATURAL GAS

EMISSION SOURCES

		EMISSION		
	NATURAL GAS FIRED EMERGENCY ENGINES	SOURCE ID	hP	COMMENTS
NG-34	EMERGENCY GENERATOR	< <exempt>></exempt>	34	Existing emergency generator.
	(MAIN OFFICE - 2004 GENERAC)			
NG-94	EMERGENCY GENERATOR	< <exempt>></exempt>	94	Replaced in 2023 by new 335 hP natural gas fired engine (listed
	(CAST SHOP)			immediately below).
NG-335	EMERGENCY GENERATOR	< <exempt>></exempt>	335	Replaces existing 94 hP natural gas fired engine (listed
	(CAST SHOP - 2023 GENERAC)			immediately above).
	NATURAL GAS EMERGENCY ENGINES		128	= (hP for NG-34) + (hP for NG-94)
	(CURRENT OPERATING SCENARIO: NG-34 & NG-94)			
	NATURAL GAS EMERGENCY ENGINES		369	= (hP for NG-34) + (hP for NG-335)
	(FUTURE OPERATING SCENARIO: NG-34 + NG-335)			

POTENTIAL TO EMIT CALCULATIONS FOR EMERGENCY ENGINES FIRING DIESEL

0 Process Information

	(CURRENT)	(FUTURE)	COMMENTS
Maximum No. of Potential Operating Hours (hrs/yr) =	500	500	
Total Nominal Power Output for All Emergency Engines (hP/hr) =	128	369	
Total Nominal Power Output for All Emergency Engines (MMBtu/hr) =	0.33	0.94	= (Total Nominal Power Output for Emergency Engines, hP/hr) x [0.002544 MMBtu/hp/hr]
Efficiency (%) =	40%	40%	Estimated
Maximum Natural Gas Usage (MMBtu/hr) =	0.8	2.3	= (Total Nominal Power Output for All Emergency Engines, MMBtu/hr) / (Engine Efficiency)
Maximum Natural Gas Usage (MMBtu/yr) =	407	1,173	= (Maximum Natural Gas Usage, MMBtu/hr) x (Maximum No. of Potential Operating Hours, hrs/yr)

1 PTE - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

	PT CO ₂	TE FOR CURRENT OF	ERATING SCENARI	TOTAL CO2e (20 yr GWP)	PTE CO₂	PTE FOR FUTURE OPERATING SCENARIO CO₂ CH₄ N₂O (20 yr GWP) NO			NOTES
Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	12,206	350	0.14	41,671	1012
Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Emission Factor, g/MMBtu) x [lb / 454 g]
Emissions (lb/yr)	10,943	314	1.3E-01	37,361	31,548	905	3.6E-01	107,704	= (Maximum Natural Gas Usage, MMBtu/yr) x (Emission Factor, lb/MMBtu)
Emissions (ton/yr)	5.5	1.6E-01	6.3E-05	18.7	15.8	4.5E-01	1.8E-04	53.9	= (Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		
Emissions as CO2e (tons/yr)	5.5	13.2	1.7E-02	18.7	15.8	38.0	4.8E-02	53.8	= (Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

2 PTE- Direct GHG Emissions from Combustion of Natural Gas by Emergency Engines

	PT	E FOR CURRENT OF	ERATING SCENARI	0	PTE	FOR FUTURE	OPERATING SCENA	ARIO	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		
Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Emissions (lb/yr)	47,515	9.0E-01	9.0E-02		136,976	2.6E+00	2.6E-01		= (Maximum Natural Gas Usage, MMBtu/yr) x (Emission Factor, lb/MMBtu)
Emissions (ton/yr)	23.8	4.5E-04	4.5E-05		68.5	1.3E-03	1.3E-04		= (Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		
Emissions as CO2e (tons/yr)	23.8	0.04	1.2E-02	23.8	68.5	0.11	3.4E-02	68.6	= (Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 PTE - Total GHG Emissions from Use of Natural Gas by Emergency Engines

	PT	E FOR CURRENT OP	ERATING SCENARIO	0	PTE	FOR FUTURE	OPERATING SCENA	ARIO	
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	29.2	1.6E-01	1.1E-04		84.3	4.5E-01	3.1E-04		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	29.2	13.2	2.8E-02	42	84.3	38.1	8.2E-02	122	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	27	12.0	2.6E-02	39	<i>76</i>	34.6	7.4E-02	111	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

4 PTE - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Combustion of Natural Gas

Current Operating Scenario NG-34 & NG-94

						PO.	TENTIAL TO EMIT FO	OR CO-POLLUTAN	TS (= HAZARDOUS	AIR POLLUTAN	TS)				
	TOTAL POM	Formaldehyde	Carbon Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Vinyl Chloride	Acetaldehyde	Methylene Chloride	1,1- Dichloroethane	1,2-Dichloropropane	1,1,2- Trichloroethane	1,1,2,2- Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	1.2E-01	2.2E+01	2.5E-02	1.2E+00	1.9E-02	7.9E-01	7.6E-04	1.0E-02	3.4E+00	6.0E-02	1.6E-02	1.8E-02	2.1E-02	2.7E-02	4.0E-02
Emissions (ton/yr)	6.1E-05	1.1E-02	1.2E-05	6.2E-04	9.6E-06	3.9E-04	3.8E-07	5.0E-06	1.7E-03	3.0E-05	8.0E-06	9.1E-06	1.1E-05	1.3E-05	2.0E-05

						РО	TENTIAL TO EMIT FO	R CO-POLLUTAI	NTS (= HAZARDOUS	AIR POLLUTAN	TS)				
			_	Ethylene			1,2-					2,2,4-	1,3-		2
	Biphenyl	Ethylbenzene	Styrene	Dibromide	1,3-Butadiene	Acrolein	Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	Trimethylpentane	Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	8.6E-02	4.4E-02	2.2E-02	3.0E-02	3.3E-01	3.2E+00	1.7E-02	3.9E-01	1.8E-02	1.7E-02	4.5E-01	3.4E-01	1.8E-02	1.1E-01	3.3E+01
Emissions (ton/yr)	4.3E-05	2.2E-05	1.1E-05	1.5E-05	1.7E-04	1.6E-03	8.6E-06	2.0E-04	9.0E-06	8.6E-06	2.3E-04	1.7E-04	8.9E-06	5.5E-05	1.7E-02

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 3.2 ("Natural Gas-fired Reciprocating Engines"), Tables 3.2-1, 3.2-2 & 3.2-3. Values conservatively reflect the highest emission factor for all natural gas-fired engines (2-stroke, 4-stroke, rich/lean burn).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

Future Operating Scenario NG-34 & NG-335

						PO ⁻	TENTIAL TO EMIT FO	OR CO-POLLUTAN	TS (= HAZARDOUS	AIR POLLUTAN	TS)				
	TOTAL POM	Formaldehyde	Carbon Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Vinyl Chloride	Acetaldehyde	Methylene Chloride	1,1- Dichloroethane	1,2-Dichloropropane	1,1,2- Trichloroethane	1,1,2,2- Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	3.5E-01	6.5E+01	7.1E-02	3.6E+00	5.5E-02	2.3E+00	2.2E-03	2.9E-02	9.8E+00	1.7E-01	4.6E-02	5.2E-02	6.2E-02	7.8E-02	1.1E-01
Emissions (ton/yr)	1.8E-04	3.2E-02	3.6E-05	1.8E-03	2.8E-05	1.1E-03	1.1E-06	1.4E-05	4.9E-03	8.6E-05	2.3E-05	2.6E-05	3.1E-05	3.9E-05	5.7E-05

						PO	TENTIAL TO EMIT FO	R CO-POLLUTAI	NTS (= HAZARDOUS	AIR POLLUTAN	rs)				
	Biphenyl	Ethylbenzene	Styrene	Ethylene Dibromide	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	2,2,4- Trimethylpentane	1,3- Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	2.5E-01	1.3E-01	6.4E-02	8.6E-02	9.6E-01	9.1E+00	5.0E-02	1.1E+00	5.2E-02	4.9E-02	1.3E+00	9.9E-01	5.1E-02	3.1E-01	9.6E+01
Emissions (ton/yr)	1.2E-04	6.3E-05	3.2E-05	4.3E-05	4.8E-04	4.6E-03	2.5E-05	5.7E-04	2.6E-05	2.5E-05	6.5E-04	5.0E-04	2.6E-05	1.6E-04	4.8E-02

Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 3.2 ("Natural Gas-fired Reciprocating Engines"), Tables 3.2-1, 3.2-2 & 3.2-3. Values conservatively reflect the highest emission factor for all natural gas-fired engines (2-stroke, 4-stroke, rich/lean burn).

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

www.erm.com Version: 1.1 Project No.: 0692098 Client: Revere Copper Products Inc. July 2023

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-1: CALCULATIONS FOR ACTUAL GHG EMISSIONS - BOILERS FIRING NATURAL GAS

EMISSION SOURCES

	EMISSION
NATURAL GAS FIRED SOURCES	SOURCE ID
BOILER 1	00BR1
BOILER 2	00BR2
BOILER 3	00BR3

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM BOILERS FIRING NATURAL GAS

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	1.953E+08	2.250E+08	2.411E+08	1.956E+08	9.450E+07		YEARLY ANNUAL = Values from facility flow meters. PROJECTED = Average (Actual Annual NG Usage values for 2018 - 2021). NOTE: Does not include reductions expected to result from Boiler control upgrade project.
Actual Annual Natural Gas Usage (MMBtu/yr) =	2.007E+05	2.314E+05	2.481E+05	2.014E+05	9.721E+04		= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		20)18			20	19			20)20			20	021			2	022			PRO.	IECTED		
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	5.40E+06	1.55E+05	6.2E+01	1.84E+07	6.22E+06	1.78E+05	7.1E+01	2.12E+07	6.67E+06	1.91E+05	7.7E+01	2.28E+07	5.41E+06	1.55E+05	6.2E+01	1.85E+07	2.61E+06	7.49E+04	3.0E+01	8.92E+06	5.93E+06	1.70E+05	6.8E+01	2.02E+07	= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	2.70E+03	7.74E+01	3.1E-02	9.21E+03	3.11E+03	8.92E+01	3.6E-02	1.06E+04	3.34E+03	9.56E+01	3.8E-02	1.14E+04	2.71E+03	7.76E+01	3.1E-02	9.24E+03	1.31E+03	3.75E+01	1.5E-02	4.46E+03	2.96E+03	8.49E+01	3.4E-02	1.01E+04	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264	-	1	84	264		
Upstream Emissions as CO2e (tons/yr)	2.70E+03	6.50E+03	8.2E+00	9.20E+03	3.11E+03	7.49E+03	9.4E+00	1.06E+04	3.34E+03	8.03E+03	1.0E+01	1.14E+04	2.71E+03	6.52E+03	8.2E+00	9.23E+03	1.31E+03	3.15E+03	4.0E+00	4.46E+03	2.96E+03	7.14E+03	9.0E+00	1.01E+04	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Facility-wide Use of Natural Gas

		20	18			20	19			20)20			20	021			2	2022			PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) 1	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04																		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb																
																									kg]
Combustion Emissions (lb/yr)	2.34E+07	4.41E+02	4.41E+01		2.70E+07	5.1E+02	5.1E+01		2.90E+07	5.5E+02	5.5E+01		2.35E+07	4.4E+02	4.4E+01		1.13E+07	2.1E+02	2.1E+01		2.57E+07	4.8E+02	4.8E+01		= (Actual Natural Gas Usage 2022, MMBtu/yr) x
																									(Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	1.17E+04	2.2E-01	2.2E-02		1.35E+04	2.5E-01	2.5E-02		1.45E+04	2.7E-01	2.7E-02		1.18E+04	2.2E-01	2.2E-02		5.67E+03	1.1E-01	1.1E-02		1.29E+04	2.4E-01	2.4E-02		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	1.17E+04	1.9E+01	5.8E+00	1.17E+04	1.35E+04	2.1E+01	6.7E+00	1.35E+04	1.45E+04	2.3E+01	7.2E+00	1.45E+04	1.18E+04	1.9E+01	5.8E+00	1.18E+04	5.67E+03	9.0E+00	2.8E+00	5.69E+03	1.29E+04	2.0E+01	6.4E+00	1.29E+04	= (Combustion Emissions, ton/yr) x (20-yr GWP)

Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from Facility-wide Use of Natural Gas

		20)18			20	19			20)20	_		20	021	_		2	022			PRO	IECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	1.44E+04	7.8E+01	5.3E-02		1.66E+04	8.9E+01	6.1E-02		1.78E+04	9.6E+01	6.6E-02		1.45E+04	7.8E+01	5.3E-02		6.98E+03	3.8E+01	2.6E-02		1.58E+04	8.5E+01	5.8E-02		= (Upstream GHG Emissions, tons/yr) + (Direct GHG
																									Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	1.44E+04	6.5E+03	1.4E+01	2.09E+04	1.66E+04	7.5E+03	1.6E+01	2.41E+04	1.78E+04	8.1E+03	1.7E+01	2.59E+04	1.45E+04	6.5E+03	1.4E+01	2.10E+04	6.98E+03	3.2E+03	6.8E+00	1.01E+04	1.58E+04	7.2E+03	1.5E+01	2.30E+04	= (Upstream GHG Emissions, tons as CO2e/yr) +
																									(Direct GHG Emissions, tons as CO2e/yr)
'																									
Total Emissions as CO2e (metric tonnes/yr)	1.31E+04	5.9E+03	1.3E+01	0.00E+00	1.51E+04	6.8E+03	1.5E+01	2.19E+04	1.62E+04	7.3E+03	1.6E+01	2.35E+04	1.31E+04	5.9E+03	1.3E+01	1.91E+04	6.33E+03	2.9E+03	6.2E+00	9.20E+03	1.44E+04	6.5E+03	1.4E+01	2.09E+04	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric
																									tonne)/(ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-2: CALCULATIONS FOR ACTUAL GHG EMISSIONS - BOILERS FIRING NO. 6 FUEL OIL

EMISSION SOURCES

	EMISSION
No. 6 FUEL OIL FIRED SOURCES	SOURCE ID
BOILER 1	00BR1
BOILER 2	00BR2
BOILER 3	00BR3

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM BOILERS FIRING NO. 6 FUEL OIL

0 Process Information

HHV of No. 6 Oil (MMBtu/gal)	0.150	High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1.
		NOTE: This value is higher than the HHV listed in New York State's "2022
		GHG Report" (i.e., 0.091 MMBtu/gal), resulting in a more conservative
		estimate of GHG emissions.

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Actual Annual No. 6 Fuel Oil Usage (gal/yr) =	0	0	6.24E+03	5.29E+04	0		YEARLY ANNUAL = Values from facility flow meters. PROJECTED = 0 (The permit renewal application states that the facility will convert from No. 6 oil to No. 2 oil, and the three boilers will be operated as "gas-fired boilers" as defined under 40 CFR 63 Subpart JJJJJJ).
Actual Annual No. 6 Fuel Oil Usage (MMBtu/yr) =	0	0	9.36E+02	7.93E+03	0	0.00E+00	= (Actual Annual No. 6 Fuel Oil Usage, gal/yr) x (HHV of No. 6 Fuel Oil, MMBtu/gal)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of No. 6 Fuel Oil

		2	018			20	19			20	20			20)21			20	022			PROJ	ECTED		
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH₄	N ₂ O	(20 yr GWP)	CO2	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	11,183	109	0.19	20,423	11,183	109	0.19	20,423	11,183	109	0.19	20,423	11,183	109	0.19	20,423	11,183	109	0.19	20,423	11,183	109	0.19	20,423	
Upstream Emission Factor (lb/MMBtu)	24.632	2.40E-01	4.2E-04	44.985	24.632	2.40E-01	4.2E-04	44.985	24.632	2.40E-01	4.2E-04	44.985	24.632	2.40E-01	4.2E-04	44.985	24.632	2.40E-01	4.2E-04	44.985	24.632	2.40E-01	4.2E-04	44.985	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00	0.00E+00	2.31E+04	2.25E+02	3.9E-01	4.21E+04	1.95E+05	1.90E+03	3.3E+00	3.57E+05	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00		= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00	0.00E+00	1.15E+01	1.12E-01	2.0E-04	2.11E+01	9.77E+01	9.52E-01	1.7E-03	1.78E+02	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00	0.00E+00	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00	0.00E+00	1.15E+01	9.44E+00	5.2E-02	2.10E+01	9.77E+01	8.00E+01	4.4E-01	1.78E+02	0.00E+00	0.00E+00	0.0E+00	0.00E+00	0.00E+00	0.00E+00	0.0E+00	0.00E+00	= (Upstream Emissions, ton/yr) x (20-yr GWP)

Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Boiler Use of No. 6 Fuel Oil

		20	18			20	19	_		20	20			20	21	_		2	022	_		PROJ	CTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	75.10	3.0E-03	6.0E-04		75.10	3.0E-03	6.0E-04		75.10	3.0E-03	6.0E-04		75.10	3.0E-03	6.0E-04		75.10	3.0E-03	6.0E-04		75.10	3.0E-03	6.0E-04		
Combustion Emission Factor (lb/MMBtu)	165.2	6.6E-03	1.3E-03		165.2	6.6E-03	1.3E-03		165.2	6.6E-03	1.3E-03		165.2	6.6E-03	1.3E-03		165.2	6.6E-03	1.3E-03		165.2	6.6E-03	1.3E-03		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.0E+00	0.0E+00		1.55E+05	6.2E+00	1.2E+00		1.31E+06	5.2E+01	1.0E+01		0.00E+00	0.0E+00	0.0E+00		0.00E+00	0.0E+00	0.0E+00		= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	0.00E+00	0.0E+00	0.0E+00		0.00E+00	0.0E+00	0.0E+00		7.74E+01	3.1E-03	6.2E-04		6.55E+02	2.6E-02	5.2E-03		0.00E+00	0.0E+00	0.0E+00		0.00E+00	0.0E+00	0.0E+00		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00	0.00E+00	7.74E+01	2.6E-01	1.6E-01	7.78E+01	6.55E+02	2.2E+00	1.4E+00	6.59E+02	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00	0.00E+00	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from Boliler Use of No. 6 Fuel Oil

		20)18			20	19			20	20	_		20	21			20	022			PROJI	ECTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	0.00E+00	0.0E+00	0.0E+00		0.00E+00	0.0E+00	0.0E+00		8.89E+01	1.2E-01	8.1E-04		7.53E+02	9.8E-01	6.9E-03		0.00E+00	0.0E+00	0.0E+00		0.00E+00	0.0E+00	0.0E+00		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00	0.00E+00	8.89E+01	9.7E+00	2.1E-01	9.88E+01	7.53E+02	8.2E+01	1.8E+00	8.37E+02	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
								_				-												_	
Total Emissions as CO2e (metric tonnes/yr)	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00	0.00E+00	8.06E+01	8.8E+00	1.9E-01	8.96E+01	6.83E+02	7.5E+01	1.7E+00	7.59E+02	0.00E+00	0.0E+00	0.0E+00	0.00E+00	0.00E+00	0.0E+00	0.0E+00		= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-3: CALCULATIONS FOR ACTUAL GHG EMISSIONS - OTHER FACILITY COMBUSTION SOURCES FIRING NATURAL GAS

EMISSION SOURCES

EMISSION SOURCE FIRING NATURAL GAS	EMISSION SOURCE ID
Cake Furnace	01701
(1701 Walking Beam Furnace)	01/01

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM OTHER SOURCES FIRING NATURAL GAS

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	9.3422E+07	1.4890E+08	2.2870E+08	9.3868E+07	1.0697E+08		YEARLY ANNUAL = Values from facility flow meters. PROJECTED = (Total NG Usage for 2022, scf/yr) + (24,914,400 scf/yr) NOTE: PROJECTED reflects a 23.3% increase over 2022 .
Actual Annual Natural Gas Usage (MMBtu/yr) =	9.6007E+04	1.5313E+05	2.3542E+05	9.6604E+04	1.1003E+05		= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		20	18			20	19	_		20	20			20	21	_		202	22	_		PROJE	CTED		
	CO ₂	CH₄		TOTAL CO2e (20 yr GWP)	CO2	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO2	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH₄		TOTAL CO2e (20 yr GWP)	
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	2.58E+06	7.40E+04	3.0E+01	8.81E+06	4.12E+06	1.18E+05	4.7E+01	1.41E+07	6.33E+06	1.81E+05	7.3E+01	2.16E+07	2.60E+06	7.45E+04	3.0E+01	8.87E+06	2.96E+06	8.48E+04	3.4E+01	1.01E+07	3.65E+06	1.05E+05	4.2E+01	1.25E+07	= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	1.29E+03	3.70E+01	1.5E-02	4.41E+03	2.06E+03	5.90E+01	2.4E-02	7.03E+03	3.16E+03	9.07E+01	3.6E-02	1.08E+04	1.30E+03	3.72E+01	1.5E-02	4.43E+03	1.48E+03	4.24E+01	1.7E-02	5.05E+03	1.82E+03	5.23E+01	2.1E-02	6.23E+03	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	1.29E+03	3.11E+03	3.91E+00	4.40E+03	2.06E+03	4.96E+03	6.23E+00	7.02E+03	3.16E+03	7.62E+03	9.58E+00	1.08E+04	1.30E+03	3.13E+03	3.93E+00	4.43E+03	1.48E+03	3.56E+03	4.48E+00	5.05E+03	1.82E+03	4.39E+03	5.52E+00	6.22E+03	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Facility-wide Use of Natural Gas

		20	18			20	19			20	20			20	21			20	22			PROJE	CTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2	e NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	1.12E+07	2.11E+02	2.11E+01		1.79E+07	3.4E+02	3.4E+01		2.75E+07	5.2E+02	5.2E+01		1.13E+07	2.1E+02	2.1E+01		1.28E+07	2.4E+02	2.4E+01		1.58E+07	3.0E+02	3.0E+01		= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	5.60E+03	1.1E-01	1.1E-02		8.94E+03	1.7E-01	1.7E-02		1.37E+04	2.6E-01	2.6E-02		5.64E+03	1.1E-01	1.1E-02		6.42E+03	1.2E-01	1.2E-02		7.92E+03	1.5E-01	1.5E-02		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
O-yr Global Warming Potential (GWP) 2	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	5.60E+03	8.9E+00	2.8E+00	5.62E+03	8.94E+03	1.4E+01	4.4E+00	8.96E+03	1.37E+04	2.2E+01	6.8E+00	1.38E+04	5.64E+03	8.9E+00	2.8E+00	5.65E+03	6.42E+03	1.0E+01	3.2E+00	6.44E+03	7.92E+03	1.3E+01	3.9E+00	7.93E+03	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from Facility-wide Use of Natural Gas

		20	18			20	19			20	020			20	21			20)22			PROJE	CTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	6.89E+03	3.7E+01	2.5E-02		1.10E+04	5.9E+01	4.0E-02		1.69E+04	9.1E+01	6.2E-02		6.94E+03	3.7E+01	2.6E-02		7.90E+03	4.3E+01	2.9E-02		9.74E+03	5.2E+01	3.6E-02		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	6.89E+03	3.1E+03	6.7E+00	1.00E+04	1.10E+04	5.0E+03	1.1E+01	1.60E+04	1.69E+04	7.6E+03	1.6E+01	2.46E+04	6.94E+03	3.1E+03	6.7E+00	1.01E+04	7.90E+03	3.6E+03	7.7E+00	1.15E+04	9.74E+03	4.4E+03	9.5E+00		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	6.25E+03	2.8E+03	6.1E+00	9.09E+03	9.98E+03	4.5E+03	9.7E+00	1.45E+04	1.53E+04	6.9E+03	1.5E+01	2.23E+04	6.29E+03	2.8E+03	6.1E+00	9.15E+03	7.17E+03	3.2E+03	7.0E+00	1.04E+04	8.84E+03	4.0E+03	8.6E+00	1.28E+04	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-4: CALCULATIONS FOR ACTUAL GHG EMISSIONS - EMISSION SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)

EMISSION SOURCES

EMISSION SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)	EMISSION SOURCE ID	MAXIMUM HEAT INPUT (MMBtu/hr)
Rolling Mill IGS Boiler M2349 (DX)		3.69
Bar Mill IGS Boiler (DX)		2.30

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	4.00E+07	4.00E+07	4.00E+07	4.00E+07	4.00E+07	4.00E+07	YEARLY ANNUAL = (Boilers are constantly operating) PROJECTED = Average (Actual Annual NG Usage values for 2018 - 2022).
Actual Annual Natural Gas Usage (MMBtu/yr) =	4.11E+04	4.11E+04	4.12E+04	4.11E+04	4.11E+04	4.11E+04	= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		20)18			20	019			20				20	21			2	022			PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄		TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N₂O	TOTAL CO2e (20 yr GWP)		CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO2	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.10E+06	3.17E+04	1.3E+01	3.77E+06	1.11E+06	3.17E+04	1.3E+01	3.77E+06	1.11E+06	3.17E+04	1.3E+01	3.78E+06	1.11E+06	3.17E+04	1.3E+01	3.78E+06	1.11E+06	3.17E+04	1.3E+01	3.77E+06	1.11E+06	3.17E+04	1.27E+01	3.77E+06	= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	5.52E+02	1.58E+01	6.3E-03	1.89E+03	5.53E+02	1.58E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	5.52E+02	1.33E+03	1.67E+00	1.88E+03	5.53E+02	1.33E+03	1.67E+00	1.89E+03	5.53E+02	1.33E+03	1.68E+00	1.89E+03	5.53E+02	1.33E+03	1.67E+00	1.89E+03	5.53E+02	1.33E+03	1.67E+00	1.89E+03	5.53E+02	1.33E+03	1.67E+00	1.89E+03	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1 using Natural Gas.

2 Actual - Direct GHG Emissions from Combustion of Natural Gas by DX Sources

		20	018			20	119			20)20			20	021			2	022			PROJ	ECTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	I .	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	1	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) 1	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	4.80E+06	9.0E+01	9.0E+00		4.80E+06	9.0E+01	9.0E+00		4.80E+06	9.1E+01	9.1E+00		4.80E+06	9.1E+01	9.1E+00		4.80E+06	9.0E+01	9.0E+00		4.80E+06	9.0E+01	9.0E+00		= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	2.40E+03	4.5E-02	4.5E-03		2.40E+03	4.5E-02	4.5E-03		2.40E+03	4.5E-02	4.5E-03		2.40E+03	4.5E-02	4.5E-03		2.40E+03	4.5E-02	4.5E-03		2.40E+03	4.5E-02	4.5E-03		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264	_	1	84	264		1	84	264	-	1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	2.40E+03	3.8E+00	1.2E+00	2.40E+03	2.40E+03	3.8E+00	1.2E+00	2.40E+03	2.40E+03	3.8E+00	1.2E+00	2.41E+03	2.40E+03	3.8E+00	1.2E+00	2.41E+03	2.40E+03	3.8E+00	1.2E+00	2.41E+03	2.40E+03	3.8E+00	1.2E+00	2.41E+03	= (Combustion Emissions, ton/yr) x (20-yr GWP)

Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from DX Sources

		20)18	_		20	19			20)20			20)21			20)22	_		PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	2.95E+03	1.6E+01	1.1E-02		2.95E+03	1.6E+01	1.1E-02		2.96E+03	1.6E+01	1.1E-02		2.95E+03	1.6E+01	1.1E-02		2.95E+03	1.6E+01	1.1E-02		2.95E+03	1.6E+01	1.1E-02		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	2.95E+03	1.3E+03	2.9E+00	4.29E+03	2.95E+03	1.3E+03	2.9E+00	4.29E+03	2.96E+03	1.3E+03	2.9E+00	4.29E+03	2.95E+03	1.3E+03	2.9E+00	4.29E+03	2.95E+03	1.3E+03	2.9E+00	4.29E+03	2.95E+03	1.3E+03	2.9E+00		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	2.68E+03	1.2E+03	2.6E+00	3.89E+03	2.68E+03	1.2E+03	2.6E+00	3.89E+03	2.68E+03	1.2E+03	2.6E+00	3.90E+03	2.68E+03	1.2E+03	2.6E+00	3.90E+03	2.68E+03	1.2E+03	2.6E+00	3.89E+03	2.68E+03	1.2E+03	2.6E+00	3.89E+03	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-5: CALCULATIONS FOR ACTUAL GHG EMISSIONS - OTHER FACILITY COMBUSTION SOURCES FIRING NATURAL GAS

EMISSION SOURCES

OTHER FACILITY COMBUSTION SOURCES
FIRING NATURAL GAS
Other NG Combustion Sources

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM OTHER SOURCES FIRING NATURAL GAS

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	1.51E+08	1.48E+08	1.32E+08	3.17E+08	3.09E+08		YEARLY ANNUAL = (Total Facility NG Usage, scf/yr) - (Total NG Usage by Boilers, scf/yr) - (Total NG Usage by Cake Furnace, scf/yr) - (Total NG Usage by Units Generating DX, scf/yr) PROJECTED = (Total NG Usage for 2022, scf/yr) + (57,475,200 scf/yr) NOTE: Project expected to result in an increased usage of 9,574,900 scf/yr of NG from all sources excluding Cake Furnace.
Actual Annual Natural Gas Usage (MMBtu/yr) =	1.55E+05	1.52E+05	1.36E+05	3.26E+05	3.18E+05	3.77E+05	= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

2.31E+05

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		20	18			20	19	_		20	20	_		202	21			20:	22			PROJE	CTED	_	
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	4.17E+06	1.20E+05	4.8E+01	1.42E+07	4.09E+06	1.17E+05	4.7E+01	1.40E+07	3.67E+06	1.05E+05	4.2E+01	1.25E+07	8.76E+06	2.51E+05	1.0E+02	2.99E+07	8.55E+06	2.45E+05	9.8E+01	2.92E+07	1.01E+07	2.91E+05	1.2E+02	3.46E+07	= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	2.09E+03	5.98E+01	2.4E-02	7.12E+03	2.05E+03	5.87E+01	2.3E-02	6.99E+03	1.83E+03	5.26E+01	2.1E-02	6.26E+03	4.38E+03	1.26E+02	5.0E-02	1.50E+04	4.27E+03	1.23E+02	4.9E-02	1.46E+04	5.07E+03	1.45E+02	5.8E-02	1.73E+04	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	2.09E+03	5.02E+03	6.32E+00	7.12E+03	2.05E+03	4.93E+03	6.20E+00	6.98E+03	1.83E+03	4.41E+03	5.55E+00	6.25E+03	4.38E+03	1.05E+04	1.33E+01	1.49E+04	4.27E+03	1.03E+04	1.29E+01	1.46E+04	5.07E+03	1.22E+04	1.53E+01	1.73E+04	= (Upstream Emissions, ton/yr) x (20-yr GWP)

Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Facility-wide Use of Natural Gas

		20	18	_		20	19			20	20			20	21			20	22			PROJE	CTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	1.81E+07	3.41E+02	3.41E+01		1.78E+07	3.4E+02	3.4E+01		1.59E+07	3.0E+02	3.0E+01		3.80E+07	7.2E+02	7.2E+01		3.71E+07	7.0E+02	7.0E+01		4.40E+07	8.3E+02	8.3E+01		= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	9.05E+03	1.7E-01	1.7E-02		8.89E+03	1.7E-01	1.7E-02		7.96E+03	1.5E-01	1.5E-02		1.90E+04	3.6E-01	3.6E-02		1.86E+04	3.5E-01	3.5E-02		2.20E+04	4.1E-01	4.1E-02		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	9.05E+03	1.4E+01	4.5E+00	9.07E+03	8.89E+03	1.4E+01	4.4E+00	8.91E+03	7.96E+03	1.3E+01	4.0E+00	7.97E+03	1.90E+04	3.0E+01	9.5E+00	1.91E+04	1.86E+04	2.9E+01	9.2E+00	1.86E+04	2.20E+04	3.5E+01	1.1E+01	2.20E+04	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from Facility-wide Use of Natural Gas

		20	18			20	19			20	20			20	21			20	22			PROJE	CTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	1.11E+04	6.0E+01	4.1E-02		1.09E+04	5.9E+01	4.0E-02		9.79E+03	5.3E+01	3.6E-02		2.34E+04	1.3E+02	8.6E-02		2.28E+04	1.2E+02	8.4E-02	-	2.71E+04	1.5E+02	1.0E-01		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	1.11E+04	5.0E+03	1.1E+01	1.62E+04	1.09E+04	4.9E+03	1.1E+01	1.59E+04	9.79E+03	4.4E+03	9.5E+00	1.42E+04	2.34E+04	1.1E+04	2.3E+01	3.40E+04	2.28E+04	1.0E+04	2.2E+01	3.32E+04	2.71E+04	1.2E+04	2.6E+01		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
	-			<u>-</u>	•			-								-	-				-		•		
Total Emissions as CO2e (metric tonnes/yr)	1.01E+04	4.6E+03	9.8E+00	1.47E+04	9.92E+03	4.5E+03	9.6E+00	1.44E+04	8.88E+03	4.0E+03	8.6E+00	1.29E+04	2.12E+04	9.6E+03	2.1E+01	3.08E+04	2.07E+04	9.4E+03	2.0E+01	3.01E+04	2.46E+04	1.1E+04	2.4E+01	3.57E+04	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

PROJECT IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-6: CALCULATIONS FOR ACTUAL GHG EMISSIONS - EMERGENCY ENGINES < 600 hP FIRING DIESEL

EMISSION SOURCES

	EMISSION	
DIESEL FIRED EMERGENCY ENGINE < 600 hP	SOURCE ID	hP
EMERGENCY GENERATOR	< <exempt>></exempt>	168
(POWERHOUSE - 1960 GM)		

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM EMERGENCY ENGINES FIRING DIESEL

0 Process Information

110cc33 information		
		COMMENTS
Nominal Power Output for Emergency Engine	0.43	= (Nominal Power Output for Emergency Engine, hP/hr) x [0.002544 MMBtu/ hp/hr]
(MMBtu/hr) =		
Efficiency (%) =	40%	Estimated
Est. Diesel Usage	1.1	= (Nominal Power Output for Emergency Engine, MMBtu/hr) / (Engine Efficiency)
(MMBtu/hr) =		

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Meter Reading at End of Prior Year (hrs)	885.2	923.8	978.8	1005.1	1031.4		Reading for 2018 from Jan 2018 (rather than Dec 2017).
Meter Reading at End of Year (hrs)	923.8	978.8	1005.1	1031.4	1055.7		
Actual No. of Operating Hours (hrs/yr) =	38.6	55.0	26.3	26.3	24.3		YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter Reading at End of Prior Year , hrs) PROJECTED = Average { Annual No. of Operating Hours for 2018 - 2022 }
Est. Diesel Usage (MMBtu/yr) =	4.1E+01	5.9E+01	2.8E+01	2.8E+01	2.6E+01		= (Est. Diesel Usage, MMBtu/hr) x (Actual No. of Operating Hours, hrs/yr)

1 ACTUAL - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Diesel

		2018	3			2019)			202	0			20	21				2022			PRO	DJECTED		
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO2	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	
Upstream Emission Factor (lb/MMBtu)	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.33E+03	1.08E+01	2.3E-02	2.24E+03	1.89E+03	1.54E+01	3.2E-02	3.19E+03	9.04E+02	7.37E+00	1.5E-02	1.53E+03	9.04E+02	7.37E+00	1.5E-02	1.53E+03	8.35E+02	6.81E+00	1.4E-02	1.41E+03	1.17E+03	9.55E+00	2.0E-02	1.98E+03	= (Est. Diesel Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	6.63E-01	5.41E-03	1.1E-05	1.12E+00	9.45E-01	7.70E-03	1.6E-05	1.59E+00	4.52E-01	3.68E-03	7.7E-06	7.63E-01	4.52E-01	3.68E-03	7.7E-06	7.63E-01	4.17E-01	3.40E-03	7.1E-06	7.05E-01	5.86E-01	4.78E-03			= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	6.63E-01	4.54E-01	3.0E-03	1.12E+00	9.45E-01	6.47E-01	4.3E-03	1.60E+00	4.52E-01	3.09E-01	2.0E-03	7.63E-01	4.52E-01	3.09E-01	2.0E-03	7.63E-01	4.17E-01	2.86E-01	1.9E-03	7.05E-01	5.86E-01	4.01E-01	2.6E-03	9.90E-01	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 ACTUAL - Direct GHG Emissions from Combustion of Diesel by Emergency Engines

		201	8			201	9			202	0			2	021				2022			PRO	JECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) 1	73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		
Combustion Emission Factor (lb/MMBtu)	162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	6.71E+03	2.7E-01	5.4E-02		9.56E+03	3.9E-01	7.8E-02		4.57E+03	1.9E-01	3.7E-02		4.57E+03	1.9E-01	3.7E-02		4.22E+03	1.7E-01	3.4E-02		5.93E+03	2.4E-01	4.8E-02		= (Est. Diesel Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	3.36E+00	1.4E-04	2.7E-05		4.78E+00	1.9E-04	3.9E-05		2.29E+00	9.3E-05	1.9E-05		2.29E+00	9.3E-05	1.9E-05		2.11E+00	8.6E-05	1.7E-05		2.96E+00	1.2E-04	2.4E-05		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
0-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
ombustion Emissions as CO2e (tons/yr)	3.36E+00	1.1E-02	7.2E-03	3.37E+00	4.78E+00	1.6E-02	1.0E-02	4.81E+00	2.29E+00	7.8E-03	4.9E-03	2.30E+00	2.29E+00	7.8E-03	4.9E-03	2.30E+00	2.11E+00	7.2E-03	4.5E-03	2.12E+00	2.96E+00	1.0E-02	6.3E-03	2.98E+00	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 ACTUAL - Total GHG Emissions from Use of Diesel Oil by Emergency Engines

		2018	3	_		2019	9			2020	0			20	21				2022			PRO	JECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	4.02E+00	5.5E-03	3.9E-05		5.73E+00	7.9E-03	5.5E-05	-	2.74E+00	3.8E-03	2.6E-05	-	2.74E+00	3.8E-03	2.6E-05	-	2.53E+00	3.5E-03	2.4E-05		3.55E+00	4.9E-03	3.4E-05		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	4.02E+00	4.7E-01	1.0E-02	4.49E+00	5.73E+00	6.6E-01	1.5E-02	6.40E+00	2.74E+00	3.2E-01	6.9E-03	3.06E+00	2.74E+00	3.2E-01	6.9E-03	3.06E+00	2.53E+00	2.9E-01	6.4E-03	2.83E+00	3.55E+00	4.1E-01	9.0E-03		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
	=				-			-								•	<u>-</u>				_				-
Total Emissions as CO2e (metric tonnes/yr)	3.65E+00	4.2E-01	9.2E-03	4.08E+00	5.19E+00	6.0E-01	1.3E-02	5.81E+00	2.48E+00	2.9E-01	6.3E-03	2.78E+00	2.48E+00	2.9E-01	6.3E-03	2.78E+00	2.30E+00	2.7E-01	5.8E-03	2.57E+00	3.22E+00	3.7E-01	8.2E-03	3.60E+00	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

PROJECT IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-7: CALCULATIONS FOR ACTUAL GHG EMISSIONS - EMERGENCY ENGINES > 600 hP FIRING DIESEL

EMISSION SOURCES

ſ		EMISSION	
ı	DIESEL FIRED EMERGENCY ENGINE < 600 hP	SOURCE ID	hP
ſ	EMERGENCY GENERATOR	< <exempt>></exempt>	2,680
	(SOAP HOUSE - 1999 CATERPILLAR)		

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM EMERGENCY ENGINES FIRING DIESEL

0 Process Information

		COMMENTS
Nominal Power Output for Emergency Engine (MMBtu/hr) =	6.82	= (Nominal Power Output for Emergency Engine, hP/hr) x [0.002544 MMBtu/ hp/hr]
Efficiency (%) =	40%	Estimated
Est. Diesel Usage (MMBtu/hr) =	17.0	= (Nominal Power Output for Emergency Engine, MMBtu/hr) / (Engine Efficiency)

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Meter Reading at End of Prior Year (hrs)	388.1	404.3	421.5	436.6	450		Reading for 2018 from Jan 2018 (rather than Dec 2017).
Meter Reading at End of Year (hrs)	404.3	421.5	436.6	450	450.3		
Actual No. of Operating Hours (hrs/yr) =	16.2	17.2	15.1	13.4	0.3		YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter Reading at End of Prior Year , hrs) PROJECTED = Average { Annual No. of Operating Hours for 2018 - 2022 }
Est. Diesel Usage (MMBtu/yr) =	2.76E+02	2.93E+02	2.57E+02	2.28E+02	5.11E+00		= (Est. Diesel Usage, MMBtu/hr) x (Actual No. of Operating Hours, hrs/yr)

1 ACTUAL - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Diesel

		2018	3			2019)			2020)			202	21				2022			PRO	JECTED		
	CO ₂	CH₄	N₂O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO2	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	I N₂O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	
Upstream Emission Factor (g/MMBtu) ¹	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	
Upstream Emission Factor (lb/MMBtu)	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	8.88E+03	7.24E+01	1.5E-01	1.50E+04	9.43E+03	7.68E+01	1.6E-01	1.59E+04	8.28E+03	6.75E+01	1.4E-01	1.40E+04	7.34E+03	5.99E+01	1.3E-01	1.24E+04	1.64E+02	1.34E+00	2.8E-03	2.77E+02	6.82E+03	5.56E+01	1.2E-01	1.15E+04	= (Est. Diesel Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	4.44E+00	3.62E-02	7.6E-05	7.49E+00	4.71E+00	3.84E-02	8.1E-05	7.95E+00	4.14E+00	3.37E-02	7.1E-05	6.98E+00	3.67E+00	2.99E-02	6.3E-05	6.20E+00	8.22E-02	6.70E-04							= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264	-	1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	4.44E+00	3.04E+00	2.0E-02	7.50E+00	4.71E+00	3.23E+00	2.1E-02	7.96E+00	4.14E+00	2.83E+00	1.9E-02	6.99E+00	3.67E+00	2.51E+00	1.7E-02	6.20E+00	8.22E-02	5.63E-02	3.7E-04	1.39E-01	3.41E+00	2.33E+00	1.5E-02	5.76E+00	= (Upstream Emissions, ton/yr) x (20-yr GWP)

 $^{^{1}}$ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 ACTUAL - Direct GHG Emissions from Combustion of Diesel by Emergency Engines

		2018	3			201	9			202	0			202	21				2022			PRO	DJECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2	e CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		
Combustion Emission Factor (lb/MMBtu)	162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	4.49E+04	1.8E+00	3.6E-01		4.77E+04	1.9E+00	3.9E-01		4.19E+04	1.7E+00	3.4E-01		3.72E+04	1.5E+00	3.0E-01		8.32E+02	3.4E-02	6.7E-03		3.45E+04	1.4E+00	2.8E-01		= (Est. Diesel Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	2.25E+01	9.1E-04	1.8E-04		2.39E+01	9.7E-04	1.9E-04		2.09E+01	8.5E-04	1.7E-04		1.86E+01	7.5E-04	1.5E-04		4.16E-01	1.7E-05	3.4E-06		1.73E+01	7.0E-04	1.4E-04		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	2.25E+01	7.7E-02	4.8E-02	2.26E+01	2.39E+01	8.1E-02	5.1E-02	2.40E+01	2.09E+01	7.1E-02	4.5E-02	2.11E+01	1.86E+01	6.3E-02	4.0E-02	1.87E+01	4.16E-01	1.4E-03	8.9E-04	4.18E-01	1.73E+01	5.9E-02	3.7E-02	1.73E+01	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 ACTUAL - Total GHG Emissions from Use of Diesel Oil by Emergency Engines

		201	8			2019	9	_		2020				20	21				2022			PRO.	JECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	2.69E+01	3.7E-02	2.6E-04		2.86E+01	3.9E-02	2.7E-04		2.51E+01	3.5E-02	2.4E-04		2.23E+01	3.1E-02	2.1E-04		4.98E-01	6.9E-04	4.8E-06		2.07E+01	2.8E-02	2.0E-04		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons,
Total Emissions as CO2e (tons/yr)	2.69E+01	3.1E+00	6.8E-02	3.01E+01	2.86E+01	3.3E+00	7.2E-02	3.19E+01	2.51E+01	2.9E+00	6.4E-02	2.80E+01	2.23E+01	2.6E+00	5.6E-02	2.49E+01	4.98E-01	5.8E-02	1.3E-03	5.57E-01	2.07E+01	2.4E+00	5.2E-02	2.31E+01	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG
Total Emissions as CO2e (metric tonnes/yr)	2.44E+01	2.8E+00	6.2E-02	2.73E+01	2.59E+01	3.0E+00	6.6E-02	2.90E+01	2.28E+01	2.6E+00	5.8E-02	2.54E+01	2.02E+01	2.3E+00	5.1E-02	2.26E+01	4.52E-01	5.2E-02	1.1E-03	5.05E-01	1.87E+01	2.2E+00	4.7E-02	2.10E+01	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/
																									(ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

PROJECT IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-8: CALCULATIONS FOR ACTUAL GHG EMISSIONS - EMERGENCY ENGINES FIRING NATURAL GAS

EMISSION SOURCES

		EMISSION		
	NATURAL GAS FIRED EMERGENCY ENGINES	SOURCE ID	hP	COMMENTS
NG-34	EMERGENCY GENERATOR	< <exempt>></exempt>	34	Existing emergency generator.
	(MAIN OFFICE - 2004 GENERAC)			
NG-94	EMERGENCY GENERATOR	< <exempt>></exempt>	94	Replaced in 2023 by new 335 hP natural gas fired engine (listed
	(CAST SHOP)			immediately below).
NG-335	EMERGENCY GENERATOR	< <exempt>></exempt>	335	Replaces existing 94 hP natural gas fired engine (listed
	(CAST SHOP - 2023 GENERAC)			immediately above).

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM EMERGENCY ENGINES FIRING NATURAL GAS

0 Process Information

	NG-34	NG-94 (OLD)	NG-335 (NEW)	COMMENTS
Nominal Power Output for Emergency Engine	0.086	0.24	0.85	= (Nominal Power Output for Emergency Engine, hP/hr) x [0.002544
(MMBtu/hr) =				MMBtu/ hp/hr]
Efficiency (%) =	40%	40%	40%	Estimated
Est. Natural Gas Usage	0.22	0.60	2.13	= (Nominal Power Output for Emergency Engine, MMBtu/hr) / (Engine
(MMBtu/hr) =				Efficiency)

		2018	2019	2020	2021	2022	DROJECTER	COMMENTS
		2018				_	PROJECTED	COMMENTS
	Meter Reading at End of Prior Year (hrs)		15.5	49.6	70.6	92		
	Meter Reading at End of Year (hrs)		49.6	70.6	92	104.4		
	Actual No. of Operating Hours (hrs/yr) =	25.5	34.1	21	21.4	12.4	22.9	NOTE: In mid-2018, a new hour meter was installed on NG-34.
								The actual no. of operating hours was calclated based on the two
								meters used in 2018.
NG-34								YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter
(MAIN)								Reading at End of Prior Year , hrs)
								PROJECTED = Average { Annual No. of Operating Hours for 2018 -
								2022 }
	5-t Ni-to	F FF. 00	7.4F+00	4.55.00	4.6E+00	2.75.00		,
	Est. Natural Gas Usage	5.5E+00	7.4E+00	4.5E+00	4.6E+00	2.7E+00	4.9E+00	= (Est. Natural Gas Usage, MMBtu/hr) x (Actual No. of Operating
	(MMBtu/yr) =							Hours, hrs/yr)
	Meter Reading at End of Prior Year (hrs)	144	146	154	156	166		Reading for 2018 from Jan 2018 (rather than Dec 2017).
	Meter Reading at End of Year (hrs)	146	154	156	166	169		
NG-94	Actual No. of Operating Hours (hrs/yr) =	2	8	2	10	3	0	YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter
(CAST)								Reading at End of Prior Year , hrs)
(OLD)								PROJECTED = 0 (Engine to be replaced by NG-335)
	Est. Natural Gas Usage	1.2E+00	4.8E+00	1.2E+00	6.0E+00	1.8E+00	0.0E+00	, , ,
	9	1.26+00	4.01700	1.25+00	0.0E+00	1.02+00		= (Est. Natural Gas Usage, MMBtu/hr) x (Actual No. of Operating
	(MMBtu/yr) =	0	0	0	0	0	_	Hours, hrs/yr)
	Actual No. of Operating Hours (hrs/yr) =	0	0	0	0	0	10	
	Est. Natural Gas Usage	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.1E+01	= (Est. Natural Gas Usage, MMBtu/hr) x (Actual No. of Operating
	(MMBtu/yr) =							Hours, hrs/yr)
ALL	TOTAL Est. Natural Gas Usage	6.7E+00	1.2E+01	5.7E+00	1.1E+01	4.5E+00	2.6E+01	
ENGINES	(MMBtu/yr) =							

1 ACTUAL - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

		201	8			201	.9			202	0			20	21				2022			PRO	JECTED		
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.80E+02	5.17E+00	2.1E-03	6.16E+02	3.27E+02	9.37E+00	3.7E-03	1.12E+03	1.54E+02	4.42E+00	1.8E-03	5.27E+02	2.85E+02	8.18E+00	3.3E-03	9.73E+02	1.20E+02	3.45E+00	1.4E-03	4.11E+02	7.06E+02	2.02E+01	8.1E-03	2.41E+03	= (Est. Natural Gas Usage, MMBtu/yr) x (Upstream EF, lb/MMBt
Upstream Emissions (ton/yr)	9.02E-02	2.59E-03	1.0E-06	3.08E-01	1.63E-01	4.69E-03	1.9E-06	5.58E-01	7.71E-02	2.21E-03	8.8E-07	2.63E-01	1.43E-01	4.09E-03	1.6E-06	4.87E-01	6.02E-02	1.72E-03	6.9E-07	2.05E-01	3.53E-01	1.01E-02	4.0E-06	1.20E+00	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	9.02E-02	2.17E-01	2.7E-04	3.08E-01	1.63E-01	3.94E-01	4.9E-04	5.58E-01	7.71E-02	1.86E-01	2.3E-04	2.63E-01	1.43E-01	3.43E-01	4.3E-04	4.86E-01	6.02E-02	1.45E-01	1.8E-04	2.05E-01	3.53E-01	8.50E-01	1.1E-03	1.20E+00	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

2 ACTUAL - Direct GHG Emissions from Combustion of Natural Gas by Emergency Engines

		2018	3			201	.9			202	0			20)21				2022			PRO	JECTED		
	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO26	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	7.83E+02	1.5E-02	1.5E-03		1.42E+03	2.7E-02	2.7E-03		6.70E+02	1.3E-02	1.3E-03		1.24E+03	2.3E-02	2.3E-03		5.22E+02	9.8E-03	9.8E-04		3.06E+03	5.8E-02	5.8E-03		= (Est. Natural Gas Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	3.92E-01	7.4E-06	7.4E-07		7.10E-01	1.3E-05	1.3E-06		3.35E-01	6.3E-06	6.3E-07		6.19E-01	1.2E-05	1.2E-06		2.61E-01	4.9E-06	4.9E-07		1.53E+00	2.9E-05	2.9E-06		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	3.92E-01	6.2E-04	1.9E-04	3.92E-01	7.10E-01	1.1E-03	3.5E-04	7.11E-01	3.35E-01	5.3E-04	1.7E-04	3.36E-01	6.19E-01	9.8E-04	3.1E-04	6.20E-01	2.61E-01	4.1E-04	1.3E-04	2.62E-01	1.53E+00	2.4E-03	7.6E-04	1.54E+00	= (Combustion Emissions, ton/yr) x (20-yr GWP)

Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 ACTUAL - Total GHG Emissions from Use of Natural Gas by Emergency Engines

		2018	1			2019	9			202	0			20	21			:	2022			PRC	DJECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	4.82E-01	2.6E-03	1.8E-06		8.73E-01	4.7E-03	3.2E-06		4.12E-01	2.2E-03	1.5E-06		7.62E-01	4.1E-03	2.8E-06		3.21E-01	1.7E-03	1.2E-06		1.89E+00	1.0E-02	6.9E-06		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions,
																									tons/yr)
Total Emissions as CO2e (tons/yr)	4.82E-01	2.2E-01	4.7E-04	7.00E-01	8.73E-01	3.9E-01	8.5E-04	1.27E+00	4.12E-01	1.9E-01	4.0E-04	5.99E-01	7.62E-01	3.4E-01	7.4E-04	1.11E+00	3.21E-01	1.5E-01	3.1E-04	4.67E-01	1.89E+00	8.5E-01	1.8E-03	2.74E+00	= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG
																									Emissions, tons as CO2e/yr)
<u> </u>	•	•	•		•	·	·	•		·										•	·			·	
Total Emissions as CO2e (metric tonnes/yr)	4.37E-01	2.0E-01	4.2E-04	6.35E-01	7.92E-01	3.6E-01	7.7E-04	1.15E+00	3.74E-01	1.7E-01	3.6E-04	5.43E-01	6.91E-01	3.1E-01	6.7E-04	1.00E+00	2.92E-01	1.3E-01	2.8E-04	4.24E-01	1.71E+00	7.7E-01	1.7E-03	2.49E+00	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

EMISSION SOURCES

NATURAL GAS FIRED SOURCES	EMISSION SOURCE ID
BOILER 1	00BR1
BOILER 2	00BR2
BOILER 3	00BR3

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM BOILERS FIRING NATURAL GAS

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	1.953E+08	2.250E+08	2.411E+08	1.956E+08	9.450E+07		YEARLY ANNUAL = Values from facility flow meters. PROJECTED = Average {Actual Annual NG Usage values for 2018 - 2021}. NOTE: Does not include reductions expected to result from Boiler control upgrade project.
Actual Annual Natural Gas Usage (MMBtu/yr) =	2.007E+05	2.314E+05	2.481E+05	2.014E+05	9.721E+04	2.204E+05	= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by Boilers

					2018 AC	TUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOL	JS AIR POLLU	TANTS)						
_	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.4E-01	1.5E+01	4.1E-01	1.2E-01	6.7E-01	3.5E+02	3.9E-02	2.4E-03	2.2E-01	2.8E-01	1.7E-02	1E-01	7.5E-02	5.1E-02	4.1E-01	4.7E-03	3.7E+02
Emissions (ton/yr)	6.9E-05	7.4E-03	2.1E-04	6.0E-05	3.3E-04	1.8E-01	2.0E-05	1.2E-06	1.1E-04	1.4E-04	8.3E-06	5E-05	3.7E-05	2.6E-05	2.1E-04	2.4E-06	1.9E-01

					2019 AC	CTUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOL	JS AIR POLLU	TANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.6E-01	1.7E+01	4.8E-01	1.4E-01	7.7E-01	4.1E+02	4.5E-02	2.7E-03	2.5E-01	3.2E-01	1.9E-02	1E-01	8.6E-02	5.9E-02	4.8E-01	5.4E-03	4.3E+02
Emissions (ton/yr)	7.9E-05	8.5E-03	2.4E-04	6.9E-05	3.9E-04	2.0E-01	2.3E-05	1.4E-06	1.2E-04	1.6E-04	9.5E-06	6E-05	4.3E-05	2.9E-05	2.4E-04	2.7E-06	2.1E-01

					2020 AC	TUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOL	IS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.7E-01	1.8E+01	5.1E-01	1.5E-01	8.3E-01	4.4E+02	4.9E-02	2.9E-03	2.7E-01	3.4E-01	2.0E-02	1E-01	9.2E-02	6.3E-02	5.1E-01	5.8E-03	4.6E+02
Emissions (ton/yr)	8.5E-05	9.1E-03	2.6E-04	7.4E-05	4.1E-04	2.2E-01	2.4E-05	1.5E-06	1.3E-04	1.7E-04	1.0E-05	6E-05	4.6E-05	3.2E-05	2.6E-04	2.9E-06	2.3E-01

					2021 AC	TUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDO	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.4E-01	1.5E+01	4.1E-01	1.2E-01	6.7E-01	3.6E+02	3.9E-02	2.4E-03	2.2E-01	2.8E-01	1.7E-02	1E-01	7.5E-02	5.1E-02	4.1E-01	4.7E-03	3.7E+02
Emissions (ton/yr)	6.9E-05	7.4E-03	2.1E-04	6.0E-05	3.4E-04	1.8E-01	2.0E-05	1.2E-06	1.1E-04	1.4E-04	8.3E-06	5E-05	3.8E-05	2.6E-05	2.1E-04	2.4E-06	1.9E-01

					2022 AC	TUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOU	S AIR POLLU	TANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	6.6E-02	7.1E+00	2.0E-01	5.8E-02	3.2E-01	1.7E+02	1.9E-02	1.1E-03	1.0E-01	1.3E-01	8.0E-03	5E-02	3.6E-02	2.5E-02	2.0E-01	2.3E-03	1.8E+02
Emissions (ton/yr)	3.3E-05	3.6E-03	1.0E-04	2.9E-05	1.6E-04	8.6E-02	9.5E-06	5.7E-07	5.2E-05	6.7E-05	4.0E-06	2E-05	1.8E-05	1.2E-05	1.0E-04	1.1E-06	9.0E-02

					PROJEC	CTED EMISSION	IS OF CO-PO	LLUTANTS (=	HAZARDOU:	S AIR POLLUT	ANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.5E-01	1.6E+01	4.5E-01	1.3E-01	7.3E-01	3.9E+02	4.3E-02	2.6E-03	2.4E-01	3.0E-01	1.8E-02	1E-01	8.2E-02	5.6E-02	4.5E-01	5.2E-03	4.1E+02
Emissions (ton/yr)	7.5E-05	8.1E-03	2.3E-04	6.6E-05	3.7E-04	1.9E-01	2.2E-05	1.3E-06	1.2E-04	1.5E-04	9.1E-06	5E-05	4.1E-05	2.8E-05	2.3E-04	2.6E-06	2.0E-01

¹ Emission factors (Ib/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by Boilers - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

					AVERAGE ACTU	JAL ANNUAL EI	MISSIONS OI	F CO-POLLUT	ANTS (= HAZ	ARDOUS AIR	POLLUTAN	ΓS)					
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emissions (ton/yr)	7.7E-05	8.3E-03	2.3E-04	6.7E-05	3.7E-04	2.0E-01	2.2E-05	1.3E-06	1.2E-04	1.5E-04	9.3E-06	5.5E-05	4.2E-05	2.9E-05	2.3E-04	2.6E-06	2.1E-01

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX C-10: CALCULATIONS FOR ACTUAL EMISSIONS OF CO-POLLUTANTS - BOILERS FIRING NO. 6 FUEL OIL

EMISSION SOURCES

	EMISSION
No. 6 FUEL OIL FIRED SOURCES	SOURCE ID
BOILER 1	00BR1
BOILER 2	00BR2
BOILER 3	00BR3

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM BOILERS FIRING NO. 6 FUEL OIL

0 Process Information

HHV of No. 6 Oil (MMBtu/gal)	0.150	High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1.
		NOTE: This value is higher than the HHV listed in New York State's "2022 GHG
		Report" (i.e., 0.091 MMBtu/gal), resulting in a more conservative estimate of
		GHG emissions.

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Actual Annual No. 6 Fuel Oil Usage (gal/yr) =	0	0	6.24E+03	5.29E+04	0		YEARLY ANNUAL = Values from facility flow meters. PROJECTED = 0 (The permit renewal application states that the facility will convert from No. 6 oil to No. 2 oil, and the three boilers will be operated as "gas-fired boilers" as defined under 40 CFR 63 Subpart JJJJJJ).
Actual Annual No. 6 Fuel Oil Usage (MMBtu/yr) =	0.00E+00	0.00E+00	9.36E+02	7.93E+03	0.00E+00		= (Actual Annual No. 6 Fuel Oil Usage, MMBtu/yr) x (HHV of No. 6 Fuel Oil, MMBtu/gal)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from No. 6 Fuel Oil by Boilers

						201	8 ACTUAL E	MISSIONS OF	CO-POLLUTA	NTS (= HAZA	RDOUS AIR	POLLUTANTS							
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06	5.63E-06	4.01E-05	1.01E-05	2.00E-05	7.53E-07	5.63E-04	4.55E-06	
Emissions (lb/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Emissions (ton/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

						201	19 ACTUAL EI	MISSIONS OF	CO-POLLUTA	NTS (= HAZA	RDOUS AIR	POLLUTANTS							
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06	5.63E-06	4.01E-05	1.01E-05	2.00E-05	7.53E-07	5.63E-04	4.55E-06	
Emissions (lb/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Emissions (ton/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

						202	0 ACTUAL E	MISSIONS OF	CO-POLLUTA	NTS (= HAZA	RDOUS AIR	POLLUTANTS)							
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06	5.63E-06	4.01E-05	1.01E-05	2.00E-05	7.53E-07	5.63E-04	4.55E-06	
Emissions (lb/yr)	7.43E-03	2.06E-01	1.34E-03	7.05E-03	3.97E-04	3.87E-02	6.80E-04	3.28E-02	8.24E-03	1.74E-04	2.48E-03	5.28E-03	3.76E-02	9.43E-03	1.87E-02	7.05E-04	5.28E-01	4.26E-03	9.02E-01
Emissions (ton/yr)	3.72E-06	1.03E-04	6.68E-07	3.53E-06	1.99E-07	1.94E-05	3.40E-07	1.64E-05	4.12E-06	8.68E-08	1.24E-06	2.64E-06	1.88E-05	4.71E-06	9.36E-06	3.53E-07	2.64E-04	2.13E-06	4.51E-04

						202	1 ACTUAL E	MISSIONS OF	CO-POLLUTA	NTS (= HAZA	RDOUS AIR	POLLUTANTS							
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06	5.63E-06	4.01E-05	1.01E-05	2.00E-05	7.53E-07	5.63E-04	4.55E-06	
Emissions (lb/yr)	6.29E-02	1.74E+00	1.13E-02	5.97E-02	3.36E-03	3.28E-01	5.76E-03	2.78E-01	6.98E-02	1.47E-03	2.10E-02	4.47E-02	3.18E-01	7.98E-02	1.59E-01	5.97E-03	4.47E+00	3.61E-02	7.64E+00
Emissions (ton/yr)	3.15E-05	8.72E-04	5.66E-06	2.99E-05	1.68E-06	1.64E-04	2.88E-06	1.39E-04	3.49E-05	7.35E-07	1.05E-05	2.23E-05	1.59E-04	3.99E-05	7.93E-05	2.99E-06	2.23E-03	1.81E-05	3.82E-03

						202	22 ACTUAL EI	MISSIONS OF	CO-POLLUTA	ANTS (= HAZA	RDOUS AIR	POLLUTANTS)							
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06	5.63E-06	4.01E-05	1.01E-05	2.00E-05	7.53E-07	5.63E-04	4.55E-06	
Emissions (lb/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Emissions (ton/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

						PF	OJECTED EM	IISSIONS OF	CO-POLLUTAI	NTS (= HAZAR	RDOUS AIR P	OLLUTANTS)							
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	7.94E-06	2.20E-04	1.43E-06	7.53E-06	4.24E-07	4.13E-05	7.27E-07	3.50E-05	8.80E-06	1.85E-07	2.65E-06	5.63E-06	4.01E-05	1.01E-05	2.00E-05	7.53E-07	5.63E-04	4.55E-06	
Emissions (lb/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Emissions (ton/yr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Emission factors (lb/MMBtu fuel input) taken from AP-42, Section Section 1.3 ("Fuel Oil Combustion"), Tables 1.3-9 & 1.3-11.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from No. 6 Fuel Oil by Boilers - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

							AVERAGE A	ACTUAL ANN	UAL EMISSION	ONS OF CO-PO	OLLUTANTS (=	= HAZARDOL	JS AIR POLLU	TANTS)						
		TOTAL POM	Formaldehyde	Benzene	Naphthalene	Ethylbenzene	Toluene	Xylene	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
E	Emissions (ton/yr)	1.76E-05	4.88E-04	3.16E-06	1.67E-05	9.40E-07	9.16E-05	1.61E-06	7.76E-05	1.95E-05	4.11E-07	5.88E-06	1.25E-05	8.89E-05	2.23E-05	4.43E-05	1.67E-06	1.25E-03	1.01E-05	2.13E-03

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

EMISSION SOURCES

EMISSION SOURCE FIRING NATURAL GAS	EMISSION SOURCE ID
Cake Furnace (1701 Walking Beam Furnace)	01701

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM OTHER SOURCES FIRING NATURAL GAS

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	9.3422E+07	1.4890E+08	2.2870E+08	9.3868E+07	1.0697E+08		YEARLY ANNUAL = Values from facility flow meters. PROJECTED = (Total NG Usage for 2022, scf/yr) + (24,914,400 scf/yr) NOTE: PROJECTED reflects a 23.3% increase over 2022.
Actual Annual Natural Gas Usage (MMBtu/yr) =	9.6007E+04	1.5313E+05	2.3542E+05	9.6604E+04	1.1003E+05		= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by All Sources

					2018 AC	TUAL EMISSIO	NS OF CO-PO	OLLUTANTS	(= HAZARDO	US AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	6.6E-02	7.1E+00	2.0E-01	5.7E-02	3.2E-01	1.7E+02	1.9E-02	1.1E-03	1.0E-01	1.3E-01	7.9E-03	5E-02	3.6E-02	2.4E-02	2.0E-01	2.3E-03	1.8E+02
Emissions (ton/yr)	3.3E-05	3.5E-03	9.9E-05	2.9E-05	1.6E-04	8.5E-02	9.4E-06	5.6E-07	5.2E-05	6.6E-05	4.0E-06	2E-05	1.8E-05	1.2E-05	9.9E-05	1.1E-06	8.9E-02

					2019 AC	TUAL EMISSIC	NS OF CO-PO	DLLUTANTS	(= HAZARDOL	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehvde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Rervllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.0E-01	1.1E+01	3.2E-01	9.2E-02	5.1E-01	2.7E+02	3.0E-02	1.8E-03	1.7E-01	2.1E-01	1.3E-02	8E-02	5.7E-02	3.9E-02	3.2E-01	3.6E-03	2.8E+02
Emissions (ton/yr)	5.2E-05	5.6E-03	1.6E-04	4.6E-05	2.6E-04	1.4E-01	1.5E-05	9.0E-07	8.3E-05	1.1E-04	6.3E-06	4E-05	2.9E-05	2.0E-05	1.6E-04	1.8E-06	1.4E-01

					2020 AC	TUAL EMISSIO	NS OF CO-PO	OLLUTANTS	(= HAZARDO	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.6E-01	1.7E+01	4.8E-01	1.4E-01	7.8E-01	4.2E+02	4.6E-02	2.8E-03	2.5E-01	3.2E-01	1.9E-02	1E-01	8.8E-02	6.0E-02	4.8E-01	5.5E-03	4.4E+02
Emissions (ton/yr)	8.0E-05	8.7E-03	2.4E-04	7.0E-05	3.9E-04	2.1E-01	2.3E-05	1.4E-06	1.3E-04	1.6E-04	9.7E-06	6E-05	4.4E-05	3.0E-05	2.4E-04	2.8E-06	2.2E-01

2021 ACTUAL EMISSIONS OF CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)

	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	6.6E-02	7.1E+00	2.0E-01	5.8E-02	3.2E-01	1.7E+02	1.9E-02	1.1E-03	1.0E-01	1.3E-01	8.0E-03	5E-02	3.6E-02	2.5E-02	2.0E-01	2.3E-03	1.8E+02
Emissions (ton/yr)	3.3E-05	3.6E-03	9.9E-05	2.9E-05	1.6E-04	8.5E-02	9.5E-06	5.7E-07	5.2E-05	6.6E-05	4.0E-06	2E-05	1.8E-05	1.2E-05	9.9E-05	1.1E-06	8.9E-02

					2022 AC	TUAL EMISSIO	NS OF CO-PO	OLLUTANTS	(= HAZARDO	US AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	7.5E-02	8.1E+00	2.3E-01	6.6E-02	3.7E-01	1.9E+02	2.2E-02	1.3E-03	1.2E-01	1.5E-01	9.1E-03	5E-02	4.1E-02	2.8E-02	2.3E-01	2.6E-03	2.0E+02
Emissions (ton/yr)	3.8E-05	4.0E-03	1.1E-04	3.3E-05	1.8E-04	9.7E-02	1.1E-05	6.5E-07	5.9E-05	7.6E-05	4.5E-06	3E-05	2.0E-05	1.4E-05	1.1E-04	1.3E-06	1.0E-01

					PROJEC	TED EMISSIO	NS OF CO-PO	LLUTANTS (:	= HAZARDOU	S AIR POLLUT	ANTS)						
				Nambahalana	T .L		.	B 115	Co. doubles	Characterist	Calcala		• • • • • • • • • • • • • • • • • • • •		Alt-II	6-1	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	iviercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	9.3E-02	1.0E+01	2.8E-01	8.1E-02	4.5E-01	2.4E+02	2.7E-02	1.6E-03	1.5E-01	1.9E-01	1.1E-02	7E-02	5.1E-02	3.5E-02	2.8E-01	3.2E-03	2.5E+02
Emissions (ton/yr)	4.6E-05	5.0E-03	1.4E-04	4.1E-05	2.3E-04	1.2E-01	1.3E-05	8.0E-07	7.3E-05	9.3E-05	5.6E-06	3E-05	2.5E-05	1.7E-05	1.4E-04	1.6E-06	1.3E-01

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by All Sources - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

					AVERAGE ACTU	AL ANNUAL E	MISSIONS OF	CO-POLLUT	TANTS (= HAZ	ARDOUS AIR	POLLUTANT	S)					
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emissions (ton/yr)	5.7E-05	6.1E-03	1.7E-04	5.0E-05	2.8E-04	1.5E-01	1.6E-05	9.8E-07	9.0E-05	1.1E-04	6.8E-06	4E-05	3.1E-05	2.1E-05	1.7E-04	2.0E-06	1.5E-01

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

EMISSION SOURCES

EMISSION SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)	EMISSION SOURCE ID	MAXIMUM HEAT INPUT (MMBtu/hr)
Rolling Mill IGS Boiler M2349 (DX)		3.69
Bar Mill IGS Boiler (DX)		2.30

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM SOURCES FIRING NATURAL GAS (TO SUPPLY DX GAS)

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03		YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	4.00E+07	4.00E+07	4.00E+07	4.00E+07	4.00E+07	4.00E+07	YEARLY ANNUAL = (Boilers are constantly operating) PROJECTED = Average {Actual Annual NG Usage values for 2018 - 2022}.
Actual Annual Natural Gas Usage (MMBtu/yr) =	4.11E+04	4.11E+04	4.12E+04	4.11E+04	4.11E+04	4.11E+04	= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from Combustion of Natural Gas by DX Sources

					2018 AC	CTUAL EMISSIO	NS OF CO-PO	OLLUTANTS ((= HAZARDOL	JS AIR POLLU	TANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.8E-02	3.0E+00	8.5E-02	2.5E-02	1.4E-01	7.3E+01	8.1E-03	4.8E-04	4.4E-02	5.6E-02	3.4E-03	2E-02	1.5E-02	1.0E-02	8.5E-02	9.7E-04	7.6E+01
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.8E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

					2019 AC	CTUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOU	S AIR POLLU	TANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.8E-02	3.0E+00	8.5E-02	2.5E-02	1.4E-01	7.3E+01	8.1E-03	4.8E-04	4.4E-02	5.6E-02	3.4E-03	2E-02	1.5E-02	1.0E-02	8.5E-02	9.7E-04	7.6E+01
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.9E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

					2020 AC	TUAL EMISSIO	NS OF CO-PC	LLUTANTS (= HAZARDOL	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.8E-02	3.0E+00	8.5E-02	2.5E-02	1.4E-01	7.3E+01	8.1E-03	4.8E-04	4.4E-02	5.6E-02	3.4E-03	2E-02	1.5E-02	1.0E-02	8.5E-02	9.7E-04	7.6E+01
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.9E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

					2021 AC	TUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOL	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.8E-02	3.0E+00	8.5E-02	2.5E-02	1.4E-01	7.3E+01	8.1E-03	4.8E-04	4.4E-02	5.6E-02	3.4E-03	2E-02	1.5E-02	1.0E-02	8.5E-02	9.7E-04	7.6E+01
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.9E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

					2022 AC	CTUAL EMISSIO	NS OF CO-PC	OLLUTANTS (= HAZARDOL	JS AIR POLLU	TANTS)						
											·						TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.8E-02	3.0E+00	8.5E-02	2.5E-02	1.4E-01	7.3E+01	8.1E-03	4.8E-04	4.4E-02	5.6E-02	3.4E-03	2E-02	1.5E-02	1.0E-02	8.5E-02	9.7E-04	7.6E+01
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.9E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

					PROJE	CTED EMISSION	IS OF CO-PO	LLUTANTS (=	HAZARDOUS	AIR POLLUT	ANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.8E-02	3.0E+00	8.5E-02	2.5E-02	1.4E-01	7.3E+01	8.1E-03	4.8E-04	4.4E-02	5.6E-02	3.4E-03	2E-02	1.5E-02	1.0E-02	8.5E-02	9.7E-04	7.6E+01
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.9E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

¹ Emission factors (Ib/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from DX by All Sources - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

					AVERAGE ACTU	JAL ANNUAL EI	MISSIONS OF	CO-POLLUT	ANTS (= HAZ	ARDOUS AIR	POLLUTANT	S)					
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emissions (ton/yr)	1.4E-05	1.5E-03	4.2E-05	1.2E-05	6.9E-05	3.6E-02	4.0E-06	2.4E-07	2.2E-05	2.8E-05	1.7E-06	1E-05	7.7E-06	5.2E-06	4.2E-05	4.8E-07	3.8E-02

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

EMISSION SOURCES

OTHER FACILITY COMBUSTION SOURCES
FIRING NATURAL GAS

Other NG Combustion Sources

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM OTHER SOURCES FIRING NATURAL GAS

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02767E-03	1.02843E-03	1.02937E-03	1.02915E-03	1.02869E-03	1.02866E-03	YEARLY AVERAGE = Average {Actual Heating values shown on monthly bills for annual period} PROJECTED = Average {Average Annual Heating Value of NG, MMBtu/scf}
Actual Annual Natural Gas Usage (scf/yr) =	1.51E+08	1.48E+08	1.32E+08	3.17E+08	3.09E+08	3.66E+08	YEARLY ANNUAL = (Total Facility NG Usage, scf/yr) - (Total NG Usage by Boilers, scf/yr) - (Total NG Usage by Cake Furnace, scf/yr) - (Total NG Usage by Units Generating DX, scf/yr) PROJECTED = (Total NG Usage for 2022, scf/yr) + (57,475,200 scf/yr) NOTE: Project expected to result in an increased usage of 9,574,900 scf/yr of NG from all sources excluding Cake Furnace.
Actual Annual Natural Gas Usage (MMBtu/yr) =	1.55E+05	1.52E+05	1.36E+05	3.26E+05	3.18E+05	3.77E+05	= (Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by All Sources

					2018 AC	TUAL EMISSIO	NS OF CO-PC	DLLUTANTS	(= HAZARDOL	JS AIR POLLU	TANTS)						
_	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.1E-01	1.1E+01	3.2E-01	9.3E-02	5.2E-01	2.7E+02	3.0E-02	1.8E-03	1.7E-01	2.1E-01	1.3E-02	8E-02	5.8E-02	4.0E-02	3.2E-01	3.7E-03	2.9E+02
Emissions (ton/yr)	5.3E-05	5.7E-03	1.6E-04	4.6E-05	2.6E-04	1.4E-01	1.5E-05	9.1E-07	8.4E-05	1.1E-04	6.4E-06	4E-05	2.9E-05	2.0E-05	1.6E-04	1.8E-06	1.4E-01

					2019 AC	TUAL EMISSIO	NS OF CO-PO	OLLUTANTS ((= HAZARDOL	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	1.0E-01	1.1E+01	3.1E-01	9.1E-02	5.1E-01	2.7E+02	3.0E-02	1.8E-03	1.6E-01	2.1E-01	1.3E-02	7E-02	5.7E-02	3.9E-02	3.1E-01	3.6E-03	2.8E+02
Emissions (ton/yr)	5.2E-05	5.6E-03	1.6E-04	4.6E-05	2.5E-04	1.3E-01	1.5E-05	9.0E-07	8.2E-05	1.0E-04	6.3E-06	4E-05	2.8E-05	1.9E-05	1.6E-04	1.8E-06	1.4E-01

					2020 AC	TUAL EMISSIC	NS OF CO-P	OLLUTANTS ((= HAZARDOL	JS AIR POLLU	TANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	9.3E-02	1.0E+01	2.8E-01	8.2E-02	4.5E-01	2.4E+02	2.7E-02	1.6E-03	1.5E-01	1.9E-01	1.1E-02	7E-02	5.1E-02	3.5E-02	2.8E-01	3.2E-03	2.5E+02
Emissions (ton/yr)	4.7E-05	5.0E-03	1.4E-04	4.1E-05	2.3E-04	1.2E-01	1.3E-05	8.0E-07	7.4E-05	9.4E-05	5.6E-06	3E-05	2.5E-05	1.7E-05	1.4E-04	1.6E-06	1.3E-01

					2021 AC	TUAL EMISSIO	NS OF CO-PO	OLLUTANTS (= HAZARDO	JS AIR POLLU	TANTS)						
_	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.2E-01	2.4E+01	6.7E-01	1.9E-01	1.1E+00	5.7E+02	6.4E-02	3.8E-03	3.5E-01	4.5E-01	2.7E-02	2E-01	1.2E-01	8.3E-02	6.7E-01	7.7E-03	6.0E+02
Emissions (ton/yr)	1.1E-04	1.2E-02	3.4E-04	9.7E-05	5.4E-04	2.9E-01	3.2E-05	1.9E-06	1.8E-04	2.2E-04	1.3E-05	8E-05	6.1E-05	4.2E-05	3.4E-04	3.8E-06	3.0E-01

					2022 AC	TUAL EMISSIO	NS OF CO-PO	OLLUTANTS (= HAZARDOL	JS AIR POLLU	TANTS)						
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.2E-01	2.3E+01	6.5E-01	1.9E-01	1.1E+00	5.6E+02	6.2E-02	3.7E-03	3.4E-01	4.4E-01	2.6E-02	2E-01	1.2E-01	8.1E-02	6.5E-01	7.5E-03	5.9E+02
Emissions (ton/yr)	1.1E-04	1.2E-02	3.3E-04	9.5E-05	5.3E-04	2.8E-01	3.1E-05	1.9E-06	1.7E-04	2.2E-04	1.3E-05	8E-05	5.9E-05	4.1E-05	3.3E-04	3.7E-06	2.9E-01

					PROJEC	TED EMISSION	NS OF CO-PO	LLUTANTS (=	HAZARDOU:	S AIR POLLUT	ANTS)						
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Bervllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	6.8E-07	7.4E-05	2.1E-06	6.0E-07	3.3E-06	1.8E-03	2.0E-07	1.2E-08	1.1E-06	1.4E-06	8.2E-08	5E-07	3.7E-07	2.5E-07	2.1E-06	2.4E-08	
Emissions (lb/yr)	2.6E-01	2.8E+01	7.8E-01	2.3E-01	1.3E+00	6.7E+02	7.4E-02	4.4E-03	4.1E-01	5.2E-01	3.1E-02	2E-01	1.4E-01	9.6E-02	7.8E-01	8.9E-03	7.0E+02
Emissions (ton/yr)	1.3E-04	1.4E-02	3.9E-04	1.1E-04	6.3E-04	3.3E-01	3.7E-05	2.2E-06	2.0E-04	2.6E-04	1.6E-05	9E-05	7.0E-05	4.8E-05	3.9E-04	4.4E-06	3.5E-01

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Natural Gas by All Sources - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

					AVERAGE ACTU	AL ANNUAL E	MISSIONS OF	CO-POLLU	ΓANTS (= HAZ	ARDOUS AIR	POLLUTANT	S)					
																	TOTAL
	TOTAL POM	Formaldehyde	Benzene	Naphthalene	Toluene	Hexane	Arsenic	Beryllium	Cadmium	Chromium	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	HAPs ²
Emissions (ton/yr)	7.9E-05	8.5E-03	2.4E-04	6.9E-05	3.9E-04	2.0E-01	2.3E-05	1.4E-06	1.2E-04	1.6E-04	9.5E-06	6E-05	4.3E-05	2.9E-05	2.4E-04	2.7E-06	2.1E-01

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

EMISSION SOURCES

DIESEL FIRED EMERGENCY ENGINE < 600 hP	EMISSION SOURCE ID	hP
EMERGENCY GENERATOR (POWERHOUSE - 1960 GM)	< <exempt>></exempt>	168

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM EMERGENCY ENGINES FIRING DIESEL

0 Process Information

		COMMENTS
Nominal Power Output for Emergency Engine	0.43	= (Total Nominal Power Output for Emergency Engines, hP/hr) x [0.002544
(MMBtu/hr) =		MMBtu/ hp/hr]
Efficiency (%) =	40%	Estimated
Est. Diesel Usage	1.1	= (Total Nominal Power Output for All Emergency Engines, MMBtu/hr) / (Engine
(MMBtu/hr) =		Efficiency)

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Meter Reading at End of Prior Year (hrs)	885.2	923.8	978.8	1005.1	1031.4		Reading for 2018 from Jan 2018 (rather than Dec 2017).
Meter Reading at End of Year (hrs)	923.8	978.8	1005.1	1031.4	1055.7		
Actual No. of Operating Hours (hrs/yr) =	38.6	55.0	26.3	26.3	24.3		YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter Reading at End of Prior Year , hrs) PROJECTED = Average { Annual No. of Operating Hours for 2018 - 2022 }
Est. Diesel Usage (MMBtu/yr) =	4.1E+01	5.9E+01	2.8E+01	2.8E+01	2.6E+01		= (Est. Diesel Usage, MMBtu/hr) x (Actual No. of Operating Hours, hrs/yr)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from Diesel by Emergency Engines < 600 hP

			2018 ACTUAL E	MISSIONS FOR C	O-POLLUTANTS (= HAZARDOUS	AIR POLLUTA	ANTS)		
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Butadiene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04	
Emissions Diesel (lb/yr)	6.93E-03	4.87E-02	3.85E-02	3.16E-02	3.50E-03	1.61E-03	3.82E-03	1.69E-02	1.18E-02	1.60E-01
Emissions (ton/yr)	3.47E-06	2.43E-05	1.92E-05	1.58E-05	1.75E-06	8.06E-07	1.91E-06	8.43E-06	5.88E-06	7.99E-05

	2019 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)											
_	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Butadiene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²		
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04			
Emissions Diesel (lb/yr)	9.88E-03	6.93E-02	5.48E-02	4.51E-02	4.98E-03	2.30E-03	5.44E-03	2.40E-02	1.67E-02	2.28E-01		
Emissions (ton/yr)	4.94E-06	3.47E-05	2.74E-05	2.25E-05	2.49E-06	1.15E-06	2.72E-06	1.20E-05	8.37E-06	1.14E-04		

	2020 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)											
	TOTAL POM	TAL POM Formaldehyde Benzene Acetaldehyde Naphthalene Butadiene Acrolein Toluene Xylenes										
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04			
Emissions Diesel (lb/yr)	4.72E-03	3.32E-02	2.62E-02	2.16E-02	2.38E-03	1.10E-03	2.60E-03	1.15E-02	8.01E-03	1.09E-01		
Emissions (ton/yr)	2.36E-06	1.66E-05	1.31E-05	1.08E-05	1.19E-06	5.49E-07	1.30E-06	5.75E-06	4.00E-06	5.44E-05		

	2021 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)											
	TOTAL POM	AL POM Formaldehyde Benzene Acetaldehyde Naphthalene Butadiene Acrolein Toluene Xylenes TOTAL										
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04			
Emissions Diesel (lb/yr)	4.72E-03	3.32E-02	2.62E-02	2.16E-02	2.38E-03	1.10E-03	2.60E-03	1.15E-02	8.01E-03	1.09E-01		
Emissions (ton/yr)	2.36E-06	1.66E-05	1.31E-05	1.08E-05	1.19E-06	5.49E-07	1.30E-06	5.75E-06	4.00E-06	5.44E-05		

	2022 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)											
	TOTAL POM	AL POM Formaldehyde Benzene Acetaldehyde Naphthalene Butadiene Acrolein Toluene Xylenes TO										
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04			
Emissions Diesel (lb/yr)	4.36E-03	3.06E-02	2.42E-02	1.99E-02	2.20E-03	1.02E-03	2.40E-03	1.06E-02	7.40E-03	1.01E-01		
Emissions (ton/yr)	2.18E-06	1.53E-05	1.21E-05	9.96E-06	1.10E-06	5.08E-07	1.20E-06	5.31E-06	3.70E-06	5.03E-05		

	PROJECTED EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)										
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Butadiene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²	
Emission Factor Diesel (lb/MMBtu) ¹	1.68E-04	1.18E-03	9.33E-04	7.67E-04	8.48E-05	3.91E-05	9.25E-05	4.09E-04	2.85E-04		
Emissions Diesel (lb/yr)	6.12E-03	4.30E-02	3.40E-02	2.79E-02	3.09E-03	1.42E-03	3.37E-03	1.49E-02	1.04E-02	1.41E-01	
Emissions (ton/yr)	3.06E-06	2.15E-05	1.70E-05	1.40E-05	1.54E-06	7.12E-07	1.69E-06	7.45E-06	5.19E-06	7.06E-05	

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 1.4 ("Natural Gas Combustion"), Tables 1.4-2, 1.4-3 & 1.4-4.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Diesel by Emergency Engines < 600 hP - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

	AVERAGE ACTUAL ANNUAL EMISSIONS OF CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)										
	TOTAL POM Formaldehyde Benzene Acetaldehyde Naphthalene Butadiene Acrolein Toluene Xylenes TOTAL										
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Napiitiiaieiie	Dutaulelle	Acroleiti	Toluelle	Aylelles	TOTAL HAPs ²	
Emissions (ton/yr)	2.4E-06	1.7E-05	1.3E-05	1.1E-05	1.2E-06	5.5E-07	1.3E-06	5.7E-06	4.0E-06	5.4E-05	

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

EMISSION SOURCES

DIESEL FIRED EMERGENCY ENGINE < 600 hP	EMISSION SOURCE ID	hP
EMERGENCY GENERATOR (SOAP HOUSE - 1999 CATERPILLAR)	< <exempt>></exempt>	2,680

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM EMERGENCY ENGINES FIRING DIESEL

0 Process Information

		COMMENTS
Nominal Power Output for Emergency Engine	6.82	= (Nominal Power Output for Emergency Engine, hP/hr) x [0.002544 MMBtu/
(MMBtu/hr) =		hp/hr]
Efficiency (%) =	40%	Estimated
Est. Diesel Usage (MMBtu/hr) =	17.0	= (Nominal Power Output for Emergency Engine, MMBtu/hr) / (Engine Efficiency)

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
Meter Reading at End of Prior Year (hrs)	388.1	404.3	421.5	436.6	450		Reading for 2018 from Jan 2018 (rather than Dec 2017).
Meter Reading at End of Year (hrs)	404.3	421.5	436.6	450	450.3		
Actual No. of Operating Hours (hrs/yr) =	16.2	17.2	15.1	13.4	0.3		YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter Reading at End of Prior Year , hrs) PROJECTED = Average { Annual No. of Operating Hours for 2018 - 2022 }
Est. Diesel Usage (MMBtu/hr) =	276	293	257	228	5		= (Est. Diesel Usage, MMBtu/hr) x (Actual No. of Operating Hours, hrs/yr)

1 Actual - Annual Emissions of Co-Pollutants (Hazardous Air Pollutants) from Diesel by Emergency Engines > 600 hP

	2018 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)									
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²	
Emission Factor Diesel (lb/MMBtu) 1	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04		
Emissions Diesel (lb/yr)	5.84E-02	2.18E-02	2.14E-01	6.96E-03	3.59E-02	2.18E-03	7.76E-02	5.33E-02	4.34E-01	
Emissions (ton/yr)	2.92E-05	1.09E-05	1.07E-04	3.48E-06	1.79E-05	1.09E-06	3.88E-05	2.66E-05	2.17E-04	

		2019 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)									
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²		
Emission Factor Diesel (lb/MMBtu) 1	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04			
Emissions Diesel (lb/yr)	6.20E-02	2.31E-02	2.28E-01	7.39E-03	3.81E-02	2.31E-03	8.24E-02	5.66E-02	4.61E-01		
Emissions (ton/yr)	3.10E-05	1.16E-05	1.14E-04	3.69E-06	1.91E-05	1.16E-06	4.12E-05	2.83E-05	2.31E-04		

	2020 ACTUAL EMISSIONS FOR CO-POLLUTANTS (= HAZARDOUS AIR POLLUTANTS)									
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²	
Emission Factor Diesel (lb/MMBtu) 1	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04		
Emissions Diesel (lb/yr)	5.44E-02	2.03E-02	2.00E-01	6.49E-03	3.35E-02	2.03E-03	7.23E-02	4.97E-02	4.05E-01	
Emissions (ton/yr)	2.72E-05	1.02E-05	9.99E-05	3.24E-06	1.67E-05	1.01E-06	3.62E-05	2.48E-05	2.02E-04	

		2021	ACTUAL EMISSIO	NS FOR CO-POLL	.UTANTS (= HAZA	RDOUS AIR PO	LLUTANTS)		
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²
Emission Factor Diesel (lb/MMBtu) 1	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04	
Emissions Diesel (lb/yr)	4.83E-02	1.80E-02	1.77E-01	5.76E-03	2.97E-02	1.80E-03	6.42E-02	5.33E-02	3.69E-01
Emissions (ton/yr)	2.42E-05	9.01E-06	8.86E-05	2.88E-06	1.48E-05	9.00E-07	3.21E-05	2.66E-05	1.84E-04

		2022	ACTUAL EMISSIO	NS FOR CO-POLI	UTANTS (= HAZA	RDOUS AIR PO	LLUTANTS)		
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²
Emission Factor Diesel (lb/MMBtu) 1	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04	
Emissions Diesel (lb/yr)	1.08E-03	4.03E-04	3.97E-03	1.29E-04	6.65E-04	4.03E-05	1.44E-03	9.87E-04	8.05E-03
Emissions (ton/yr)	5.41E-07	2.02E-07	1.98E-06	6.44E-08	3.32E-07	2.01E-08	7.18E-07	4.93E-07	4.02E-06

		PROJ	ECTED EMISSION	IS FOR CO-POLL	JTANTS (= HAZAF	RDOUS AIR POL	LUTANTS)		
	TOTAL POM	Formaldehyde	Benzene	Acetaldehyde	Naphthalene	Acrolein	Toluene	Xylenes	TOTAL HAPs ²
Emission Factor Diesel (lb/MMBtu) 1	2.12E-04	7.89E-05	7.76E-04	2.52E-05	1.30E-04	7.88E-06	2.81E-04	1.93E-04	
Emissions Diesel (lb/yr)	4.49E-02	1.67E-02	1.65E-01	5.34E-03	2.76E-02	1.67E-03	5.96E-02	4.09E-02	3.34E-01
Emissions (ton/yr)	2.24E-05	8.36E-06	8.23E-05	2.67E-06	1.38E-05	8.35E-07	2.98E-05	2.05E-05	1.67E-04

¹ Emission factors (lb/MMBtu fuel input) from AP-42, Section 3.4 ("Large Stationary Diesel And All Stationary Dual-fuel Engines"), Tables 3.4-3.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Diesel by Emergency Engines > 600 hP - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

		AVERAGE AC	TUAL ANNUAL E	MISSIONS OF CO)-POLLUTANTS (=	HAZARDOUS A	AIR POLLUTA	NTS)							
		Nonthalana Asralain Taluana Vulanas TOTAL HADA													
	TOTAL POM	TOTAL POM Formaldehyde Benzene Acetaldehyde Napthalene Acrolein Toluene Xylenes TOTAL HAPS ²													
Emissions (ton/yr)	2.6E-05	2.6E-05 9.6E-06 9.4E-05 3.1E-06 1.6E-05 9.6E-07 3.4E-05 2.6E-05 1.9E-04													

² NOTE: "Naphthalene" is included in "POM". To avoid double counting in TOTAL HAPs, the value for its "individual" contribution has been subtracted out.

EMISSION SOURCES

		EMISSION		
	NATURAL GAS FIRED EMERGENCY ENGINES	SOURCE ID	hP	COMMENTS
NG-34	EMERGENCY GENERATOR	< <exempt>></exempt>	34	Existing emergency generator.
	(MAIN OFFICE - 2004 GENERAC)			
NG-94	EMERGENCY GENERATOR	< <exempt>></exempt>	94	Replaced in 2023 by new 335 hP natural gas fired engine (listed
	(CAST SHOP)			immediately below).
NG-335	EMERGENCY GENERATOR	< <exempt>></exempt>	335	Replaces existing 94 hP natural gas fired engine (listed
	(CAST SHOP - 2023 GENERAC)			immediately above).

CALCULATIONS FOR ACTUAL CO-POLLUTANT EMISSIONS FROM EMERGENCY ENGINES FIRING NATURAL GAS

0 Process Information

	NG-34	NG-94 (OLD)	NG-335 (NEW)	COMMENTS
Nominal Power Output for Emergency Engine	0.086	0.24	0.85	= (Nominal Power Output for Emergency Engine, hP/hr) x [0.002544
(MMBtu/hr) =				MMBtu/ hp/hr]
Efficiency (%) =	40%	40%	40%	Estimated
Est. Natural Gas Usage	0.22	0.60	2.13	= (Nominal Power Output for Emergency Engine, MMBtu/hr) / (Engine
(MMBtu/hr) =				Efficiency)

		2018	2019	2020	2021	2022	PROJECTED	COMMENTS
	Meter Reading at End of Prior Year (hrs)		15.5	49.6	70.6	92		
	Meter Reading at End of Year (hrs)		49.6	70.6	92	104.4		
	Actual No. of Operating Hours (hrs/yr) =	25.5	34.1	21	21.4	12.4	22.9	NOTE: In mid-2018, a new hour meter was installed on NG-34. The actual
								no. of operating hours was calclated based on the two meters used in
NG-34								2018.
(MAIN)								YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter Reading at
								End of Prior Year , hrs)
								PROJECTED = Average { Annual No. of Operating Hours for 2018 - 2022 }
	Est. Natural Gas Usage	5.5E+00	7.4E+00	4.5E+00	4.6E+00	2.7E+00	4.9E+00	= (Est. Natural Gas Usage, MMBtu/hr) x (Actual No. of Operating Hours,
	(MMBtu/yr) =							hrs/yr)
	Meter Reading at End of Prior Year (hrs)	144	146	154	156	166		Reading for 2018 from Jan 2018 (rather than Dec 2017).
	Meter Reading at End of Year (hrs)	146	154	156	166	169		
NG-94	Actual No. of Operating Hours (hrs/yr) =	2	8	2	10	3	0	YEARLY ANNUAL = (Meter Reading at End of Year, hrs) - (Meter Reading at
(CAST)								End of Prior Year , hrs)
(OLD)								PROJECTED = 0 (Engine to be replaced by NG-335)
	Est. Natural Gas Usage	1.2E+00	4.8E+00	1.2E+00	6.0E+00	1.8E+00	0.0E+00	= (Est. Natural Gas Usage, MMBtu/hr) x (Actual No. of Operating Hours,
	(MMBtu/yr) =							hrs/yr)
NG-335	Actual No. of Operating Hours (hrs/yr) =	0	0	0	0	0	10	
(CAST)	Est. Natural Gas Usage	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.1E+01	= (Est. Natural Gas Usage, MMBtu/hr) x (Actual No. of Operating Hours,
(NEW)	(MMBtu/yr) =							hrs/yr)
ALL	TOTAL Est. Natural Gas Usage	6.7E+00	1.2E+01	5.7E+00	1.1E+01	4.5E+00	2.6E+01	
ENGINE	(MMBtu/yr) =							

						2018 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARI	OOUS AIR POI	LUTANTS)				
	TOTAL POM	Formaldehyde	Carbon Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Vinyl Chloride		Methylene Chloride	,	1,2- Dichloropropane	1,1,2- Trichloroethane	1,1,2,2- Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	2.0E-03	3.7E-01	4.1E-04	2.1E-02	3.2E-04	1.3E-02	1.3E-05	1.7E-04	5.6E-02	9.9E-04	2.6E-04	3.0E-04	3.5E-04	4.4E-04	6.5E-04
Emissions (ton/yr)	1.0E-06	1.9E-04	2.0E-07	1.0E-05	1.6E-07	6.5E-06	6.3E-09	8.3E-08	2.8E-05	4.9E-07	1.3E-07	1.5E-07	1.8E-07	2.2E-07	3.3E-07

						2018 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARD	OUS AIR POL	LUTANTS)				_
	Biphenyl	Ethylbenzene	Styrene	Ethylene Dibromide	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	2,2,4- Trimethylpentane	1,3- Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	1.4E-03	7.2E-04	3.7E-04	4.9E-04	5.5E-03	5.2E-02	2.8E-04	6.5E-03	3.0E-04	2.8E-04	7.4E-03	5.7E-03	2.9E-04	1.8E-03	5.5E-01
Emissions (ton/yr)	7.1E-07	3.6E-07	1.8E-07	2.5E-07	2.8E-06	2.6E-05	1.4E-07	3.2E-06	1.5E-07	1.4E-07	3.7E-06	2.8E-06	1.5E-07	9.0E-07	2.7E-04

						2019 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARI	OOUS AIR POI	LUTANTS)				
			Carbon					Vinyl		Methylene	1,1-	1,2-	1,1,2-	1,1,2,2-	
	TOTAL POM	Formaldehyde	Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Chloride	Acetaldehyde	Chloride	Dichloroethane	Dichloropropane	Trichloroethane	Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	3.6E-03	6.7E-01	7.4E-04	3.7E-02	5.7E-04	2.4E-02	2.3E-05	3.0E-04	1.0E-01	1.8E-03	4.8E-04	5.4E-04	6.4E-04	8.1E-04	1.2E-03
Emissions (ton/yr)	1.8E-06	3.4E-04	3.7E-07	1.9E-05	2.9E-07	1.2E-05	1.1E-08	1.5E-07	5.1E-05	8.9E-07	2.4E-07	2.7E-07	3.2E-07	4.0E-07	5.9E-07

						2019 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARD	OUS AIR POL	LUTANTS)				
	Biphenyl	Ethylbenzene	Styrene	Ethylene Dibromide	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	2,2,4- Trimethylpentane	1,3- Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	2.6E-03	1.3E-03	6.7E-04	8.9E-04	1.0E-02	9.5E-02	5.1E-04	1.2E-02	5.4E-04	5.1E-04	1.3E-02	1.0E-02	5.3E-04	3.3E-03	9.9E-01
Emissions (ton/yr)	1.3E-06	6.6E-07	3.3E-07	4.5E-07	5.0E-06	4.7E-05	2.6E-07	5.9E-06	2.7E-07	2.6E-07	6.7E-06	5.1E-06	2.7E-07	1.6E-06	5.0E-04

						2020 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARI	OOUS AIR POI	LLUTANTS)				
			Carbon	D.C. ethan al	Chlanafanna	B	Chlamathana	Vinyl		Methylene	,	1,2-	1,1,2-	1,1,2,2-	Nauhahalaua
	TOTAL POM	Formaldehyde	Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Chioride	Acetaidenyde	Chioriae	Dichioroethane	Dichloropropane	Trichioroethane	Tetrachloroethane	Naphthaiene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	1.7E-03	3.2E-01	3.5E-04	1.8E-02	2.7E-04	1.1E-02	1.1E-05	1.4E-04	4.8E-02	8.4E-04	2.2E-04	2.6E-04	3.0E-04	3.8E-04	5.6E-04
Emissions (ton/yr)	8.6E-07	1.6E-04	1.7E-07	8.8E-06	1.4E-07	5.6E-06	5.4E-09	7.1E-08	2.4E-05	4.2E-07	1.1E-07	1.3E-07	1.5E-07	1.9E-07	2.8E-07

						2020 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARD	OUS AIR POL	LUTANTS)				
	Biphenyl	Ethylbenzene	Styrene	Ethylene Dibromide	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	2,2,4- Trimethylpentane	1,3- Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	1.2E-03	6.2E-04	3.1E-04	4.2E-04	4.7E-03	4.5E-02	2.4E-04	5.5E-03	2.5E-04	2.4E-04	6.4E-03	4.9E-03	2.5E-04	1.5E-03	4.7E-01
Emissions (ton/yr)	6.1E-07	3.1E-07	1.6E-07	2.1E-07	2.4E-06	2.2E-05	1.2E-07	2.8E-06	1.3E-07	1.2E-07	3.2E-06	2.4E-06	1.3E-07	7.7E-07	2.3E-04

						2021 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARI	DOUS AIR POL	LUTANTS)				
	TOTAL POM	Formaldehyde	Carbon Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Vinyl Chloride	Acetaldehyde	Methylene Chloride	1,1- Dichloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane	1,1,2,2- Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	3.2E-03	5.9E-01	6.4E-04	3.2E-02	5.0E-04	2.1E-02	2.0E-05	2.6E-04	8.9E-02	1.6E-03	4.1E-04	4.7E-04	5.6E-04	7.0E-04	1.0E-03
Emissions (ton/yr)	1.6E-06	2.9E-04	3.2E-07	1.6E-05	2.5E-07	1.0E-05	9.9E-09	1.3E-07	4.4E-05	7.8E-07	2.1E-07	2.4E-07	2.8E-07	3.5E-07	5.1E-07

						2021 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARD	OUS AIR POL	LUTANTS)				_
	Biphenyl	Ethylbenzene	Styrene	Ethylene Dibromide	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	2,2,4- Trimethylpentane	1,3- Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	2.2E-03	1.1E-03	5.8E-04	7.8E-04	8.7E-03	8.3E-02	4.5E-04	1.0E-02	4.7E-04	4.5E-04	1.2E-02	9.0E-03	4.6E-04	2.8E-03	8.7E-01
Emissions (ton/yr)	1.1E-06	5.7E-07	2.9E-07	3.9E-07	4.3E-06	4.1E-05	2.2E-07	5.1E-06	2.4E-07	2.2E-07	5.9E-06	4.5E-06	2.3E-07	1.4E-06	4.3E-04

						2022 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARI	OOUS AIR POI	LUTANTS)				
	TOTAL POM	Formaldehyde	Carbon Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Vinyl Chloride		Methylene Chloride	1,1- Dichloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane	1,1,2,2- Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	1.3E-03	2.5E-01	2.7E-04	1.4E-02	2.1E-04	8.7E-03	8.4E-06	1.1E-04	3.7E-02	6.6E-04	1.7E-04	2.0E-04	2.4E-04	3.0E-04	4.3E-04
Emissions (ton/yr)	6.7E-07	1.2E-04	1.4E-07	6.8E-06	1.1E-07	4.3E-06	4.2E-09	5.5E-08	1.9E-05	3.3E-07	8.7E-08	1.0E-07	1.2E-07	1.5E-07	2.2E-07

						2022 ACTUAL	EMISSIONS FOR	CO-POLLUT	ANTS (= HAZARD	OUS AIR POL	LUTANTS)				_
				Ethylene			1,2-					2,2,4-	1,3-		2
	Biphenyl	Ethylbenzene	Styrene	Dibromide	1,3-Butadiene	Acrolein	Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	Trimethylpentane	Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	9.5E-04	4.8E-04	2.5E-04	3.3E-04	3.7E-03	3.5E-02	1.9E-04	4.3E-03	2.0E-04	1.9E-04	5.0E-03	3.8E-03	2.0E-04	1.2E-03	3.7E-01
Emissions (ton/yr)	4.7E-07	2.4E-07	1.2E-07	1.6E-07	1.8E-06	1.7E-05	9.4E-08	2.2E-06	9.9E-08	9.4E-08	2.5E-06	1.9E-06	9.8E-08	6.0E-07	1.8E-04

						PROJECTED	EMISSIONS FOR O	O-POLLUTA	NTS (= HAZARD	OUS AIR POLI	.UTANTS)				
	TOTAL POM	Formaldehyde	Carbon Tetrachloride	Methanol	Chloroform	Benzene	Chloroethane	Vinyl Chloride	Acetaldehyde	Methylene Chloride	1,1- Dichloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane	1,1,2,2- Tetrachloroethane	Naphthalene
Emission Factor (lb/MMBtu) ¹	2.99E-04	5.52E-02	6.07E-05	3.06E-03	4.71E-05	1.94E-03	1.87E-06	2.47E-05	8.36E-03	1.47E-04	3.91E-05	4.46E-05	5.27E-05	6.63E-05	9.71E-05
Emissions (lb/yr)	7.9E-03	1.4E+00	1.6E-03	8.0E-02	1.2E-03	5.1E-02	4.9E-05	6.5E-04	2.2E-01	3.9E-03	1.0E-03	1.2E-03	1.4E-03	1.7E-03	2.5E-03
Emissions (ton/yr)	3.9E-06	7.2E-04	8.0E-07	4.0E-05	6.2E-07	2.5E-05	2.5E-08	3.2E-07	1.1E-04	1.9E-06	5.1E-07	5.9E-07	6.9E-07	8.7E-07	1.3E-06

						PROJECTED	EMISSIONS FOR C	O-POLLUTA	NTS (= HAZARDO	OUS AIR POLL	UTANTS)				-
	Biphenyl	Ethylbenzene	Styrene	Ethylene Dibromide	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Toluene	Chlorobenzene	Phenol	Hexane	2,2,4- Trimethylpentane	1,3- Dichloropropene	Xylene	TOTAL HAPs ²
Emission Factor (lb/MMBtu) ¹	2.12E-04	1.08E-04	5.48E-05	7.34E-05	8.20E-04	7.78E-03	4.22E-05	9.63E-04	4.44E-05	4.21E-05	1.11E-03	8.46E-04	4.38E-05	2.68E-04	
Emissions (lb/yr)	5.6E-03	2.8E-03	1.4E-03	1.9E-03	2.2E-02	2.0E-01	1.1E-03	2.5E-02	1.2E-03	1.1E-03	2.9E-02	2.2E-02	1.1E-03	7.0E-03	2.1E+00
Emissions (ton/yr)	2.8E-06	1.4E-06	7.2E-07	9.6E-07	1.1E-05	1.0E-04	5.5E-07	1.3E-05	5.8E-07	5.5E-07	1.5E-05	1.1E-05	5.7E-07	3.5E-06	1.1E-03

¹ Emission factors (lb/MMBtu fuel input) taken from AP-42, Section 3.2 ("Natural Gas-fired Reciprocating Engines"), Tables 3.2-1, 3.2-2 & 3.2-3. Values conservatively reflect the highest emission factor for all natural gas-fired engines (2-stroke, 4-stroke, rich/lean burn).

² Naphthalene is a listed HAP as well as part of "TOTAL POM". For the computation of "TOTAL HAPs", the value for "Naphthalene" as a listed HAP has been excluded so that Naphthalene is not double-counted.

2 Actual - Emissions of Co-Pollutants (Hazardous Air Pollutants) from Diesel by Emergency Engines > 600 hP - Average of Highest 2-Yr Consecutive Period

Baseline Period: 2020 - 2021 (Based upon analysis of actual CO2e emissions in TABLE A-2.1).

					Α	VERAGE ACTU	AL EMISSIONS FO	R CO-POLL	JTANTS (= HAZA	RDOUS AIR P	OLLUTANTS)				
	TOTAL POM	Carbon Carbon Carbon POM Formaldehyde Tetrachloride Methanol Chloroform Benzene Chloroethane Chloride Acetaldehyde Chloride Dichloroethane Dichloropropane Trichloroethane Tetrachloroethane Naphthalene													
Emissions (ton/yr)	1.2E-06	2.3E-04	2.5E-07	1.3E-05	1.9E-07	7.9E-06	7.6E-09	1.0E-07	3.4E-05	6.0E-07	1.6E-07	1.8E-07	2.2E-07	2.7E-07	4.0E-07

					A	VERAGE ACTU	AL EMISSIONS FO	R CO-POLL	UTANTS (= HAZA	RDOUS AIR P	OLLUTANTS)				
	Diah and	Esta III anno an	Stumono	Ethylene	1,3-Butadiene	Acrolein	1,2- Dichloroethane	Takuana	Chlorohomano	Phenol	Hovens	2,2,4- Trimethylpentane	1,3-	Xylene	TOTAL HAPs ²
	Biphenyl	Ethylbenzene	Styrene	Dibromide	1,3-Butadiene	Acroiein	Dichioroethane	roiuene	Chioropenzene	Phenoi	Hexane	Trimethylpentane	Dichioropropene	xyiene	TOTAL HAPS
Emissions (ton/yr)	8.7E-07	4.4E-07	2.2E-07	3.0E-07	3.4E-06	3.2E-05	1.7E-07	3.9E-06	1.8E-07	1.7E-07	4.5E-06	3.5E-06	1.8E-07	1.1E-06	3.3E-04

APPENDIX D	CALCULATIONS FOR MOBILE SOURCES	

www.erm.com Version: 1.1 Project No.: 0692098 Client: Revere Copper Products Inc. July 2023

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX D-1: CALCULATIONS FOR ACTUAL GHG EMISSIONS - ONSITE MOBILE SOURCES FIRING PROPANE

EMISSION SOURCES

PROPANE FIRED MOBILE SOURCES	# OF SOURCES
FORK TRUCKS	38
TUGS	1

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM ONSITE MOBILE SOURCES FIRING PROPANE

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
High Heating Value of Propane (MMBtu/gal)	0.120	0.120	0.120	0.120	0.120	0.120	High Heating Value (HHV) from New York State's "2022 GHG Report" .
							NOTE: This value is higher than the HHV listed in 40 CFR Part 98 Subpart C,
							Table C-1 (i.e., 0.091 MMBtu/gal), resulting in a more conservative estimate
							of GHG emissions.
Actual Annual Propane Usage	63,004	62,412	73,826	69,973	72,308	88,939	PROJECTED = (Actual Annual NG Usage values for 2022) x 1.23
(gal/yr) =							NOTE: Estimated increase in casting output (23%) expected to result in a
							23% increase in fuel usage for this source/fuel type.
Actual Annual Propane Usage	7.56E+03	7.49E+03	8.86E+03	8.40E+03	8.68E+03	1.07E+04	= (Actual Annual Propane Usage, gal/yr) x (HHV of Propane, MMBtu/gal)
(MMBtu/yr) =							

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Propane

		20	18			20:	19			20	20			20)21			2	022			PROJ	ECTED		
	CO2	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO2	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO2	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO2	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄		TOTAL CO2e (20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	16,582	119	0.26	26,684	16,582	119	0.26	26,684	16,582	119	0.26	26,684	16,582	119	0.26	26,684	16,582	119	0.26	26,684	16,582	119	0.26	26,684	
Upstream Emission Factor (lb/MMBtu)	36.524	2.62E-01	5.7E-04	58.775	36.524	2.62E-01	5.7E-04	58.775	36.524	2.62E-01	5.7E-04	58.775	36.524	2.62E-01	5.7E-04	58.775	36.524	2.62E-01	5.7E-04	58.775	36.524	2.62E-01	5.7E-04	58.775	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	2.76E+05	1.98E+03	4.3E+00	4.44E+05	2.74E+05	1.96E+03	4.3E+00	4.40E+05	3.24E+05	2.32E+03	5.1E+00	5.21E+05	3.07E+05	2.20E+03	4.8E+00	4.94E+05	3.17E+05	2.27E+03	5.0E+00	5.10E+05	3.90E+05	2.80E+03	6.1E+00	6.27E+05	= (Actual Propane Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	1.38E+02	9.91E-01	2.2E-03	2.22E+02	1.37E+02	9.82E-01	2.1E-03	2.20E+02	1.62E+02	1.16E+00	2.5E-03	2.60E+02	1.53E+02	1.10E+00	2.4E-03	2.47E+02	1.58E+02	1.14E+00	2.5E-03	2.55E+02	1.95E+02	1.40E+00	3.1E-03	3.14E+02	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264	-	
Upstream Emissions as CO2e (tons/yr)	1.38E+02	8.32E+01	5.72E-01	2.22E+02	1.37E+02	8.24E+01	5.66E-01	2.20E+02	1.62E+02	9.75E+01	6.70E-01	2.60E+02	1.53E+02	9.24E+01	6.35E-01	2.46E+02	1.58E+02	9.55E+01	6.56E-01	2.55E+02	1.95E+02	1.17E+02	8.07E-01	3.13E+02	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Mobile Sources Using Propane

		20	18			20	19			20)20			20	21			2	2022			PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	62.87	3.0E-03	6.0E-03		62.87	3.0E-03	6.0E-03		62.87	3.0E-03	6.0E-03		62.87	3.0E-03	6.0E-03		62.87	3.0E-03	6.0E-03		62.87	3.0E-03	6.0E-03		
Combustion Emission Factor (lb/MMBtu)	138.3	6.6E-03	1.3E-02		138.3	6.6E-03	1.3E-02		138.3	6.6E-03	1.3E-02		138.3	6.6E-03	1.3E-02		138.3	6.6E-03	1.3E-02		138.3	6.6E-03	1.3E-02		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	1.05E+06	4.99E+01	9.98E+01		1.04E+06	4.9E+01	9.9E+01		1.23E+06	5.8E+01	1.2E+02		1.16E+06	5.5E+01	1.1E+02		1.20E+06	5.7E+01	1.1E+02		1.48E+06	7.0E+01	1.4E+02		= (Actual Propane Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	5.23E+02	2.5E-02	5.0E-02		5.18E+02	2.5E-02	4.9E-02		6.13E+02	2.9E-02	5.8E-02		5.81E+02	2.8E-02	5.5E-02		6.00E+02	2.9E-02	5.7E-02		7.38E+02	3.5E-02	7.0E-02		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264	-	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264	-	
Combustion Emissions as CO2e (tons/yr)	5.23E+02	2.1E+00	1.3E+01	5.38E+02	5.18E+02	2.1E+00	1.3E+01	5.33E+02	6.13E+02	2.5E+00	1.5E+01	6.31E+02	5.81E+02	2.3E+00	1.5E+01	5.98E+02	6.00E+02	2.4E+00	1.5E+01	6.18E+02	7.38E+02	3.0E+00	1.9E+01	7.60E+02	= (Combustion Emissions, ton/yr) x (20-yr GWP)

Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from Mobile Sources Using Propane

		20	18			20	19	_		20	20			20	21			2	2022			PROJ	ECTED		
_	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	6.61E+02	1.0E+00	5.2E-02		6.55E+02	1.0E+00	5.2E-02		7.74E+02	1.2E+00	6.1E-02		7.34E+02	1.1E+00	5.8E-02		7.59E+02	1.2E+00	6.0E-02		9.33E+02	1.4E+00	7.3E-02		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	6.61E+02	8.5E+01	1.4E+01	7.60E+02	6.55E+02	8.5E+01	1.4E+01	7.53E+02	7.74E+02	1.0E+02	1.6E+01	8.91E+02	7.34E+02	9.5E+01	1.5E+01	8.44E+02	7.59E+02	9.8E+01	1.6E+01	8.72E+02	9.33E+02	1.2E+02	1.9E+01		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direc GHG Emissions, tons as CO2e/yr)
				-				-				-				-									
Total Emissions as CO2e (metric tonnes/yr)	6.00E+02	7.7E+01	1.2E+01	6.89E+02	5.94E+02	7.7E+01	1.2E+01	6.83E+02	7.03E+02	9.1E+01	1.5E+01	8.08E+02	6.66E+02	8.6E+01	1.4E+01	7.66E+02	6.88E+02	8.9E+01	1.4E+01	7.91E+02	8.46E+02	1.1E+02	1.8E+01		= (Total Emissions as CO2e, tons/yr) x [(0.9072 met tonne)/ (ton)]

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX D-2: CALCULATIONS FOR ACTUAL GHG EMISSIONS - ONSITE MOBILE SOURCES FIRING DIESEL

EMISSION SOURCES

DIESEL FIRED MOBILE SOURCES	# OF SOURCES
TUGS	1
MAN LIFT	1
STRADDLE CARRIER	1
LOADER	1
BOBCAT TRACTOR	1
MOBILE CRANE	1
SKID STEER	2
YARD FORK TRUCK	1
C.S. SWEEPER	1

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM ONSITE MOBILE SOURCES FIRING DIESEL

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
High Heating Value of Diesel (MMBtu/gal)	0.138	0.138	0.138	0.138	0.138		High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1. NOTE: This value is higher than the HHV listed in New York State's "2022 GHG Report" (i.e., 0.137 MMBtu/gal), resulting in a more conservative estimate of GHG emissions.
Actual Annual Diesel Usage (gal/yr) =	4,653	4,701	4,590	4,844	5,006		PROJECTED = (Actual Annual NG Usage values for 2022) x 1.17 NOTE: Estimated increase in casting output (23%) expected to result in a 17% increase in fuel usage for this source/fuel type.
Actual Annual Diesel Usage (MMBtu/yr) =	6.42E+02	6.49E+02	6.33E+02	6.68E+02	6.91E+02	8.08E+02	= (Actual Annual Diesel Usage, gal/yr) x (HHV of Diesel, MMBtu/gal)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Diesel

		20)18			20	19			20)20			20	21			2	2022			PROJ	IECTED		
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO2	CH ₄	N ₂ O	(20 yr GWP)	CO2	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO2	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	14,599	119	0.25	24,638	
Upstream Emission Factor (lb/MMBtu)	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	2.06E+04	1.68E+02	3.5E-01	3.48E+04	2.09E+04	1.70E+02	3.6E-01	3.52E+04	2.04E+04	1.66E+02	3.5E-01	3.44E+04	2.15E+04	1.75E+02	3.7E-01	3.63E+04	2.22E+04	1.81E+02	3.8E-01	3.75E+04	2.60E+04	2.12E+02	4.5E-01	4.39E+04	= (Actual Diesel Usage, MMBtu/yr) x (Upstream EF, lb/N
Upstream Emissions (ton/yr)	1.03E+01	8.42E-02	1.8E-04	1.74E+01	1.04E+01	8.50E-02	1.8E-04	1.76E+01	1.02E+01	8.30E-02	1.7E-04	1.72E+01	1.07E+01	8.76E-02	1.8E-04	1.81E+01	1.11E+01	9.05E-02	1.9E-04	1.87E+01	1.30E+01	1.06E-01	2.2E-04	2.19E+01	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	1.03E+01	7.07E+00	4.7E-02	1.74E+01	1.04E+01	7.14E+00	4.72E-02	1.76E+01	1.02E+01	6.97E+00	4.60E-02	1.72E+01	1.07E+01	7.36E+00	4.86E-02	1.82E+01	1.11E+01	7.61E+00	5.02E-02	1.88E+01	1.30E+01	8.90E+00	5.88E-02	2.20E+01	= (Upstream Emissions, ton/yr) x (20-yr GWP)

- ¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.
- ² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

2 Actual - Direct GHG Emissions from Mobile Sources Using Diesel

		20	018			20	19			20	20			20)21				2022			PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		
Combustion Emission Factor (lb/MMBtu)	162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / k
Combustion Emissions (lb/yr)	1.04E+05	4.2E+00	8.48E-01		1.06E+05	4.3E+00	8.6E-01		1.03E+05	4.2E+00	8.4E-01		1.09E+05	4.4E+00	8.8E-01		1.12E+05	4.6E+00	9.1E-01		1.32E+05	5.3E+00	1.1E+00		= (Actual Diesel Usage, MMBtu/yr) x (Combustion EF, Ib
Combustion Emissions (ton/yr)	5.22E+01	2.1E-03	4.2E-04		5.28E+01	2.1E-03	4.3E-04		5.15E+01	2.1E-03	4.2E-04		5.44E+01	2.2E-03	4.4E-04		5.62E+01	2.3E-03	4.6E-04		6.58E+01	2.7E-03	5.3E-04		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264	-	1	84	264	-	1	84	264		1	84	264		1	84	264	-	1	84	264		
Combustion Emissions as CO2e (tons/yr)	5.22E+01	1.8E-01	1.1E-01	5.25E+01	5.28E+01	1.8E-01	1.1E-01	5.31E+01	5.15E+01	1.8E-01	1.1E-01	5.18E+01	5.44E+01	1.9E-01	1.2E-01	5.47E+01	5.62E+01	1.9E-01	1.2E-01	5.65E+01	6.58E+01	2.2E-01	1.4E-01	6.61E+01	= (Combustion Emissions, ton/yr) x (20-yr GWP)

- ¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.
- ² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 Actual - Total GHG Emissions from Mobile Sources Using Diesel

		20	18			20	19			20	20			20	021			2	2022			PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	6.26E+01	8.6E-02	6.0E-04		6.32E+01	8.7E-02	6.1E-04		6.17E+01	8.5E-02	5.9E-04		6.51E+01	9.0E-02	6.3E-04		6.73E+01	9.3E-02	6.5E-04		7.88E+01	1.1E-01	7.6E-04		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emis
Total Emissions as CO2e (tons/yr)	6.26E+01	7.2E+00	1.6E-01	7.00E+01	6.32E+01	7.3E+00	1.6E-01	7.07E+01	6.17E+01	7.1E+00	1.6E-01	6.90E+01	6.51E+01	7.5E+00	1.7E-01	7.28E+01	6.73E+01	7.8E+00	1.7E-01	7.53E+01	7.88E+01	9.1E+00	2.0E-01		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	5.68E+01	6.6E+00	1.4E-01	6.35E+01	5.73E+01	6.6E+00	1.5E-01	6.41E+01	5.60E+01	6.5E+00	1.4E-01	6.26E+01	5.91E+01	6.8E+00	1.5E-01	6.61E+01	6.11E+01	7.1E+00	1.5E-01	6.83E+01	7.14E+01	8.3E+00	1.8E-01		= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX D-3: CALCULATIONS FOR ACTUAL GHG EMISSIONS - ONSITE MOBILE SOURCES FIRING GASOLINE

EMISSION SOURCES

GASOLINE FIRED MOBILE SOURCES	# OF SOURCES
WELDERS	3
GOLF CARTS	10
PICK-UP TRUCKS	4

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM ONSITE MOBILE SOURCES FIRING GASOLINME

0 Process Information

	2018	2019	2020	2021	2022	PROJECTED	COMMENTS
High Heating Value of Gasoline (MMBtu/gal)	0.125	0.125	0.125	0.125	0.125	0.125	High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1.
Actual Annual Gasoline Usage (gal/yr) =	2,883	2,586	1,540	1,901	1,940	,	PROJECTED = (Actual Annual NG Usage values for 2022) x 1.10 NOTE: Estimated increase in casting output (23%) expected to result in a 10% increase in fuel usage for this source/fuel type.
Actual Annual Gasoline Usage (MMBtu/yr) =	3.60E+02	3.23E+02	1.93E+02	2.38E+02	2.43E+02	2.67E+02	= (Actual Annual Gasoline Usage, gal/yr) x (HHV of Gasoline, MMBtu/gal)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Gasoline

		201	18			20	19			20)20			20	21			2	022			PROJ	ECTED		
				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e				TOTAL CO2e	
	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	CO ₂	CH ₄	N ₂ O	(20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) ¹	18,902	125	0.32	29,504	18,902	125	0.32	29,504	18,902	125	0.32	29,504	18,902	125	0.32	29,504	18,902	125	0.32	29,504	18,902	125	0.32	29,504	
Upstream Emission Factor (lb/MMBtu)	41.634	2.75E-01	7.0E-04	64.987	41.634	2.75E-01	7.0E-04	64.987	41.634	2.75E-01	7.0E-04	64.987	41.634	2.75E-01	7.0E-04	64.987	41.634	2.75E-01	7.0E-04	64.987	41.634	2.75E-01	7.0E-04	64.987	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	1.50E+04	9.92E+01	2.5E-01	2.34E+04	1.35E+04	8.90E+01	2.3E-01	2.10E+04	8.01E+03	5.30E+01	1.4E-01	1.25E+04	9.89E+03	6.54E+01	1.7E-01	1.54E+04	1.01E+04	6.68E+01	1.7E-01	1.58E+04	1.11E+04	7.34E+01	1.9E-01		= (Actual Gasoline Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	7.50E+00	4.96E-02	1.3E-04	1.17E+01	6.73E+00	4.45E-02	1.1E-04	1.05E+01	4.01E+00	2.65E-02	6.8E-05	6.25E+00	4.95E+00	3.27E-02	8.4E-05	7.72E+00	5.05E+00	3.34E-02	8.5E-05	7.88E+00	5.55E+00	3.67E-02	9.4E-05	8.67E+00	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264	-	1	84	264	-	1	84	264	_	1	84	264	-	1	84	264	_	1	84	264		
Upstream Emissions as CO2e (tons/yr)	7.50E+00	4.17E+00	3.35E-02	1.17E+01	6.73E+00	3.74E+00	3.01E-02	1.05E+01	4.01E+00	2.23E+00	1.79E-02	6.25E+00	4.95E+00	2.75E+00	2.21E-02	7.72E+00	5.05E+00	2.80E+00	2.26E-02	7.87E+00	5.55E+00	3.08E+00	2.48E-02	8.66E+00	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Mobile Sources Using Gasoline

		201	18			20	19			20	020			20)21			:	2022			PRO.	ECTED		
	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	70.22	3.0E-03	6.0E-03		70.22	3.0E-03	6.0E-03		70.22	3.0E-03	6.0E-03		70.22	3.0E-03	6.0E-03		70.22	3.0E-03	6.0E-03		70.22	3.0E-03	6.0E-03		
Combustion Emission Factor (lb/MMBtu)	154.5	6.6E-03	1.3E-02		154.5	6.6E-03	1.3E-02		154.5	6.6E-03	1.3E-02		154.5	6.6E-03	1.3E-02		154.5	6.6E-03	1.3E-02		154.5	6.6E-03	1.3E-02		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb/
Combustion Emissions (lb/yr)	5.57E+04	2.38E+00	4.76E+00		4.99E+04	2.1E+00	4.3E+00		2.97E+04	1.3E+00	2.5E+00		3.67E+04	1.6E+00	3.1E+00		3.75E+04	1.6E+00	3.2E+00		4.12E+04	1.8E+00	3.5E+00		= (Actual Gasoline Usage, MMBtu/yr) x (Combustion E
Combustion Emissions (ton/yr)	2.78E+01	1.2E-03	2.4E-03		2.50E+01	1.1E-03	2.1E-03		1.49E+01	6.4E-04	1.3E-03		1.84E+01	7.8E-04	1.6E-03		1.87E+01	8.0E-04	1.6E-03		2.06E+01	8.8E-04	1.8E-03		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	2.78E+01	1.0E-01	6.3E-01	2.86E+01	2.50E+01	9.0E-02	5.6E-01	2.56E+01	1.49E+01	5.3E-02	3.4E-01	1.53E+01	1.84E+01	6.6E-02	4.1E-01	1.88E+01	1.87E+01	6.7E-02	4.2E-01	1.92E+01	2.06E+01	7.4E-02	4.6E-01	2.11E+01	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

3 Actual - Total GHG Emissions from Mobile Sources Using Gasoline

		20:	18			20	19			20)20			2	021				2022			PROJ	ECTED		
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	3.53E+01	5.1E-02	2.5E-03		3.17E+01	4.6E-02	2.2E-03		1.89E+01	2.7E-02	1.3E-03		2.33E+01	3.3E-02	1.7E-03		2.38E+01	3.4E-02	1.7E-03		2.62E+01	3.8E-02	1.9E-03		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emi
Total Emissions as CO2e (tons/yr)	3.53E+01	4.3E+00	6.6E-01	4.03E+01	3.17E+01	3.8E+00	5.9E-01	3.61E+01	1.89E+01	2.3E+00	3.5E-01	2.15E+01	2.33E+01	2.8E+00	4.4E-01	2.66E+01	2.38E+01	2.9E+00	4.5E-01	2.71E+01	2.62E+01	3.2E+00	4.9E-01		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	3.21E+01	3.9E+00	6.0E-01	3.65E+01	2.88E+01	3.5E+00	5.4E-01	3.28E+01	1.71E+01	2.1E+00	3.2E-01	1.95E+01	2.11E+01	2.6E+00	4.0E-01	2.41E+01	2.16E+01	2.6E+00	4.0E-01	2.46E+01	2.37E+01	2.9E+00	4.4E-01		= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

EMISSION SOURCES

		CUR	RENT OPERATION	S	FUT	URE OPERATION	NS	
		VEHICLE		TOTAL	VEHICLE		TOTAL	
DIESEL FIRED MOBILE SOURCES	VEHICLE TYPE	TRIPS/MONTH	MILES /VISIT	MILES/YR	TRIPS/MONTH	MILES /VISIT	MILES/YR	NOTES ¹
Shipping	Tractor Trailer	230	1.0	2,760	290	1.0	3,480	1.0 mile round trip from Gansevoort Ave and Seneca St.
Scrap copper receiving	Tractor Trailer	220	1.3	3,432	280	1.3	4,368	1.3 miles round trip from Gansevoort Ave and Seneca St.
Parts/material Deliveries	Box Van/Flat Bed	10	0.7	84	11	0.7	92	0.7 miles round trip from Gansevoort Ave and Seneca St.
Parts/material Deliveries	Tractor Trailer	10	0.7	84	12	0.7	101	0.7 miles round trip from Gansevoort Ave and Seneca St.
Waste removal (WM)	Garbage Truck	4	1.1	53	4	1.1	53	1.1 miles round trip from Gansevoort Ave and Seneca St.
Waste removal (dumpsters)	Roll off truck	20	1.2	288	24	1.2	346	1.2 miles round trip from Gansevoort Ave and Seneca St.
TOTAL FOR OFFSITE SOURCES		6,701			8,440			

¹ The intersection of Gansevoort Ave and Seneca St. is 1/4 mile from facility.

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM OFFSITE MOBILE SOURCES FIRING DIESEL

0 Process Information

	CURRENT	PROJECTED	COMMENTS
Est. Miles Traveled (miles/yr) =	6,701	8,440	
Est. Fuel Efficiency for Vehicles (miles/gal) =	8	8	
Est. Qty of Diesel Used (gal/yr) =	838	1,055	= (Est. Miles Traveled, miles/yr) / (Est. Fuel Efficiency for Vehicles, miles/gal)
High Heating Value of Diesel (MMBtu/gal)	0.138	0.138	High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1. NOTE: This value is higher than the HHV listed in New York State's "2022 GHG Report" (i.e., 0.137 MMBtu/gal), resulting in a more conservative estimate of GHG emissions.
Est. Qty of Used (MMBtu/yr) =	116	146	= (Est. Qty of Diesel Used (gal/yr) x (High Heating Value of Diesel, MMBtu/gal)

1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Diesel

		CURRE	NT			PROJE	CTED		
	CO ₂	CH₄	N₂O	TOTAL CO2e (20 yr GWP)		CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	
Upstream Emission Factor (g/MMBtu) ¹	14,599	119	0.25	24,638	14,599	119	0.25	24,638	
Upstream Emission Factor (lb/MMBtu)	32.156	2.62E-01	5.5E-04	54.269	32.156	2.62E-01	5.5E-04	54.269	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	3.72E+03	3.03E+01	6.4E-02	6.27E+03	4.68E+03	3.82E+01	8.0E-02	7.90E+03	= (Actual Diesel Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	1.86E+00	1.51E-02	3.2E-05	3.14E+00	2.34E+00	1.91E-02	4.0E-05	3.95E+00	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	1.86E+00	1.27E+00	8.40E-03	3.14E+00	2.34E+00	1.60E+00	1.06E-02	3.95E+00	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Mobile Sources Using Diesel

		CURRE	NT			PROJE	CTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	73.96	3.0E-03	6.0E-04		73.96	3.0E-03	6.0E-04		
Combustion Emission Factor (lb/MMBtu)	162.7	6.6E-03	1.3E-03		162.7	6.6E-03	1.3E-03		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	1.88E+04	7.63E-01	1.5E-01		2.37E+04	9.6E-01	1.9E-01		= (Actual Diesel Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	9.40E+00	3.8E-04	7.6E-05		1.18E+01	4.8E-04	9.6E-05		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	9.40E+00	3.2E-02	2.0E-02	9.46E+00	1.18E+01	4.0E-02	2.5E-02	1.19E+01	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 Actual - Total GHG Emissions from Mobile Sources Using Diesel

		CURRE			PROJE	CTED			
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	1.13E+01	1.6E-02	1.1E-04		1.42E+01	2.0E-02	1.4E-04		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	1.13E+01	1.3E+00	2.9E-02	1.26E+01	1.42E+01	1.6E+00	3.6E-02		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	1.02E+01	1.2E+00	2.6E-02	1.14E+01	1.29E+01	1.5E+00	3.3E-02	1.44E+01	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

EMISSION SOURCES

		CUF	RENT OPERATION	S	FUTU	JRE OPERATION	NS	
		VEHICLE		TOTAL	VEHICLE	TOTAL		
GASOLINE FIRED MOBILE SOURCES	VEHICLE TYPE	TRIPS/MONTH	MILES /VISIT	MILES/YR	TRIPS/MONTH	MILES /VISIT	MILES/YR	NOTES 1
Parts/material Deliveries	box van/flat bed	10	1.0	120	11	1.0	132	0.7 miles round trip from Gansevoort Ave and Seneca St.

¹ The intersection of Gansevoort Ave and Seneca St. is 1/4 mile from facility.

CALCULATIONS FOR ACTUAL GHG EMISSIONS FROM OFFSITE MOBILE SOURCES FIRING DIESEL

0 Process Information

	CURRENT	PROJECTED	COMMENTS
Actual Annual Miles Traveled	120	132	
(mi/yr) =			
Est. Fuel Efficiency for Vehicles (miles/gal) =	8	8	
Est. Qty of Gasoline Used (gal/yr) =	15	17	= (Est. Miles Traveled, miles/yr) / (Est. Fuel Efficiency for Vehicles, miles/gal)
High Heating Value of Gasoline (MMBtu/gal)	0.125	0.125	High Heating Value (HHV) from 40 CFR Part 98 Subpart C, Table C-1.
Est. Qty of Used (MMBtu/yr) =	1.9	2.1	= (Est. Qty of Gasoline Used (gal/yr) x (High Heating Value of Gasoline, MMBtu/gal)

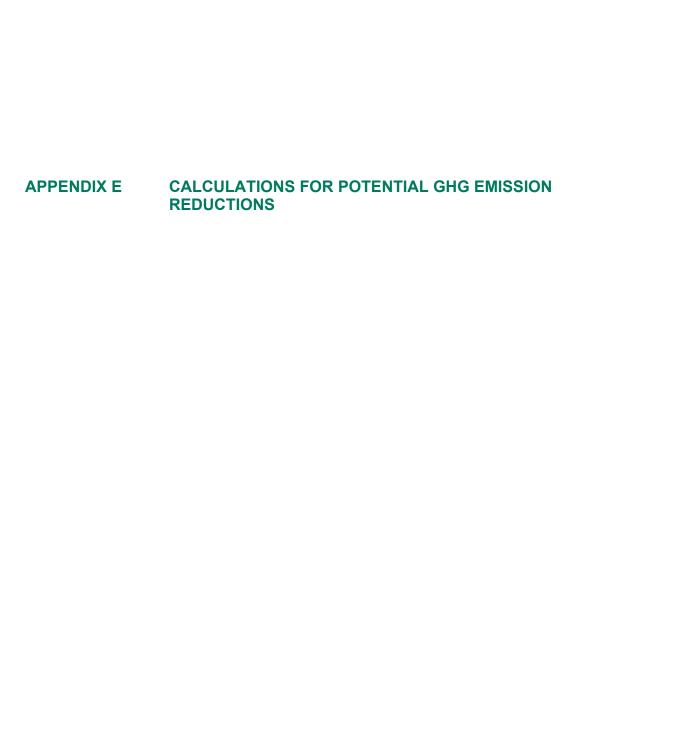
1 Actual - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Gasoline

		CURRE	NT			PROJE	CTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)		CH₄	N ₂ O	TOTAL CO2e (20 yr GWP)	
Upstream Emission Factor (g/MMBtu) ¹	18,902	125	0.32	29,504	18,902	125	0.32	29,504	
Upstream Emission Factor (lb/MMBtu)	41.634	2.75E-01	7.0E-04	64.987	41.634	2.75E-01	7.0E-04	64.987	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Upstream Emissions (lb/yr)	7.81E+01	5.16E-01	1.3E-03	1.22E+02	8.59E+01	5.68E-01	1.5E-03	1.34E+02	= (Actual Diesel Usage, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Upstream Emissions (ton/yr)	3.90E-02	2.58E-04	6.6E-07	6.09E-02	4.29E-02	2.84E-04	7.3E-07	6.70E-02	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	3.90E-02	2.17E-02	1.74E-04	6.09E-02	4.29E-02	2.39E-02	1.92E-04	6.70E-02	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

2 Actual - Direct GHG Emissions from Mobile Sources Using Gasoline

		CURRE	NT			PROJE	CTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO2	CH₄	N ₂ O	TOTAL CO2e	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	70.22	3.0E-03	6.0E-03		70.22	3.0E-03	6.0E-03		
Combustion Emission Factor (lb/MMBtu)	154.5	6.6E-03	1.3E-02		154.5	6.6E-03	1.3E-02		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Combustion Emissions (lb/yr)	2.90E+02	1.2E-02	2.5E-02		3.19E+02	1.4E-02	2.7E-02		= (Actual Diesel Usage, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Combustion Emissions (ton/yr)	1.45E-01	6.2E-06	1.2E-05		1.59E-01	6.8E-06	1.4E-05		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	1.45E-01	5.2E-04	3.3E-03	1.49E-01	1.59E-01	5.7E-04	3.6E-03	1.63E-01	= (Combustion Emissions, ton/yr) x (20-yr GWP)


¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 Actual - Total GHG Emissions from Mobile Sources Using gasoline

		CURRE	NT			PROJE	CTED		
	CO ₂	CH₄	N ₂ O	TOTAL CO2e	CO ₂	CH₄	N ₂ O	TOTAL CO2e	NOTES
Total Emissions (tons/yr)	1.84E-01	2.6E-04	1.3E-05		2.02E-01	2.9E-04	1.4E-05		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Total Emissions as CO2e (tons/yr)	1.84E-01	2.2E-02	3.4E-03	2.10E-01	2.02E-01	2.4E-02	3.8E-03		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Total Emissions as CO2e (metric tonnes/yr)	1.67E-01	2.0E-02	3.1E-03	1.90E-01	1.83E-01	2.2E-02	3.4E-03	2.09E-01	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

www.erm.com Version: 1.1 Project No.: 0692098 Client: Revere Copper Products Inc. July 2023

FACILITY IMPACT UPON NEW YORK STATE'S CLIMATE LEADERSHIP & COMMUNITY PROTECTION ACT (CLCPA) APPENDIX E: REDUCTION OF GHG'S BY POTENTIAL PROJECTS AIMED TO REDUCE USE OF NATURAL GAS

EMISSION SOURCES

FACILITY COMBUSTION SOURCES FIRING
NATURAL GAS
SEE INFO BELOW

CALCULATIONS FOR REDUCTIONS IN ACTUAL GHG EMISSIONS FROM OTHER SOURCES FIRING NATURAL GAS

0 Process Information

Project	Boilers 1 - 3: Upgrade Boiler Control System & Change Boiler Fuels	Burner	Cake Furnace:	IGS Generator : Replace DX Gas with New Inert Gas	Upgrade Boiler	COMMENTS
Average Actual Annual Heating Value of Natural Gas (MMBtu/scf)	1.02866E-03	1.02866E-03	1.02866E-03	1.02866E-03	1.02866E-03	= Average {Actual Heating values shown on monthly bills for 2018 - 2022}
Projected Actual Annual Natural Gas Usage (scf/yr) =	2.1424E+08	1.3188E+08	1.3188E+08	4.00E+07	4.00E+07	Linked from workbook tabs that calculate Projected Emissions for Source.
2022 Actual Annual Natural Gas Usage (MMBtu/yr) =	2.2038E+05	1.3566E+05	1.3566E+05	4.11E+04	4.11E+04	= (2022 Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)
Potential Reduction in Natural Gas Usage (%)	5%	10%	30%	100%	20%	
Estimated Reduction in Natural Gas Usage (MMBtu/yr) =	1.102E+04	1.357E+04	4.070E+04	4.113E+04	8.225E+03	= (2022 Actual Annual Natural Gas Usage, scf/yr) x (Average Annual Actual Heating Value of Natural Gas, MMBtu/scf)

1 Reduction in GHG Emissions - "Upstream" GHG Emissions Resulting from Extraction, Production & Transmission of Natural Gas

	Boilers 1 - 3: Upgrade Boiler Control System & Change Boiler Fuels			Boiler Fuels	Cake Furnace: Replace Burner Control System			Cake Furnace: Install Recuperator (Assumes 30% Reduction in NG Usage)			IGS Gener	ator : Replace D	DX Gas with Ne	w Inert Gas	IGS G	enerator: Upg	rade Boiler C	ontrols			
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄	N ₂ O	TOTAL CO2e (20 yr GWP)	CO ₂	CH ₄		TOTAL CO2e (20 yr GWP)	NOTES
Upstream Emission Factor (g/MMBtu) 1	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	12,206	350	0.14	41,671	
Upstream Emission Factor (lb/MMBtu)	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	26.885	7.71E-01	3.1E-04	91.786	= (Upstream Emission Factor, g/MMBtu) x [lb / 454 g]
Reduction in Upstream Emissions (lb/yr)	2.96E+05	8.49E+03	3.4E+00	1.01E+06	3.65E+05	1.05E+04	4.2E+00	1.25E+06	1.09E+06	3.14E+04	1.3E+01	3.74E+06	1.11E+06	3.17E+04	1.3E+01	3.77E+06	2.21E+05	6.34E+03	2.5E+00	7.55E+05	= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Upstream EF, lb/MMBtu)
Reduction in Upstream Emissions (ton/yr)	1.48E+02	4.25E+00	1.7E-03	5.06E+02	1.82E+02	5.23E+00	2.1E-03	6.23E+02	5.47E+02	1.57E+01	6.3E-03	1.87E+03	5.53E+02	1.59E+01	6.3E-03	1.89E+03	1.11E+02	3.17E+00	1.3E-03	3.77E+02	= (Upstream Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Upstream Emissions as CO2e (tons/yr)	1.48E+02	3.57E+02	4.49E-01	5.05E+02	1.82E+02	4.39E+02	5.52E-01	6.22E+02	5.47E+02	1.32E+03	1.66E+00	1.87E+03	5.53E+02	1.33E+03	1.67E+00	1.89E+03	1.11E+02	2.66E+02	3.35E-01	3.77E+02	= (Upstream Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from the Appendix of NYSDEC "2022 NYS Statewide GHG Emissions Report", Table A1.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

2 Reduction in GHG Emissions - Direct GHG Emissions from Facility-wide Use of Natural Gas

		Boiler	s 1 - 3:						C	ake Furnace: In	stall Recuperat	or									
	Upgrade Bo	iler Control Sy	stem & Change	Boiler Fuels	Cake Furnace: Replace Burner Control System			(Assumes 30% Reduction in NG Usage)			IGS Generator : Replace DX Gas with New Inert Gas			IGS Generator: Upgrade Boiler Controls			Controls				
_	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO26	NOTES
Combustion Emission Factor (kg/MMBtu) ¹	53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		53.06	1.0E-03	1.0E-04		
Combustion Emission Factor (lb/MMBtu)	116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		116.7	2.2E-03	2.2E-04		= (Combustion Emission Factor, kg/MMBtu) x [2.2 lb / kg]
Reduction in Combustion Emissions (lb/yr)	1.29E+06	2.42E+01	2.42E+00		1.58E+06	3.0E+01	3.0E+00		4.75E+06	9.0E+01	9.0E+00		4.80E+06	9.0E+01	9.0E+00		9.60E+05	1.8E+01	1.8E+00		= (Actual Natural Gas Usage 2022, MMBtu/yr) x (Combustion EF, lb/MMBtu)
Reduction in Combustion Emissions (ton/yr)	6.43E+02	1.2E-02	1.2E-03		7.92E+02	1.5E-02	1.5E-03		2.38E+03	4.5E-02	4.5E-03		2.40E+03	4.5E-02	4.5E-03		4.80E+02	9.0E-03	9.0E-04		= (Combustion Emissions, lb/yr) x [ton/ 2000 lb]
20-yr Global Warming Potential (GWP) ²	1	84	264		1	84	264		1	84	264		1	84	264		1	84	264		
Combustion Emissions as CO2e (tons/yr)	6.43E+02	1.0E+00	3.2E-01	6.44E+02	7.92E+02	1.3E+00	3.9E-01	7.93E+02	2.38E+03	3.8E+00	1.2E+00	2.38E+03	2.40E+03	3.8E+00	1.2E+00	2.41E+03	4.80E+02	7.6E-01	2.4E-01	4.81E+02	= (Combustion Emissions, ton/yr) x (20-yr GWP)

¹ Emission factors from 40 CFR Part 98 Subpart C, Tables C-1 & C-2.

² GWP values from 6 NYCRR 496.5. (NOTE: These values reflect the 20-year GWP values for each compound. These values differ from the 100-yr GWP values that are used for permitting and NSR evaluations).

3 Reduction in GHG Emissions - Total GHG Emissions from Facility-wide Use of Natural Gas

		Boiler	s 1 - 3:						C	ake Furnace: In:	stall Recuperat	or									
	Upgrade Boi	iler Control Sys	stem & Change	Boiler Fuels	Cake Furnace: Replace Burner Control System			(Assumes 30% Reduction in NG Usage)			IGS Generator : Replace DX Gas with New Inert Gas			IGS Generator: Upgrade Boiler Controls							
	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO2	CH ₄	N ₂ O	TOTAL CO2e	CO ₂	CH ₄	N ₂ O	TOTAL CO2e	NOTES
Reduction in Total Emissions (tons/yr)	7.91E+02	4.3E+00	2.9E-03		9.74E+02	5.2E+00	3.6E-03		2.92E+03	1.6E+01	1.1E-02		2.95E+03	1.6E+01	1.1E-02		5.91E+02	3.2E+00	2.2E-03		= (Upstream GHG Emissions, tons/yr) + (Direct GHG Emissions, tons/yr)
Reduction in Total Emissions as CO2e (tons/yr)	7.91E+02	3.6E+02	7.7E-01	1.15E+03	9.74E+02	4.4E+02	9.5E-01	1.42E+03	2.92E+03	1.3E+03	2.8E+00	4.25E+03	2.95E+03	1.3E+03	2.9E+00	4.29E+03	5.91E+02	2.7E+02	5.7E-01		= (Upstream GHG Emissions, tons as CO2e/yr) + (Direct GHG Emissions, tons as CO2e/yr)
Reduction in Total Emissions as CO2e (metric tonnes/yr)	7.18E+02	3.2E+02	7.0E-01	1.04E+03	8.84E+02	4.0E+02	8.6E-01	1.28E+03	2.65E+03	1.2E+03	2.6E+00	3.85E+03	2.68E+03	1.2E+03	2.6E+00	3.89E+03	5.36E+02	2.4E+02	5.2E-01	7.79E+02	= (Total Emissions as CO2e, tons/yr) x [(0.9072 metric tonne)/ (ton)]

ERM has over 160 offices across the following countries and territories worldwide

Argentina The Netherlands Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Ghana Senegal Guyana Singapore South Africa Hong Kong South Korea India Indonesia Spain Ireland Sweden Italy Switzerland Taiwan Japan Kazakhstan Tanzania Kenya Thailand Malaysia UAE Mexico UK Mozambique US Myanmar Vietnam

ERM's Rochester, NY Office

345 Woodcliff Drive

2nd Floor

Fairport, NY 14450

www.erm.com

EXHIBIT 2 PUBLIC PARTICIPATION PLAN

The Public Participation Plan included in this copy of the application package was updated on October 3, 2023 to address NYSDEC comments

Revere Copper Products, Inc.

Public Participation Plan

Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal

03 October 2023

Project No.: 0692098

Document details	The details entered below are automatically shown on the cover and the main page footer. PLEASE NOTE: This table must NOT be removed from this document.
Document title	Public Participation Plan
Document subtitle	Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal
Project No.	0692098
Date	03 October 2023
Version	1.0
Author	ERM Consulting & Engineering, Inc.
Client Name	Revere Copper Products, Inc.

Document history

				ERM approva	al to issue	
Version	Revision	Author	Reviewed by	Name	Date	Comments
Draft	00	C. Ferry	D. Murtha	D. Murtha	06.21.2023	Text
Final	00	C. Ferry	D. Murtha	D. Murtha	07.20.2023	Complete Report
	01	D. Murtha		D. Murtha	09.08.2023	Complete Report
Final w/edits	01	D. Murtha		D. Murtha	10.03.2023	Complete Report

Signature Page

03 October 2023

Public Participation Plan

Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal

1 Revere Park Rome, NY 13440

NYSDEC Facility ID Number: # 6-3013-00091

As Required by:

NYSDEC Commissioner's Policy Guidance CP-29

Submitted to:

New York State Department of Environmental Conservation Division of Environmental Permits, Region 6 207 Genesee Street, Utica, NY 13501-2885

Prepared by:

Christine Ferry Managing Consultant

Dung m. Kt

David T. Murtha, QEP, CVI, TWIC Consulting Director

Savid Months

Gary M. Keating Partner-in-Charge

ERM Consulting & Engineering, Inc.

345 Woodcliff Drive 2nd Floor

Fairport, New York 14450

© Copyright 2023 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

1.	INTR	ODUCTION AND OBJECTIVE	1
2.	DDO	JECT DESCRIPTION AND PROPOSED ACTION	
۷.			
3.	STAI	KEHOLDER IDENTIFICATION & CONTACT LIST	3
4.	PRO	JECT LIAISON	4
5.	PUB	LIC OUTREACH ACTIVITIES	4
	5.1	Public Meeting(s)	5
	5.2	Public Meeting Notice Preparation and Distribution	6
	5.3	Fact Sheet Preparation and Distribution	6
	5.4	Distribution of Notice of Complete Application	7
	5.5	Additional Outreach and Materials	7
6.	DOC	UMENT REPOSITORY	7
7.	SUBI	MISSIONS	8
	7.1	Progress Report	8
	7.2	Final Summary Report and Written Certification	

APPENDIX A CONTACT LISTS

APPENDIX B EJ/DAC DATA

APPENDIX C PUBLIC MEETING NOTICE

APPENDIX D FACT SHEET

APPENDIX E SAMPLE WINDOW POSTER

List of Tables

Table 1 Summary of Potential and Actual Annual Emissions of Regulated Air Contaminants

List of Figures

Figure 1 Potential Environmental Justice Disadvantaged Communities Areas

Figure 2 General Location and Surrounding Area

PUBLIC PARTICIPATION PLAN CONTENTS

Revere Copper Products, Inc.: Air State Facility Permit Modification and

Acronyms and Abbreviations

Description Name

AGC Annual Guideline Concentration

ASF Air State Facility

Code of Federal Regulations CFR

CO Carbon Monoxide CO_2 Carbon Dioxide

CO₂e Carbon Dioxide equivaletns

CP-29 Commissioner Policy 29: Environmental Justice and Permitting

DAC **Disadvantaged Community**

EJScreen US EPA's Environmental Justice Screening Tool

ΕV Electric Vehicle

GIS Geographic Information System

HAP Hazardous Air Pollutant

Pounds per year lbs/yr

NOCA Notice of Complete Application

NOx Oxides of Nitrogen

NYCRR New York Code, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

PEJA Potential Environmental Justice Area

PMParticulate Matter

PM10 Particulate matter with an aerometric diameter of less than 10 microns PM2.5 Particulate matter with an aerometric diameter of less than 2.5 microns

PPP Public Participation Plan

SGC Short-Term Guideline Concentration

 SO_2 Sulfur Dioxide

TPM Particulate matter, total

TPY Tons per year

VOC Volatile Organic Compound

1. INTRODUCTION AND OBJECTIVE

This Public Participation Plan (PPP) has been prepared by Revere Copper Products, Inc. (hereinafter referred to as "Revere" or "Applicant") to fulfill and comply with the requirements of New York State Department of Environmental Conservation ("NYSDEC") Commissioner Policy 29, Environmental Justice and Permitting (CP-29). This PPP is submitted to the NYSDEC as a requirement of the proposed modification to and renewal of the Air State Facility Permit for Revere's Rome, New York manufacturing facility. Based on the location of the Applicant's facility, CP-29 requires Revere to prepare and submit this PPP to the NYSDEC Regional Permit Administrator for review, approval and implementation since it has been determined by the NYSDEC that the proposed modification and renewal of this ASF Permit could impact one or more potential environmental justice areas (PEJA) (See Figure 1).

This PPP has been developed in accordance with the procedures established in CP-29 Section V.D and it aims to help ensure meaningful and effective public participation throughout the NYSDEC's environmental permit review process. Public participation in the NYSDEC environmental permit review process requires a program of activities that provides opportunities for stakeholders to be informed about and involved in the review of a proposed permit action.

The objective of this PPP is to outline and describe the program of activities that Revere will implement to actively seek and enhance public participation during the application review process.

2. PROJECT DESCRIPTION AND PROPOSED ACTION

2.1 Project Overview

Revere Copper Products, Inc. is an employee-owned copper manufacturing company and serves the architectural, electrical, telecommunications, air conditioning, industrial machinery, equipment and other markets. An important aspect of Revere's business is the supply of copper to support the electric vehicle (EV) and electrical transmission industries. The Revere facility is located at: One Revere Park, Rome, New York 13440.

Revere proposes to modify the facility's Air State Facility (ASF) Permit to include the replacement of an existing casting furnace with a new, more energy-efficient unit that will allow Revere Copper to increase the facility's product throughput capacity by approximately 23.3% while increasing natural gas consumption by only approximately 5%. To implement the proposed project, Revere has submitted an application to the NYSDEC Regional Permit Administrator to modify and renew its ASF Permit in accordance with Title 6 of the New York Code of Rules and Regulations (6 NYCRR), Part 201-5.

2.2 Nature of the Proposed Project/Action and Purpose

Revere Copper is seeking to modify and renew the facility's ASF Permit. Revere Copper is currently operating under ASF Permit No. 6--3013-00091 as issued by the NYSDEC that was effective on November 1, 2013, and modified March 24, 2015; and set to expire October 31, 2023.

Currently, Revere Copper operates boilers, furnaces, and metal working equipment. The ASF Permit caps facility emissions for total particulates, particulate matter with an aerometric diameter of less than 10 microns (PM_0), particulate matter with an aerometric diameter of less than 2.5 ($PM_{2.5}$), oxides of nitrogen (NOx), and sulfur dioxide (SO_2). As part of the renewal application, Revere Copper is not requesting any changes to these emissions caps except for removing the emissions cap on sulfur dioxide. As discussed below, Revere Copper's change from using No. 6 oil to No. 2 oil as the backup fuel source in its boilers will reduce facility-wide potential emissions of sulfur dioxide to well below 100 tons per year.

Revere Copper is requesting to modify the permit as follows:

- The facility no longer produces or uses brass. Therefore, it is no longer subject to Title 40 of the Code of Federal Regulations (40 CFR) Part 63, Subpart TTTTTT – National Emission Standards for Hazardous Air Pollutants for Secondary Nonferrous Metals Processing Area Sources;
- Replace No. 6 residual fuel oil with No. 2 distillate fuel oil as the backup fuel fired by the three main boilers;
- The three gas-fired boilers in Emission Unit U-COMB1 meet the definition of gas-fired boilers in 40 CFR Part 63, Subpart JJJJJJ and therefore, Subpart JJJJJJ requirements do not apply to the facility and should be removed from the permit;
- Replace an existing casting furnace with a new, similar, but more efficient induction furnace. The
 equipment upgrade will result in greater production at the facility and an increase in regulated air
 contaminants ranging from a nominal 1 2% up to approximately 16%, dependent upon the
 individual air contaminant and the changes in fuel type combusted;
- Removal of equipment and emission points no longer present at the facility.

The proposed changes to the ASF will not impact the footprint of Revere Copper and will use existing building space.

2.3 Potential Impacts

2.3.1 Facility Operations

The replacement of the existing casting furnace with a similar induction furnace will provide an estimated 23.3% increase in output casting capability. This project will create approximately 40 new, local, high-paying permanent jobs.

Switching to No. 2 Distillate fuel oil (diesel fuel) burns cleaner than No. 6 residual fuel oil and will therefore generate less overall air emissions from the three main boilers.

The other changes to the permit listed above are administrative in nature and will not impact current facility operations.

2.3.2 Air Emission Impacts

Table 1 provides a summary of the air contaminants from the Revere facility for both actual emissions as well as the potential to emit for each of the criteria and other regulated air contaminants.

Table 1. Summary of Potential and Actual Annual Emissions of Regulated Air Contaminants*

	Potential Ann	nual Emissions	Projected Actual Annual Emissions			
Air Contaminant	(lbs/year)	(tons/year)	(lbs/year)	(tons/year)		
Carbon Monoxide (CO)	187,098	93.5	49,626	24.8		
Oxides of Nitrogen (NOx)	299,296	149.6	60,262	30.1		
Sulfur Dioxide (SO ₂)	2,601	1.3	372	0.19		
Particulate Matter, total (TPM)	103,357	51.7	44,768	22.4		
PM ₁₀	58,857	29.4	25,576	12.8		
PM _{2.5}	48,273	24.2	20,110	10.1		
Volatile Organic Compounds (VOCs)	13,873	6.9	3,628	1.8		

Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal

	Potential Ann	ual Emissions	Projected Actual Annual Emissions			
Air Contaminant	(lbs/year)	(tons/year)	(lbs/year)	(tons/year)		
Total Hazardous Air Pollutants (HAPs)	4,206	2.1	1,120	0.56		

^{*}Derived from Revere Emission Inventory_Update_0720_2023.xlsx, Appendix C, Table 2 of the revised air permit renewal application. (RAMBOLL)

Emissions capping provisions have been included in the permit modification and renewal application for emissions of NOx, SO₂, total PM, PM₁₀, and PM_{2.5} to avoid triggering the Major Source thresholds for these air contaminants that would otherwise require the Revere facility to apply for a Major Source Air Operating (Title V) Permit.

Based on the information summarized in Table 1 above, and the air dispersion modeling analysis performed by RAMBOLL, the predicted offsite concentrations of all regulated air contaminants from the Revere facility operations do not result in any exceedances of the National Ambient Air Quality Standards (NAAQS) or New York's Short-term Guideline Concentrations (SGCs) or Annual Guideline Concentrations (AGCs).

This analysis indicates that the air emissions from the Revere are protective of human health and environment surrounding the facility.

2.3.3 Traffic Impacts

The new casting furnace's increased production capacity (up to 23.3%) will also result in an increase in deliveries to and product shipments from the facility via truck traffic. Revere has estimated that this will mean 3 more truck deliveries of raw material and supplies to the facility per day, and 3 more truck shipments of product leaving the Rome facility per day.

Similarly, the additional employee vehicle traffic from the approximately 40 additional employees across the 24-hour per day, 7 days per week shifts that Revere follows means that on average, less than 13 employee vehicles will be added to the vehicle traffic during shift changes over the three daily operating shifts.

The roadway infrastructure connecting the Revere facility to the Interstate Highway System is adequately sized and designed to handle this nominal increase in vehicle traffic.

3. STAKEHOLDER IDENTIFICATION & CONTACT LIST

A contact list consisting of the names, addresses, phone numbers, or email addresses of stakeholders to the proposed project is provided in Appendix A. The contact list includes individuals and organizations with a direct stake in the proposed project and people and individuals and organizations that have expressed interest in the proposed project or similar projects affecting the same neighborhood or community.

To develop an initial contact list, Revere used geographic information services (GIS) to identify the residential properties located within the PEJA and the Disadvantaged Communities (DAC) surrounding the Revere facility and expanded the contact list to include those residential properties located within a ½-mile radius of the facility location that could be or potentially could be affected by the facility operations. Figure 2 provides a representation of the ½ mile used to compile the contact information of residential properties surrounding the Revere facility.

In addition, local community elected and government officials, community leaders, civic and recreational organizations, environmental and religious groups were compiled through readily and publicly available online database resources and incorporated into the initial contact list.

The current contact list includes local government and elected officials; business owners, residents, and occupants; local civic, community, environmental and religious organizations; and local news media.

Revere will use this contact list to communicate and disseminate information about the proposed project and ASF Permit application review process to the affected community and stakeholders. At minimum, this includes distribution of the written information and outreach materials described in Section 5 to inform the community about upcoming public meetings and opportunities for public participation.

The contact list will be reviewed periodically and updated as appropriate throughout the ASF Permit application review process. Revere will update the contact list with any new stakeholders identified during the public meeting or execution of other PPP components. In addition, individuals and organizations will be added to the contact list upon request. Such requests should be submitted to the project liaison identified in Section 6. Other additions to the contact list may be made at the discretion of Revere or, at the request of the NYSDEC project manager, in consultation with other NYSDEC staff, as appropriate. Please refer to Appendix A for the complete contact list compiled by Revere.

4. PROJECT LIAISON

A representative from the project team will be available during business hours at:

Mr. Tim Rosbrook - Sr. Vice President of Human Resources Revere Copper Products, Inc. One Revere Park

Rome, New York 13440 Phone:315-338-2178

Email: trosbrook@reverecopper.com

Impacted residents and interested stakeholders can contact the project liaison listed above to provide input to the project team, discuss any issues or concerns and/or to ask questions or request information. The project liaison shall respond in a timely manner and in the manner appropriate to question or information request received. The project liaison will be responsible for tracking and documenting public input, inquiries, questions, and information requests received, along with responses provided.

5. PUBLIC OUTREACH ACTIVITIES

Revere will use a range of engagement strategies and conduct various public outreach activities to facilitate participation, involvement, and direct communication with the affected community during the permit application review process. Revere will implement the public outreach activities outlined below once this PPP has been finalized and approved by NYSDEC.

In compliance with the requirements of CP-29, Revere will hold at least one public information meeting to keep the public informed about the proposed project and the environmental permit review process. At a minimum, Revere will prepare, distribute and post written information and materials, including a meeting notice and fact sheet, to encourage dialogue and solicit input from interested stakeholders during the permit application review process. In addition, to complement the minimum requirements, Revere will send invitations to the residents and stakeholders within a ½-mile radius of the facility to ensure that the local stakeholders are adequately notified in advance of the planned meeting(s). All public outreach

materials and information will be prepared and presented in an easy-to-read, understandable format, using plain language free of legal terminology, and geared towards a non-technical audience.

The public meeting notice and fact sheet will be made available and disseminated in English language. Based on Revere's efforts and review of the local demographics and Census tract data of the potential Environmental Justice (EJ) areas and Disadvantaged Communities (DACs) surrounding the facility, less than 2% of the population across the EJ/DAC Census tracts do not read and comprehend English. However, the public can contact the project liaison regarding the availability of language assistance and to request that the notice and fact sheet are translated into another language for comprehension by non-English speaking or limited proficiency stakeholders, if needed. Please refer to Appendix B for detailed information on the analysis performed regarding the need to language translation services.

5.1 Public Meeting

At the discretion of NYSDEC and, depending on the scale and nature of a project, one or more public meeting(s) must be conducted to satisfy the intent of CP-29.

A meeting is typically required near the end of the permit application review process to inform the public about: the status of, or, if applicable, the availability of, final application materials and draft permits for review; the pending NYSDEC public comment period, and the deadline to submit written comments to NYSDEC, if established; and the eventual final decision.

Public Meeting

Revere will facilitate a public meeting on Monday, November 6, 2023 from 6:00 - 7":00 PM to:

- Inform the public about the proposed project and permit application review status.
- Provide the opportunity for stakeholders to ask questions and express concerns about the project and identify how to obtain information or answers to questions after the meeting has concluded.
- Inform attendees how they may submit written comments on the permit application to the NYSDEC during the public comment period and, if available, identify any applicable deadlines.

Necessary Meeting Discussion Points and Requirements

All meetings will be facilitated by Revere and/or ERM and/or Ramboll (consultants on the project team (project personnel)) in person and via videoconferencing technology platform (e.g., MS TEAMS, ZOOM, etc.). During the meeting, Revere and/or project personnel will present a brief overview of the project, including any relevant background information, details on the permitting action, scope of work, schedule, and community impacts. The second part of the meeting will include a question-and answer-portion where the floor will be open for attendees to ask questions, make remarks, and/or express concerns. In addition, the following discussion points will be addressed:

- Provide an update on the permit application review process and identify outstanding application requirements and future milestones in the application review process.
- Make it clear that the meeting is being held prior to NYSDEC's permitting decision for the project.
- Identify the location of the online document repository and provide directions on how attendees
 may obtain and review materials relevant to the application, documents related to the meeting
 and other public participation plan components.
- Identify and provide contact information for the project liaison and announce procedures for how attendees may obtain answers to questions after the meeting has concluded and interested

- stakeholders can submit questions, express concerns, or request additional information by telephone, email, and in writing.
- Announce any future outreach, opportunities for public participation, and /or required follow-up
 with attendees including, but not limited to: additional meetings and future mailings, including, but
 not limited to the Notice of Complete Application.

Attendance will be recorded during the meeting using hardcopy sign-in sheets and recording of videoconference participant identification. Revere will track the number of attendees for all meetings held during implementation of this PPP and, where feasible and applicable, identify any affiliation of participants and interests represented at the meeting. In addition, Revere will be responsible for documenting meeting notes or minutes, along with a record of comments and questions raised in the meeting and respective responses and answers provided. Attendees not identified on the contact list will have the option to be added in the event of future meetings or information sharing.

5.2 Public Meeting Notice Preparation and Distribution

Information regarding the details of the public meeting(s) and how to participate is contained in the reader-friendly meeting mailing post card and window poster notice(s) shown in Appendix C. The notice has been prepared in English and, if needed, will be translated into additional languages by a certified translator. Through this notice, the public will be invited and encouraged to attend the public meeting either in-person or virtually and scheduled on November 6, 2023 from 6:00 - 7:00 PM.

Once the PPP has been approved by NYSDEC the public meeting notice will be posted and available in the document repository described in Section 6 of this document. At least two weeks in advance of the public meeting, the notice will be published in the Daily Sentinel which is a daily newspaper printed, published, and circulated throughout the Mohawk Valley with a daily circulation of over 8,500 copies. In addition, the public meeting notice will be mailed to the stakeholders identified in the contact list in Appendix A at least two weeks prior to the planned public meeting.

5.3 Fact Sheet Preparation and Distribution

Factual information on the proposed project, including an overview, purpose statement, and potential impacts, is outlined in the reader-friendly fact sheet shown in Appendix D. In addition, the fact sheet outlines how interested stakeholders can: participate in the permit application review process; access the online document repository to review relevant application materials prior to the public meeting; and contact the project team to obtain additional information. The fact sheet has been prepared in English, if needed, will be translated into additional languages by a certified translator.

Once the PPP has been approved by NYSDEC the fact sheet will be posted and available in the online document repository described in Section 6 of this document. No later than 2 weeks prior to the public meeting, Revere will distribute the fact sheet to provide stakeholders with relevant background on the proposed project and facilitate meaningful participation during the meeting. The fact sheet will be distributed together with the public meeting notice via email, mail and/or hand delivery (door-to-door).

The fact sheet(s) will also be posted within the vicinity of the project site and visible to the public. For example, they may be posted on some streetlight lampposts or bulletin boards located in the lobby of residential complex buildings or public facilities such as libraries, schools, or community centers within the project site.

Copies of the Public Participation Plan (PPP), the Draft Modified ASF Permit application and supporting documentation can be viewed at the following locations:

Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal

Jervis Public Library 613 N Washington Street Rome, New York 13440 Phone: (315) 336-4570

Hours of Operation:

Monday Through Thursday	8:30 AM – 8:30 PM
Friday	8:30 AM – 5:30 PM
Saturday	10:00 AM – 3:00 PM
Sunday	Closed

New York State Department of Environmental Conservation Region 6 Utica Sub-Office 207 Genesee Street Utica, NY 13501 (315) 793-2554 Hours of Operation:

Monday through Friday: 8:30 AM-4:45 PM

Saturday & Sunday: Closed

5.4 Distribution of Notice of Complete Application

Once NYSDEC determines the application(s) for the proposed project is complete and provides the Notice of Complete Application (NOCA) to the applicant, Revere will distribute the NOCA and draft permit, if applicable, to any identified interested parties who specifically requests a paper copy of the documents, to provide notification regarding the start of the NYSDEC public comment period and to announce the deadline for submission of written comments to NYSDEC. If the NOCA is available at the time of the meeting, Revere will distribute the NOCA at the public meeting in electronic form. If the NOCA is not available at the time of the meeting Revere will provide explicit instructions on how to access the online repository and inform the attendees that, once available, the NOCA will be posted to the online document repository and will be distributed via email or mail as soon as possible, but no later than the date that the NOCA is published by Revere in the print edition of a paid local newspaper that is circulated at least weekly and available in the municipality in which the project is located.

5.5 Additional Outreach and Materials

Revere will print and distribute posters to be placed in the windows of local businesses announcing the public meeting(s), the dates(s) and time(s) of the planned public meeting(s). Appendix E provides an sample of the poster for placement at local businesses.

Additional information about the air permit renewal process and Revere's expansion project on the NYSDEC's website by following these links:

https://www.dec.ny.gov/chemical/8569.html#Permits
https://www.dec.ny.gov/dardata/boss/afs/permits/630130009100039_r1_1.pdf
https://www.dec.ny.gov/enb/enb.html

6. DOCUMENT REPOSITORY

An online document repository has been established for the community and interested stakeholders to access and review information about the project. The online repository available at

<u>https://reverecopper.com/public-information/</u> will provide information and documents relating to the project and permit application.

The repository will be updated throughout the application process with project-related information and written materials (i.e., application forms and supporting materials, draft permit, fact sheet, statement of basis (where applicable), the Notice of Complete Application provided by the NYSDEC, etc.).

7. SUBMISSIONS

7.1 Progress Report

No later than two weeks following public meeting(s) described in Section 5, Revere will submit a progress report to NYSDEC in the form of a brief memorandum or cover letter. At minimum, the progress report shall:

- describe progress to-date in implementing the approved PPP, identify the components of the plan yet to be implemented, and the timeline for completion of the PPP.
- summarize the public meeting (identify the time and date, number, affiliation and diversity of attendees and interests represented) and include or append copies of the written materials (i.e. virtual public meeting notice, fact sheet) along with any documentation that supports implementation of public outreach activities described in Section V, such as: the meeting sign-in sheet, record of attendees/participants, meeting presentation, notes or minutes, summary of questions and answers, and copy of newspaper notice or other proof of publication.
- identify any language or disability assistance requests received and document any considerations or accommodations made to-date,
- summarize or include a table that documents:
 - all substantive concerns raised to-date, either during the public meeting, or, received by the project liaison, along with responses provided by Revere
 - all resolved and outstanding issues
 - explain any project, design changes and/or measures to reduce potential impacts, either as result of community/public input or NYSDEC permitting review process.

The progress report will become part of the application record and will be posted to the online document repository so that it is readily available to the public.

7.2 Final Summary Report and Written Certification

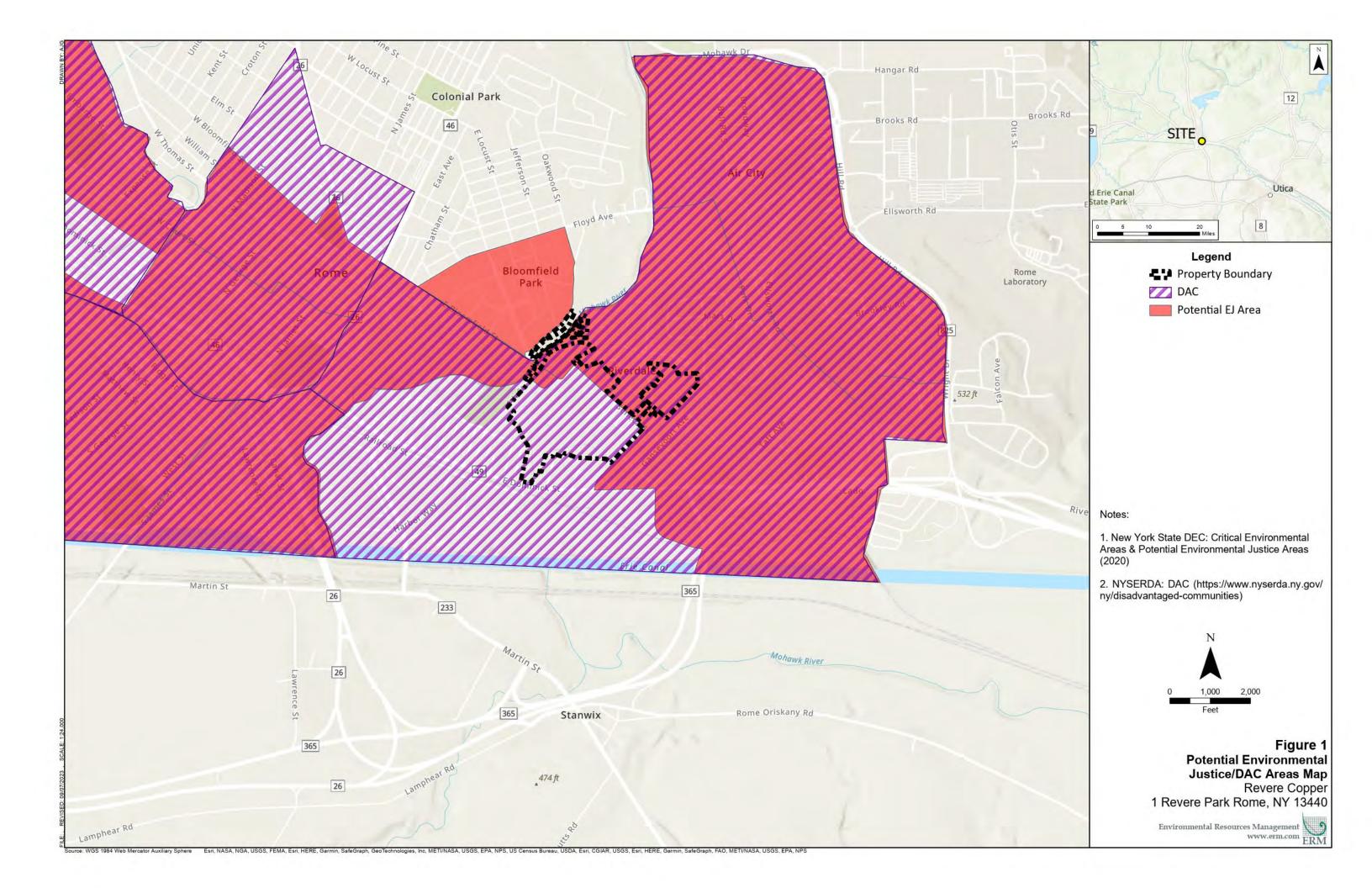
Upon completion of the public participation plan, Revere will submit written certification to NYSDEC to certify that it has fully executed and complied with the approved PPP. The certification shall be signed by Revere, or Revere's agent, and submitted to NYSDEC prior to a final decision on the application.

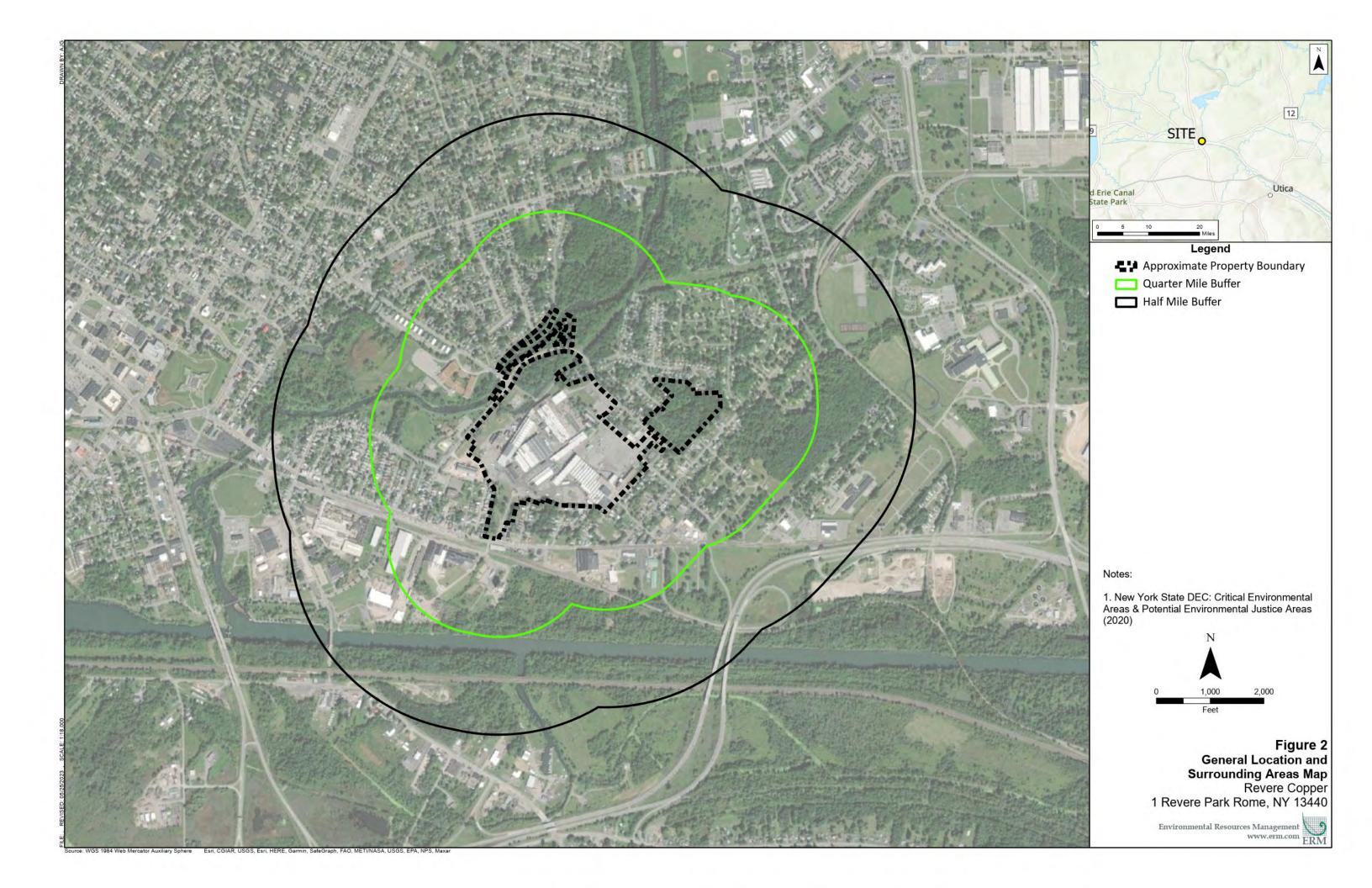
As part of the certification, Revere shall submit a final summary report documenting the implementation of this PPP. The report will summarize the activities that occurred in accordance with the PPP and will identify any substantive concerns raised by stakeholders during the public meeting, or, at any time throughout the permitting process and detail Revere's response(s) to any such concerns or questions. As applicable, the Final Summary Report may serve as the Progress report described in Section 7.1 to avoid potentially duplicative reporting. Revere will include, or append, any documentation that supports the final summary report, such as: the meeting sign-in sheet(s), record of attendees/participants, meeting presentation, notes or minutes, summary of questions and answers, and copy of newspaper notice or other proof of publication. In addition, the report will identify any changes or modifications to the proposed

PUBLIC PARTICIPATION PLAN SUBMISSIONS

Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal

project that were made or considered by Revere to address or reduce concerns surrounding the permit application.


The final summary report and written certification will become part of the application record and will be posted to the online document repository so that it is readily available to the public.


PUBLIC PARTICIPATION PLAN SUBMISSIONS

PUBLIC PARTICIPATION PLAN
Revere Copper Products, Inc.: Air State Facility Permit Modification and Renewal

FIGURES

www.erm.com Version: 1.0 Project No.: 0692098 Client: Revere Copper Products, Inc. 03 October 2023 Page 10

APPENDIX A CONTACT LISTS

OBJECTID	AddressNumb(StreetN	aı PostType	ZipName	State	ZipCode	CountyName
1	514 Mayberr	y Rd	Rome	NY	13440	Oneida
2	516 Mayberr	y Rd	Rome	NY	13440	Oneida
3	518 Mayberr	y Rd	Rome	NY	13440	Oneida
4	520 Mayberr	y Rd	Rome	NY	13440	Oneida
5	524 Mayberr	y Rd	Rome	NY	13440	Oneida
6	522 Mayberr	y Rd	Rome	NY	13440	Oneida
7	528 Mayberr	y Rd	Rome	NY	13440	Oneida
8	526 Mayberr	y Rd	Rome	NY	13440	Oneida
9	530 Mayberr	y Rd	Rome	NY	13440	Oneida
10	529 Mayberr	y Rd	Rome	NY	13440	Oneida
11	527 Mayberr	y Rd	Rome	NY	13440	Oneida
12	525 Mayberr	y Rd	Rome	NY	13440	Oneida
13	523 Mayberr	y Rd	Rome	NY	13440	Oneida
14	521 Mayberr	y Rd	Rome	NY	13440	Oneida
15	517 Mayberr	y Rd	Rome	NY	13440	Oneida
16	519 Mayberr	y Rd	Rome	NY	13440	Oneida
17	515 Mayberr	y Rd	Rome	NY	13440	Oneida
18	520 River	Rd	Rome	NY	13440	Oneida
19	518 River	Rd	Rome	NY	13440	Oneida
20	514 River	Rd	Rome	NY	13440	Oneida
21	516 River	Rd	Rome	NY	13440	Oneida
22	512 River	Rd	Rome	NY	13440	Oneida
23	513 River	Rd	Rome	NY	13440	Oneida
24	513 River	Rd	Rome	NY	13440	Oneida
25	515 River	Rd	Rome	NY	13440	Oneida
26	519 River	Rd	Rome	NY	13440	Oneida
27	517 River	Rd	Rome	NY	13440	Oneida
28	521 River	Rd	Rome	NY	13440	Oneida
29	521 River	Rd	Rome	NY	13440	Oneida
30	522 River	Rd	Rome	NY	13440	Oneida
31	527 River	Rd	Rome	NY	13440	Oneida
32	525 River	Rd	Rome	NY	13440	Oneida
33	524 River	Rd	Rome	NY	13440	Oneida
34		Rd	Rome	NY	13440	Oneida
35		Rd	Rome	NY	13440	Oneida
36	503 River	Rd	Rome	NY	13440	Oneida
37		Rd	Rome	NY	13440	Oneida
38		Rd	Rome	NY	13440	Oneida
39		Rd	Rome	NY	13440	Oneida
40		Rd	Rome	NY	13440	Oneida
41	406 River	Rd	Rome	NY	13440	Oneida
42		Rd	Rome	NY	13440	Oneida
43	402 River	Rd	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
44	400	River	Rd	Rome	NY	13440	Oneida
45	312	River	Rd	Rome	NY	13440	Oneida
46	314	River	Rd	Rome	NY	13440	Oneida
47	807	Culverton	Rd	Rome	NY	13440	Oneida
48	805	Culverton	Rd	Rome	NY	13440	Oneida
49	813	Culverton	Rd	Rome	NY	13440	Oneida
50	811	Culverton	Rd	Rome	NY	13440	Oneida
51	809	Culverton	Rd	Rome	NY	13440	Oneida
52	817	Culverton	Rd	Rome	NY	13440	Oneida
53	409	Mayberry	Rd	Rome	NY	13440	Oneida
54	407	Mayberry	Rd	Rome	NY	13440	Oneida
55	415	Mayberry	Rd	Rome	NY	13440	Oneida
56	413	Mayberry	Rd	Rome	NY	13440	Oneida
57	411	Mayberry	Rd	Rome	NY	13440	Oneida
58	417	Mayberry	Rd	Rome	NY	13440	Oneida
59	419	Mayberry	Rd	Rome	NY	13440	Oneida
60	604	Millbrook	Rd	Rome	NY	13440	Oneida
61	606	Millbrook	Rd	Rome	NY	13440	Oneida
62	608	Millbrook	Rd	Rome	NY	13440	Oneida
63	607	Millbrook	Rd	Rome	NY	13440	Oneida
64	605	Millbrook	Rd	Rome	NY	13440	Oneida
65	609	Millbrook	Rd	Rome	NY	13440	Oneida
66	613	Millbrook	Rd	Rome	NY	13440	Oneida
67	611	Millbrook	Rd	Rome	NY	13440	Oneida
68	612	Millbrook	Rd	Rome	NY	13440	Oneida
69	610	Millbrook	Rd	Rome	NY	13440	Oneida
70	504	River	Rd	Rome	NY	13440	Oneida
71	502	River	Rd	Rome	NY	13440	Oneida
72	505	River	Rd	Rome	NY	13440	Oneida
73	507	River	Rd	Rome	NY	13440	Oneida
74		River	Rd	Rome	NY	13440	Oneida
75	511	River	Rd	Rome	NY	13440	Oneida
76	508	River	Rd	Rome	NY	13440	Oneida
77		River	Rd	Rome	NY	13440	Oneida
78	506	River	Rd	Rome	NY	13440	Oneida
79	513	Mayberry	Rd	Rome	NY	13440	Oneida
80		Mayberry		Rome	NY	13440	Oneida
81	509	Mayberry	Rd	Rome	NY	13440	Oneida
82	507	Mayberry	Rd	Rome	NY	13440	Oneida
83		Mayberry		Rome	NY	13440	Oneida
84		Millbrook		Rome	NY	13440	Oneida
85		Mayberry		Rome	NY	13440	Oneida
86	600	Millbrook	Rd	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
87	536	Millbrook	Rd	Rome	NY	13440	Oneida
88	502	Mayberry	Rd	Rome	NY	13440	Oneida
89	504	Mayberry	Rd	Rome	NY	13440	Oneida
90	506	Mayberry	Rd	Rome	NY	13440	Oneida
91	508	Mayberry	Rd	Rome	NY	13440	Oneida
92	510	Mayberry	Rd	Rome	NY	13440	Oneida
93	512	Mayberry	Rd	Rome	NY	13440	Oneida
94	520	Millbrook	Rd	Rome	NY	13440	Oneida
95	518	Millbrook	Rd	Rome	NY	13440	Oneida
96	522	Millbrook	Rd	Rome	NY	13440	Oneida
97	524	Millbrook	Rd	Rome	NY	13440	Oneida
98	528	Millbrook	Rd	Rome	NY	13440	Oneida
99	526	Millbrook	Rd	Rome	NY	13440	Oneida
100	532	Millbrook	Rd	Rome	NY	13440	Oneida
101	530	Millbrook	Rd	Rome	NY	13440	Oneida
102	534	Millbrook	Rd	Rome	NY	13440	Oneida
103	527	Millbrook	Rd	Rome	NY	13440	Oneida
104	525	Millbrook	Rd	Rome	NY	13440	Oneida
105	523	Millbrook	Rd	Rome	NY	13440	Oneida
106	521	Millbrook	Rd	Rome	NY	13440	Oneida
107	519	Millbrook	Rd	Rome	NY	13440	Oneida
108	517	Millbrook	Rd	Rome	NY	13440	Oneida
109	515	Millbrook	Rd	Rome	NY	13440	Oneida
110	513	Millbrook	Rd	Rome	NY	13440	Oneida
111	511	Millbrook	Rd	Rome	NY	13440	Oneida
112	921	Cayuga	St	Rome	NY	13440	Oneida
113		Cayuga	St	Rome	NY	13440	Oneida
114		Cayuga	St	Rome	NY	13440	Oneida
115	915	Cayuga	St	Rome	NY	13440	Oneida
116		Cayuga	St	Rome	NY	13440	Oneida
117		Millbrook		Rome	NY	13440	Oneida
118		Mayberry		Rome	NY	13440	Oneida
119		Mayberry		Rome	NY	13440	Oneida
120		Cayuga	St	Rome	NY	13440	Oneida
121		Cayuga	St	Rome	NY	13440	Oneida
122		Cayuga	St	Rome	NY	13440	Oneida
123		Cayuga	St	Rome	NY	13440	Oneida
124		Cayuga	St	Rome	NY	13440	Oneida
125		Cayuga	St	Rome	NY	13440	Oneida
126		Cayuga	St	Rome	NY	13440	Oneida
127		Cayuga	St	Rome	NY	13440	Oneida
128		Cayuga	St	Rome	NY	13440	Oneida
129	914	Cayuga	St	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNar	PostType	Zip Name	State	ZipCode	CountyName
130	912	Cayuga	St	Rome	NY	13440	Oneida
131	902	Cayuga	St	Rome	NY	13440	Oneida
132	406	Mayberry	Rd	Rome	NY	13440	Oneida
133	404	Mayberry	Rd	Rome	NY	13440	Oneida
134	402	Mayberry	Rd	Rome	NY	13440	Oneida
135	400	Mayberry	Rd	Rome	NY	13440	Oneida
136	310	Mayberry	Rd	Rome	NY	13440	Oneida
137	310	Mayberry	Rd	Rome	NY	13440	Oneida
138	907	Culverton	Rd	Rome	NY	13440	Oneida
139	909	Culverton	Rd	Rome	NY	13440	Oneida
140	908	Culverton	Rd	Rome	NY	13440	Oneida
141	912	Culverton	Rd	Rome	NY	13440	Oneida
142	915	Culverton	Rd	Rome	NY	13440	Oneida
143	913	Culverton	Rd	Rome	NY	13440	Oneida
144	911	Culverton	Rd	Rome	NY	13440	Oneida
145	917	Culverton	Rd	Rome	NY	13440	Oneida
146	918	Cayuga	St	Rome	NY	13440	Oneida
147	313	Gansevoor	Ave	Rome	NY	13440	Oneida
148	315	Gansevoor	Ave	Rome	NY	13440	Oneida
149	311	Gansevoor	Ave	Rome	NY	13440	Oneida
150	309	Gansevoor	Ave	Rome	NY	13440	Oneida
151	307	Gansevoor	Ave	Rome	NY	13440	Oneida
152	307	Gansevoor	Ave	Rome	NY	13440	Oneida
153	308	Gansevoor	Ave	Rome	NY	13440	Oneida
154	306	Gansevoor	Ave	Rome	NY	13440	Oneida
155	306	Gansevoor	Ave	Rome	NY	13440	Oneida
156	306	Gansevoor	Ave	Rome	NY	13440	Oneida
157	306	Gansevoor	Ave	Rome	NY	13440	Oneida
158	1014	Cayuga	St	Rome	NY	13440	Oneida
159	314	Gansevoor	Ave	Rome	NY	13440	Oneida
160	312	Gansevoor	Ave	Rome	NY	13440	Oneida
161	310	Gansevoor	Ave	Rome	NY	13440	Oneida
162	310	Gansevoor	Ave	Rome	NY	13440	Oneida
163	317	Gansevoor	Ave	Rome	NY	13440	Oneida
164	1012	Cayuga	St	Rome	NY	13440	Oneida
165	400	Gansevoor	Ave	Rome	NY	13440	Oneida
166	400	Gansevoor	Ave	Rome	NY	13440	Oneida
167	400	Gansevoor	Ave	Rome	NY	13440	Oneida
168	400	Gansevoor	Ave	Rome	NY	13440	Oneida
169	402	Gansevoor	Ave	Rome	NY	13440	Oneida
170	402	Gansevoor	Ave	Rome	NY	13440	Oneida
171	402	Gansevoor	Ave	Rome	NY	13440	Oneida
172	402	Gansevoor	Ave	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNar	PostType	ZipName	State	ZipCode	CountyName
173	407	Gansevoor	Ave	Rome	NY	13440	Oneida
174	401	Gansevoor	Ave	Rome	NY	13440	Oneida
175	319	Gansevoor	Ave	Rome	NY	13440	Oneida
176	413	Gansevoor	Ave	Rome	NY	13440	Oneida
177	408	Gansevoor	Ave	Rome	NY	13440	Oneida
178	411	Gansevoor	Ave	Rome	NY	13440	Oneida
179	409	Gansevoor	Ave	Rome	NY	13440	Oneida
180	409	Gansevoor	Ave	Rome	NY	13440	Oneida
181	409	Gansevoor	Ave	Rome	NY	13440	Oneida
182	409	Gansevoor	Ave	Rome	NY	13440	Oneida
183	404	Gansevoor	Ave	Rome	NY	13440	Oneida
184	404	Gansevoor	Ave	Rome	NY	13440	Oneida
185	406	Gansevoor	Ave	Rome	NY	13440	Oneida
186	410	Gansevoor	Ave	Rome	NY	13440	Oneida
187	412	Gansevoor	Ave	Rome	NY	13440	Oneida
188	414	Gansevoor	Ave	Rome	NY	13440	Oneida
189	125	Park	Dr	Rome	NY	13440	Oneida
190	3121	Park	Dr	Rome	NY	13440	Oneida
191	3119	Park	Dr	Rome	NY	13440	Oneida
192	965	Park	Dr	Rome	NY	13440	Oneida
193	963	Park	Dr	Rome	NY	13440	Oneida
194	3124	Park	Dr	Rome	NY	13440	Oneida
195	964	Park	Dr	Rome	NY	13440	Oneida
196	962	Park	Dr	Rome	NY	13440	Oneida
197	96	Park	Dr	Rome	NY	13440	Oneida
198	3123	Park	Dr	Rome	NY	13440	Oneida
199	97	Park	Dr	Rome	NY	13440	Oneida
200	973	Park	Dr	Rome	NY	13440	Oneida
201	970	Park	Dr	Rome	NY	13440	Oneida
202	501	Millbrook	Rd	Rome	NY	13440	Oneida
203	500	Millbrook	Rd	Rome	NY	13440	Oneida
204	503	Millbrook	Rd	Rome	NY	13440	Oneida
205	507	Millbrook	Rd	Rome	NY	13440	Oneida
206	505	Millbrook	Rd	Rome	NY	13440	Oneida
207	509	Millbrook	Rd	Rome	NY	13440	Oneida
208	508	Millbrook	Rd	Rome	NY	13440	Oneida
209	506	Millbrook	Rd	Rome	NY	13440	Oneida
210	504	Millbrook	Rd	Rome	NY	13440	Oneida
211	502	Millbrook	Rd	Rome	NY	13440	Oneida
212	510	Millbrook	Rd	Rome	NY	13440	Oneida
213	512	Millbrook	Rd	Rome	NY	13440	Oneida
214	514	Millbrook	Rd	Rome	NY	13440	Oneida
215	516	Millbrook	Rd	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
216	3122	Park	Dr	Rome	NY	13440	Oneida
217	958	Park	Dr	Rome	NY	13440	Oneida
218	1213	Cayuga	St	Rome	NY	13440	Oneida
219	1116	Cayuga	St	Rome	NY	13440	Oneida
220	1107	Cayuga	St	Rome	NY	13440	Oneida
221	1209	Cayuga	St	Rome	NY	13440	Oneida
222	1105	Cayuga	St	Rome	NY	13440	Oneida
223	1019	Cayuga	St	Rome	NY	13440	Oneida
224	1108	Cayuga	St	Rome	NY	13440	Oneida
225	1112	Cayuga	St	Rome	NY	13440	Oneida
226	1114	Cayuga	St	Rome	NY	13440	Oneida
227	277	Panesi	Ave	Rome	NY	13440	Oneida
228	225	Panesi	Ave	Rome	NY	13440	Oneida
229	212	Panesi	Ave	Rome	NY	13440	Oneida
230	208	Panesi	Ave	Rome	NY	13440	Oneida
231	210	Panesi	Ave	Rome	NY	13440	Oneida
232	7109	Herkimer	Ave	Rome	NY	13440	Oneida
233	7105	Herkimer	Ave	Rome	NY	13440	Oneida
234	7099	Herkimer	Ave	Rome	NY	13440	Oneida
235	6955	Dominick	St	Rome	NY	13440	Oneida
236	7093	Herkimer	Ave	Rome	NY	13440	Oneida
237	7093	Herkimer	Ave	Rome	NY	13440	Oneida
238	7093	Herkimer	Ave	Rome	NY	13440	Oneida
239	1207	Seneca	St	Rome	NY	13440	Oneida
240	1208	Seneca	St	Rome	NY	13440	Oneida
241	1205	Seneca	St	Rome	NY	13440	Oneida
242	1205	Seneca	St	Rome	NY	13440	Oneida
243		Seneca	St	Rome	NY	13440	Oneida
244	200	Panesi	Ave	Rome	NY	13440	Oneida
245	1203	Seneca	St	Rome	NY	13440	Oneida
246		Seneca	St	Rome	NY	13440	Oneida
247	1113	Seneca	St	Rome	NY	13440	Oneida
248	1113	Seneca	St	Rome	NY	13440	Oneida
249	1113	Seneca	St	Rome	NY	13440	Oneida
250		Seneca	St	Rome	NY	13440	Oneida
251		Seneca	St	Rome	NY	13440	Oneida
252		Seneca	St	Rome	NY	13440	Oneida
253		Seneca	St	Rome	NY	13440	Oneida
254		Panesi	Ave	Rome	NY	13440	Oneida
255		Panesi	Ave	Rome	NY	13440	Oneida
256		Panesi	Ave	Rome	NY	13440	Oneida
257		Panesi	Ave	Rome	NY	13440	Oneida
258	101	Panesi	Ave	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNar	PostType	ZipName	State	ZipCode	CountyName
259	1505	Dominick	St	Rome	NY	13440	Oneida
260	1503	Dominick	St	Rome	NY	13440	Oneida
261	1501	Dominick	St	Rome	NY	13440	Oneida
262	100	Panesi	Ave	Rome	NY	13440	Oneida
263	1513	Dominick	St	Rome	NY	13440	Oneida
264	1109	Oneida	St	Rome	NY	13440	Oneida
265	1111	Oneida	St	Rome	NY	13440	Oneida
266	1107	Oneida	St	Rome	NY	13440	Oneida
267	1415	Dominick	St	Rome	NY	13440	Oneida
268	1413	Dominick	St	Rome	NY	13440	Oneida
269	1409	Dominick	St	Rome	NY	13440	Oneida
270	1409	Dominick	St	Rome	NY	13440	Oneida
271	1418	Dominick	St	Rome	NY	13440	Oneida
272	1418	Dominick	St	Rome	NY	13440	Oneida
273	1416	Dominick	St	Rome	NY	13440	Oneida
274	1414	Dominick	St	Rome	NY	13440	Oneida
275	1412	Dominick	St	Rome	NY	13440	Oneida
276	1400	Dominick	St	Rome	NY	13440	Oneida
277	1212	Dominick	St	Rome	NY	13440	Oneida
278	1303	Dominick	St	Rome	NY	13440	Oneida
279	1303	Dominick	St	Rome	NY	13440	Oneida
280	1301	Dominick	St	Rome	NY	13440	Oneida
281	1215	Dominick	St	Rome	NY	13440	Oneida
282	1217	Dominick	St	Rome	NY	13440	Oneida
283	1217	Dominick	St	Rome	NY	13440	Oneida
284	1209	Dominick	St	Rome	NY	13440	Oneida
285	1211	Dominick	St	Rome	NY	13440	Oneida
286	1127	Dominick	St	Rome	NY	13440	Oneida
287	107	Locomotiv	Ave	Rome	NY	13440	Oneida
288	109	Locomotiv	Ave	Rome	NY	13440	Oneida
289	106	Locomotiv	Ave	Rome	NY	13440	Oneida
290	106	Locomotiv	Ave	Rome	NY	13440	Oneida
291	106	Locomotiv	Ave	Rome	NY	13440	Oneida
292	112	Locomotiv	Ave	Rome	NY	13440	Oneida
293	112	Locomotiv	Ave	Rome	NY	13440	Oneida
294	112	Locomotiv	Ave	Rome	NY	13440	Oneida
295	112	Locomotiv	Ave	Rome	NY	13440	Oneida
296	104	Benedict	Ave	Rome	NY	13440	Oneida
297	106	Benedict	Ave	Rome	NY	13440	Oneida
298	108	Benedict	Ave	Rome	NY	13440	Oneida
299	110	Benedict	Ave	Rome	NY	13440	Oneida
300	110	Benedict	Ave	Rome	NY	13440	Oneida
301	112	Dunn	Ave	Rome	NY	13440	Oneida

OBJECTID	AddressNumber	StreetNar	PostType	ZipName	State	ZipCode	CountyName
302	116	Locomotiv	Ave	Rome	NY	13440	Oneida
303	114	Locomotiv	Ave	Rome	NY	13440	Oneida
304	123	Locomotiv	Ave	Rome	NY	13440	Oneida
305	117	Locomotiv	Ave	Rome	NY	13440	Oneida
306	115	Locomotiv	Ave	Rome	NY	13440	Oneida
307	115	Locomotiv	Ave	Rome	NY	13440	Oneida
308	113	Locomotiv	Ave	Rome	NY	13440	Oneida
309	111	Locomotiv	Ave	Rome	NY	13440	Oneida
310	111	Locomotiv	Ave	Rome	NY	13440	Oneida
311	111	Locomotiv	Ave	Rome	NY	13440	Oneida
312	125	Locomotiv	Ave	Rome	NY	13440	Oneida
313	120	Locomotiv	Ave	Rome	NY	13440	Oneida
314	124	Locomotiv	Ave	Rome	NY	13440	Oneida
315	114	Dunn	Ave	Rome	NY	13440	Oneida
316	118	Dunn	Ave	Rome	NY	13440	Oneida
317	118	Dunn	Ave	Rome	NY	13440	Oneida
318	120	Dunn	Ave	Rome	NY	13440	Oneida
319	120	Dunn	Ave	Rome	NY	13440	Oneida
320	122	Dunn	Ave	Rome	NY	13440	Oneida
321	122	Dunn	Ave	Rome	NY	13440	Oneida
322	122	Dunn	Ave	Rome	NY	13440	Oneida
323	126	Locomotiv	Ave	Rome	NY	13440	Oneida
324	124	Dunn	Ave	Rome	NY	13440	Oneida
325	126	Dunn	Ave	Rome	NY	13440	Oneida
326	124	Nock	St	Rome	NY	13440	Oneida
327	122	Nock	St	Rome	NY	13440	Oneida
328	120	Nock	St	Rome	NY	13440	Oneida
329	121	Nock	St	Rome	NY	13440	Oneida
330	115	Nock	St	Rome	NY	13440	Oneida
331	109	Nock	St	Rome	NY	13440	Oneida
332	111	Nock	St	Rome	NY	13440	Oneida
333	113	Nock	St	Rome	NY	13440	Oneida
334	105	Nock	St	Rome	NY	13440	Oneida
335	105	Nock	St	Rome	NY	13440	Oneida
336	105	Nock	St	Rome	NY	13440	Oneida
337	105	Nock	St	Rome	NY	13440	Oneida
338	107	Nock	St	Rome	NY	13440	Oneida
339	104	Nock	St	Rome	NY	13440	Oneida
340	1307	Dominick	St	Rome	NY	13440	Oneida
341	1309	Dominick	St	Rome	NY	13440	Oneida
342	1333	Dominick	St	Rome	NY	13440	Oneida
343	1401	Dominick	St	Rome	NY	13440	Oneida
344	1//03	Dominick	C+	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNar	PostType	ZipName	State	ZipCode	CountyName
345		Dominick		Rome	NY	13440	Oneida
346	109	Gansevoor	Ave	Rome	NY	13440	Oneida
347	107	Gansevoor	Ave	Rome	NY	13440	Oneida
348	114	Gansevoor	Ave	Rome	NY	13440	Oneida
349	1103	Oneida	St	Rome	NY	13440	Oneida
350	1101	Oneida	St	Rome	NY	13440	Oneida
351	203	Gansevoor	Ave	Rome	NY	13440	Oneida
352	113	Gansevoor	Ave	Rome	NY	13440	Oneida
353	132	Nock	St	Rome	NY	13440	Oneida
354	132	Nock	St	Rome	NY	13440	Oneida
355	132	Nock	St	Rome	NY	13440	Oneida
356	138	Nock	St	Rome	NY	13440	Oneida
357	138	Nock	St	Rome	NY	13440	Oneida
358	138	Nock	St	Rome	NY	13440	Oneida
359	1023	Oneida	St	Rome	NY	13440	Oneida
360	1021	Oneida	St	Rome	NY	13440	Oneida
361	210	Nock	St	Rome	NY	13440	Oneida
362	210	Nock	St	Rome	NY	13440	Oneida
363	210	Nock	St	Rome	NY	13440	Oneida
364	214	Nock	St	Rome	NY	13440	Oneida
365	215	Gansevoor	Ave	Rome	NY	13440	Oneida
366	213	Gansevoor	Ave	Rome	NY	13440	Oneida
367	209	Gansevoor	Ave	Rome	NY	13440	Oneida
368	205	Gansevoor	Ave	Rome	NY	13440	Oneida
369	200	Gansevoor	Ave	Rome	NY	13440	Oneida
370	202	Gansevoor	Ave	Rome	NY	13440	Oneida
371	206	Gansevoor	Ave	Rome	NY	13440	Oneida
372	214	Gansevoor	Ave	Rome	NY	13440	Oneida
373	214	Gansevoor	Ave	Rome	NY	13440	Oneida
374	208	Gansevoor	Ave	Rome	NY	13440	Oneida
375	217	Gansevoor	Ave	Rome	NY	13440	Oneida
376	217	Gansevoor	Ave	Rome	NY	13440	Oneida
377	217	Gansevoor	Ave	Rome	NY	13440	Oneida
378	221	Gansevoor	Ave	Rome	NY	13440	Oneida
379	221	Gansevoor	Ave	Rome	NY	13440	Oneida
380	221	Gansevoor	Ave	Rome	NY	13440	Oneida
381	221	Gansevoor	Ave	Rome	NY	13440	Oneida
382	218	Gansevoor	Ave	Rome	NY	13440	Oneida
383	216	Gansevoor	Ave	Rome	NY	13440	Oneida
384	1103	Seneca	St	Rome	NY	13440	Oneida
385	305	Gansevoor	Ave	Rome	NY	13440	Oneida
386	301	Gansevoor	Ave	Rome	NY	13440	Oneida
387	301	Gansevoor	Ave	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
388	301	Gansevoor	Ave	Rome	NY	13440	Oneida
389	223	Gansevoor	Ave	Rome	NY	13440	Oneida
390	223	Gansevoor	Ave	Rome	NY	13440	Oneida
391	1009	Seneca	St	Rome	NY	13440	Oneida
392	1005	Seneca	St	Rome	NY	13440	Oneida
393	1001	Seneca	St	Rome	NY	13440	Oneida
394	1001	Seneca	St	Rome	NY	13440	Oneida
395	937	Seneca	St	Rome	NY	13440	Oneida
396	1000	Seneca	St	Rome	NY	13440	Oneida
397	1004	Seneca	St	Rome	NY	13440	Oneida
398	1004	Seneca	St	Rome	NY	13440	Oneida
399	1004	Seneca	St	Rome	NY	13440	Oneida
400	224	Nock	St	Rome	NY	13440	Oneida
401	220	Nock	St	Rome	NY	13440	Oneida
402	220	Nock	St	Rome	NY	13440	Oneida
403	220	Nock	St	Rome	NY	13440	Oneida
404	220	Nock	St	Rome	NY	13440	Oneida
405	222	Nock	St	Rome	NY	13440	Oneida
406	921	Seneca	St	Rome	NY	13440	Oneida
407	906	Culverton	Rd	Rome	NY	13440	Oneida
408	308	Mayberry	Rd	Rome	NY	13440	Oneida
409	306	Mayberry	Rd	Rome	NY	13440	Oneida
410	304	Mayberry	Rd	Rome	NY	13440	Oneida
411	310	River	Rd	Rome	NY	13440	Oneida
412		River	Rd	Rome	NY	13440	Oneida
413	306	River	Rd	Rome	NY	13440	Oneida
414		River	Rd	Rome	NY	13440	Oneida
415		River	Rd	Rome	NY	13440	Oneida
416		McAvoy	Ave	Rome	NY	13440	Oneida
417		•	Ave	Rome	NY	13440	Oneida
418		McAvoy		Rome	NY	13440	Oneida
419		Spadafora		Rome	NY	13440	Oneida
420		Spadafora		Rome	NY	13440	Oneida
421		Spadafora		Rome	NY	13440	Oneida
422	200		St	Rome	NY	13440	Oneida
423	201		St	Rome	NY	13440	Oneida
424	118		St	Rome	NY	13440	Oneida
425	116		St	Rome	NY	13440	Oneida
426	116		St	Rome	NY	13440	Oneida
427	116		St	Rome	NY	13440	Oneida
428	116		St	Rome	NY	13440	Oneida
429	115		St	Rome	NY	13440	Oneida
430	115	6th	St	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
431	115	6th	St	Rome	NY	13440	Oneida
432	117	6th	St	Rome	NY	13440	Oneida
433	119	6th	St	Rome	NY	13440	Oneida
434	119	6th	St	Rome	NY	13440	Oneida
435	119	6th	St	Rome	NY	13440	Oneida
436	119	6th	St	Rome	NY	13440	Oneida
437	121	6th	St	Rome	NY	13440	Oneida
438	125	6th	St	Rome	NY	13440	Oneida
439	125	6th	St	Rome	NY	13440	Oneida
440	125	6th	St	Rome	NY	13440	Oneida
441	125	6th	St	Rome	NY	13440	Oneida
442	123	6th	St	Rome	NY	13440	Oneida
443	123	6th	St	Rome	NY	13440	Oneida
444	123	6th	St	Rome	NY	13440	Oneida
445	120	5th	St	Rome	NY	13440	Oneida
446	124	5th	St	Rome	NY	13440	Oneida
447	118	5th	St	Rome	NY	13440	Oneida
448	118	5th	St	Rome	NY	13440	Oneida
449	114	5th	St	Rome	NY	13440	Oneida
450	119	5th	St	Rome	NY	13440	Oneida
451	113	5th	St	Rome	NY	13440	Oneida
452	111	5th	St	Rome	NY	13440	Oneida
453	109	5th	St	Rome	NY	13440	Oneida
454	107	5th	St	Rome	NY	13440	Oneida
455	105	5th	St	Rome	NY	13440	Oneida
456	103	5th	St	Rome	NY	13440	Oneida
457	104	5th	St	Rome	NY	13440	Oneida
458	108	5th	St	Rome	NY	13440	Oneida
459	112	5th	St	Rome	NY	13440	Oneida
460	113	6th	St	Rome	NY	13440	Oneida
461	109	6th	St	Rome	NY	13440	Oneida
462	109	6th	St	Rome	NY	13440	Oneida
463	105	6th	St	Rome	NY	13440	Oneida
464	105	6th	St	Rome	NY	13440	Oneida
465	103	6th	St	Rome	NY	13440	Oneida
466	707	Dominick	St	Rome	NY	13440	Oneida
467	703	Dominick	St	Rome	NY	13440	Oneida
468	705	Dominick	St	Rome	NY	13440	Oneida
469	709	Dominick	St	Rome	NY	13440	Oneida
470	101	6th	St	Rome	NY	13440	Oneida
471	711	Dominick	St	Rome	NY	13440	Oneida
472	807	Dominick	St	Rome	NY	13440	Oneida
473	805	Dominick	St	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
474	801	Dominick	St	Rome	NY	13440	Oneida
475	106	6th	St	Rome	NY	13440	Oneida
476	104	6th	St	Rome	NY	13440	Oneida
477	104	6th	St	Rome	NY	13440	Oneida
478	104	6th	St	Rome	NY	13440	Oneida
479	104	6th	St	Rome	NY	13440	Oneida
480	108	6th	St	Rome	NY	13440	Oneida
481	110	6th	St	Rome	NY	13440	Oneida
482	110	6th	St	Rome	NY	13440	Oneida
483	111	6th	St	Rome	NY	13440	Oneida
484	112	6th	St	Rome	NY	13440	Oneida
485	112	6th	St	Rome	NY	13440	Oneida
486	112	6th	St	Rome	NY	13440	Oneida
487	112	6th	St	Rome	NY	13440	Oneida
488	114	6th	St	Rome	NY	13440	Oneida
489	114	6th	St	Rome	NY	13440	Oneida
490	110	6th	St	Rome	NY	13440	Oneida
491	112	Columbus	Ave	Rome	NY	13440	Oneida
492	107	Columbus	Ave	Rome	NY	13440	Oneida
493	107	Columbus	Ave	Rome	NY	13440	Oneida
494	107	Columbus	Ave	Rome	NY	13440	Oneida
495	105	Columbus	Ave	Rome	NY	13440	Oneida
496	108	Columbus	Ave	Rome	NY	13440	Oneida
497	106	Columbus	Ave	Rome	NY	13440	Oneida
498	103	Spadafora	Ave	Rome	NY	13440	Oneida
499	103	Spadafora	Ave	Rome	NY	13440	Oneida
500	907	Dominick	St	Rome	NY	13440	Oneida
501	903	Dominick	St	Rome	NY	13440	Oneida
502	901	Dominick	St	Rome	NY	13440	Oneida
503	102	Columbus	Ave	Rome	NY	13440	Oneida
504	101	Columbus	Ave	Rome	NY	13440	Oneida
505	103	Columbus	Ave	Rome	NY	13440	Oneida
506	103	Columbus	Ave	Rome	NY	13440	Oneida
507	103	Columbus	Ave	Rome	NY	13440	Oneida
508	103	Columbus	Ave	Rome	NY	13440	Oneida
509	811	Dominick	St	Rome	NY	13440	Oneida
510		Dominick		Rome	NY	13440	Oneida
511	819	Dominick	St	Rome	NY	13440	Oneida
512	811	Dominick	St	Rome	NY	13440	Oneida
513	915	Dominick	St	Rome	NY	13440	Oneida
514		Railroad	St	Rome	NY	13440	Oneida
515		Dominick		Rome	NY	13440	Oneida
516	921	Dominick	St	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNar	PostType	ZipName	State	ZipCode	CountyName
517	925	Dominick	St	Rome	NY	13440	Oneida
518	1001	Dominick	St	Rome	NY	13440	Oneida
519	1009	Dominick	St	Rome	NY	13440	Oneida
520	106	McAvoy	Ave	Rome	NY	13440	Oneida
521	108	McAvoy	Ave	Rome	NY	13440	Oneida
522	108	McAvoy	Ave	Rome	NY	13440	Oneida
523	108	McAvoy	Ave	Rome	NY	13440	Oneida
524	112	McAvoy	Ave	Rome	NY	13440	Oneida
525	114	McAvoy	Ave	Rome	NY	13440	Oneida
526	107	McAvoy	Ave	Rome	NY	13440	Oneida
527	107	McAvoy	Ave	Rome	NY	13440	Oneida
528	105	McAvoy	Ave	Rome	NY	13440	Oneida
529	105	McAvoy	Ave	Rome	NY	13440	Oneida
530	105	McAvoy	Ave	Rome	NY	13440	Oneida
531	103	McAvoy	Ave	Rome	NY	13440	Oneida
532	105	Spadafora	Ave	Rome	NY	13440	Oneida
533	105	Spadafora	Ave	Rome	NY	13440	Oneida
534	105	Spadafora	Ave	Rome	NY	13440	Oneida
535	107	Spadafora	Ave	Rome	NY	13440	Oneida
536	111	McAvoy	Ave	Rome	NY	13440	Oneida
537	113	McAvoy	Ave	Rome	NY	13440	Oneida
538	113	McAvoy	Ave	Rome	NY	13440	Oneida
539	113	McAvoy	Ave	Rome	NY	13440	Oneida
540	113	McAvoy	Ave	Rome	NY	13440	Oneida
541	115	McAvoy	Ave	Rome	NY	13440	Oneida
542	115	McAvoy	Ave	Rome	NY	13440	Oneida
543	115	McAvoy	Ave	Rome	NY	13440	Oneida
544	115	McAvoy	Ave	Rome	NY	13440	Oneida
545	123	McAvoy	Ave	Rome	NY	13440	Oneida
546	121	McAvoy	Ave	Rome	NY	13440	Oneida
547	117	McAvoy	Ave	Rome	NY	13440	Oneida
548	117	McAvoy	Ave	Rome	NY	13440	Oneida
549	117	McAvoy	Ave	Rome	NY	13440	Oneida
550	117	McAvoy	Ave	Rome	NY	13440	Oneida
551	120	McAvoy	Ave	Rome	NY	13440	Oneida
552	120	McAvoy	Ave	Rome	NY	13440	Oneida
553	120	McAvoy	Ave	Rome	NY	13440	Oneida
554	122	McAvoy	Ave	Rome	NY	13440	Oneida
555	124	McAvoy	Ave	Rome	NY	13440	Oneida
556	124	McAvoy	Ave	Rome	NY	13440	Oneida
557	125	McAvoy	Ave	Rome	NY	13440	Oneida
558	130	McAvoy	Ave	Rome	NY	13440	Oneida
559	130	McAvoy	Ave	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
560	128	McAvoy	Ave	Rome	NY	13440	Oneida
561	128	McAvoy	Ave	Rome	NY	13440	Oneida
562	126	McAvoy	Ave	Rome	NY	13440	Oneida
563	126	McAvoy	Ave	Rome	NY	13440	Oneida
564	126	McAvoy	Ave	Rome	NY	13440	Oneida
565	126	McAvoy	Ave	Rome	NY	13440	Oneida
566	118	McAvoy	Ave	Rome	NY	13440	Oneida
567	118	McAvoy	Ave	Rome	NY	13440	Oneida
568	118	McAvoy	Ave	Rome	NY	13440	Oneida
569	116	McAvoy	Ave	Rome	NY	13440	Oneida
570	128	Carey	St	Rome	NY	13440	Oneida
571	123	Carey	St	Rome	NY	13440	Oneida
572	122	Carey	St	Rome	NY	13440	Oneida
573	120	Carey	St	Rome	NY	13440	Oneida
574	120	Carey	St	Rome	NY	13440	Oneida
575	120	Carey	St	Rome	NY	13440	Oneida
576	120	Carey	St	Rome	NY	13440	Oneida
577	120	Carey	St	Rome	NY	13440	Oneida
578	116	Carey	St	Rome	NY	13440	Oneida
579	116	Carey	St	Rome	NY	13440	Oneida
580	116	Carey	St	Rome	NY	13440	Oneida
581	113	Carey	St	Rome	NY	13440	Oneida
582	115	Carey	St	Rome	NY	13440	Oneida
583	117	Carey	St	Rome	NY	13440	Oneida
584	111	Carey	St	Rome	NY	13440	Oneida
585	109	Carey	St	Rome	NY	13440	Oneida
586	109	Carey	St	Rome	NY	13440	Oneida
587	109	Carey	St	Rome	NY	13440	Oneida
588	109	Carey	St	Rome	NY	13440	Oneida
589	1101	Dominick	St	Rome	NY	13440	Oneida
590	1103	Dominick	St	Rome	NY	13440	Oneida
591	110	Carey	St	Rome	NY	13440	Oneida
592	1107	Dominick	St	Rome	NY	13440	Oneida
593	1120	Dominick	St	Rome	NY	13440	Oneida
594	1030	Dominick	St	Rome	NY	13440	Oneida
595	1020	Railroad	St	Rome	NY	13440	Oneida
596	1025	Dominick	St	Rome	NY	13440	Oneida
597	1020	Dominick	St	Rome	NY	13440	Oneida
598	1000	Railroad	St	Rome	NY	13440	Oneida
599	730	Railroad	St	Rome	NY	13440	Oneida
600	720	Railroad	St	Rome	NY	13440	Oneida
601	700	Railroad	St	Rome	NY	13440	Oneida
602	612	Dominick	St	Rome	NY	13440	Oneida
002	012	DOMINICK	Ji	Nome	INI	13440	Official

OBJECTID	AddressNumbe	StreetNar	PostType	ZipName	State	ZipCode	CountyName
603		Dominick		Rome	NY	13440	Oneida
604	611	Dominick	St	Rome	NY	13440	Oneida
605	609	Dominick	St	Rome	NY	13440	Oneida
606	607	Dominick	St	Rome	NY	13440	Oneida
607	114	4th	St	Rome	NY	13440	Oneida
608	114	4th	St	Rome	NY	13440	Oneida
609	114	4th	St	Rome	NY	13440	Oneida
610	116	4th	St	Rome	NY	13440	Oneida
611	116	4th	St	Rome	NY	13440	Oneida
612	116	4th	St	Rome	NY	13440	Oneida
613	116	4th	St	Rome	NY	13440	Oneida
614	118	4th	St	Rome	NY	13440	Oneida
615	120	4th	St	Rome	NY	13440	Oneida
616	120	4th	St	Rome	NY	13440	Oneida
617	124	4th	St	Rome	NY	13440	Oneida
618	124	4th	St	Rome	NY	13440	Oneida
619	124	4th	St	Rome	NY	13440	Oneida
620	124	4th	St	Rome	NY	13440	Oneida
621	124	4th	St	Rome	NY	13440	Oneida
622	122	4th	St	Rome	NY	13440	Oneida
623	122	4th	St	Rome	NY	13440	Oneida
624	126	4th	St	Rome	NY	13440	Oneida
625	128	4th	St	Rome	NY	13440	Oneida
626	127	4th	St	Rome	NY	13440	Oneida
627	127	4th	St	Rome	NY	13440	Oneida
628	129	4th	St	Rome	NY	13440	Oneida
629		4th	St	Rome	NY	13440	Oneida
630	129	4th	St	Rome	NY	13440	Oneida
631	129		St	Rome	NY	13440	Oneida
632	130	4th	St	Rome	NY	13440	Oneida
633		4th	St	Rome	NY	13440	Oneida
634		Mohawk	St	Rome	NY	13440	Oneida
635	353	Mohawk	St	Rome	NY	13440	Oneida
636		Mohawk	St	Rome	NY	13440	Oneida
637		Mohawk	St	Rome	NY	13440	Oneida
638		Mohawk	St	Rome	NY	13440	Oneida
639		Mohawk	St	Rome	NY	13440	Oneida
640		Mohawk	St	Rome	NY	13440	Oneida
641		Mohawk	St	Rome	NY	13440	Oneida
642			St	Rome	NY	13440	Oneida
643	520	Bloomfield	St	Rome	NY	13440	Oneida
644		Bloomfield		Rome	NY	13440	Oneida
645	524	Bloomfield	St	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNar	PostType	ZipName	State	ZipCode	CountyName
646	526	Bloomfield	St	Rome	NY	13440	Oneida
647	602	Bloomfield	St	Rome	NY	13440	Oneida
648	600	Bloomfield	St	Rome	NY	13440	Oneida
649	601	Bloomfield	St	Rome	NY	13440	Oneida
650	605	Bloomfield	St	Rome	NY	13440	Oneida
651	603	Bloomfield	St	Rome	NY	13440	Oneida
652	606	Bloomfield	St	Rome	NY	13440	Oneida
653	604	Bloomfield	St	Rome	NY	13440	Oneida
654	620	Bloomfield	St	Rome	NY	13440	Oneida
655	622	Garden	St	Rome	NY	13440	Oneida
656	620	Garden	St	Rome	NY	13440	Oneida
657	615	Bloomfield	St	Rome	NY	13440	Oneida
658	611	Bloomfield	St	Rome	NY	13440	Oneida
659	613	Bloomfield	St	Rome	NY	13440	Oneida
660	607	Bloomfield	St	Rome	NY	13440	Oneida
661	609	Bloomfield	St	Rome	NY	13440	Oneida
662	612	Garden	St	Rome	NY	13440	Oneida
663	610	Garden	St	Rome	NY	13440	Oneida
664	614	Garden	St	Rome	NY	13440	Oneida
665	616	Garden	St	Rome	NY	13440	Oneida
666	701	Garden	St	Rome	NY	13440	Oneida
667	703	Garden	St	Rome	NY	13440	Oneida
668	705	Garden	St	Rome	NY	13440	Oneida
669	707	Garden	St	Rome	NY	13440	Oneida
670	801	Harding	Blvd	Rome	NY	13440	Oneida
671	809	Harding	Blvd	Rome	NY	13440	Oneida
672	807	Harding	Blvd	Rome	NY	13440	Oneida
673	805	Harding	Blvd	Rome	NY	13440	Oneida
674	817	Harding	Blvd	Rome	NY	13440	Oneida
675	815	Harding	Blvd	Rome	NY	13440	Oneida
676	813	Harding	Blvd	Rome	NY	13440	Oneida
677	811	Harding	Blvd	Rome	NY	13440	Oneida
678	710	Healy	Ave	Rome	NY	13440	Oneida
679	819	Harding	Blvd	Rome	NY	13440	Oneida
680	708	Healy	Ave	Rome	NY	13440	Oneida
681	706	Healy	Ave	Rome	NY	13440	Oneida
682	820	Belmont	St	Rome	NY	13440	Oneida
683	818	Belmont	St	Rome	NY	13440	Oneida
684	816	Belmont	St	Rome	NY	13440	Oneida
685		Belmont	St	Rome	NY	13440	Oneida
686	810	Belmont	St	Rome	NY	13440	Oneida
687		Belmont	St	Rome	NY	13440	Oneida
688	814	Belmont	St	Rome	NY	13440	Oneida

OBJECTID	AddressNumbe	StreetNa	PostType	ZipName	State	ZipCode	CountyName
689	819	Belmont	St	Rome	NY	13440	Oneida
690	609	Riverside	Dr	Rome	NY	13440	Oneida
691	607	Riverside	Dr	Rome	NY	13440	Oneida
692	605	Riverside	Dr	Rome	NY	13440	Oneida
693	603	Riverside	Dr	Rome	NY	13440	Oneida
694	810	Wellesley	Rd	Rome	NY	13440	Oneida
695	604	Riverside	Dr	Rome	NY	13440	Oneida
696	606	Riverside	Dr	Rome	NY	13440	Oneida
697	608	Riverside	Dr	Rome	NY	13440	Oneida
698	809	Belmont	St	Rome	NY	13440	Oneida
699	806	Belmont	St	Rome	NY	13440	Oneida
700	613	Garden	St	Rome	NY	13440	Oneida
701	611	Garden	St	Rome	NY	13440	Oneida
702	607	Garden	St	Rome	NY	13440	Oneida
703	605	Garden	St	Rome	NY	13440	Oneida
704	606	Garden	St	Rome	NY	13440	Oneida
705	604	Garden	St	Rome	NY	13440	Oneida
706	600	Garden	St	Rome	NY	13440	Oneida
707	602	Garden	St	Rome	NY	13440	Oneida
708	601	Garden	St	Rome	NY	13440	Oneida
709		Garden	St	Rome	NY	13440	Oneida
710		Grant	Pl	Rome	NY	13440	Oneida
711		Grant	Pl	Rome	NY	13440	Oneida
712		Grant	Pl	Rome	NY	13440	Oneida
713		Bloomfield		Rome	NY	13440	Oneida
714		Grant	Pl	Rome	NY	13440	Oneida
715		Roosevelt		Rome	NY	13440	Oneida
716		Roosevelt		Rome	NY	13440	Oneida
717		Healy	Ave	Rome	NY	13440	Oneida
718		Healy	Ave	Rome	NY	13440	Oneida
719		Healy	Ave	Rome	NY	13440	Oneida
720		Healy	Ave	Rome	NY	13440	Oneida
721		Healy	Ave	Rome	NY	13440	Oneida
722		Healy	Ave	Rome	NY	13440	Oneida
723		Healy	Ave	Rome	NY	13440	Oneida
724		Riverside	Dr	Rome	NY	13440	Oneida
725		Healy	Ave	Rome	NY	13440	Oneida
726		Healy	Ave	Rome	NY	13440	Oneida
727		Belmont	St	Rome	NY	13440	Oneida
728		Healy	Ave	Rome	NY	13440	Oneida
729		Healy	Ave	Rome	NY	13440	Oneida
730		Healy	Ave	Rome	NY	13440	Oneida
731	623	Healy	Ave	Rome	NY	13440	Oneida

OBJECTID	AddressNumber	StreetNar	PostType	ZipName	State	ZipCode	CountyName
732	621	Healy	Ave	Rome	NY	13440	Oneida
733	619	Healy	Ave	Rome	NY	13440	Oneida
734	700	Healy	Ave	Rome	NY	13440	Oneida
735	625	Healy	Ave	Rome	NY	13440	Oneida
736	627	Healy	Ave	Rome	NY	13440	Oneida
737	907	Harding	Blvd	Rome	NY	13440	Oneida
738	915	Harding	Blvd	Rome	NY	13440	Oneida
739	909	Harding	Blvd	Rome	NY	13440	Oneida
740	911	Harding	Blvd	Rome	NY	13440	Oneida
741	921	Harding	Blvd	Rome	NY	13440	Oneida
742	917	Harding	Blvd	Rome	NY	13440	Oneida
743	923	Harding	Blvd	Rome	NY	13440	Oneida
744	925	Harding	Blvd	Rome	NY	13440	Oneida
745	927	Harding	Blvd	Rome	NY	13440	Oneida
746	910	Roosevelt	Ave	Rome	NY	13440	Oneida
747	912	Roosevelt	Ave	Rome	NY	13440	Oneida

Local Officials

Prefix	Salutation	First Name	Last Name	Contact Title	Contact Organization	Department/ District Political Party	County	Street Address 1	Street Address 2
The Honorable	Mayor	Jacqueline	Izzo	Mayor	City of Rome	Mayor's Office	Oneida	198 W. Washington S	it.
Mr.	Mr.	Eric	Seelig	City Clerk & Registrar	City of Rome	City Clerk's Office	Oneida	198 W. Washington S	St.
Ms.	President	Stephanie	Viscelli	Common Council Pres	i City of Rome	Common Council	Oneida	1734 N. George St.	
Mr.	Councillor	John	Sparace	1st Ward Councillor	City of Rome	Common Council, Ward 1	Oneida	133 Parkway	
Mr.	Councillor	John	Mortise	2nd Ward Councillor	City of Rome	Common Council, Ward 2	Oneida	6744 Route 233	
Ms.	Councillor	Kimberly	Rogers	3rd Ward Councillor	City of Rome	Common Council, Ward 3	Oneida	5171 Oswego Rd.	
Ms.	Councillor	Ramona	Smith	4th Ward Councillor	City of Rome	Common Council, Ward 4	Oneida	104 Indian Creek Ln.	
Mr.	Councillor	Frank	Anderson	5th Ward Councillor	City of Rome	Common Council, Ward 5	Oneida	1106 Cedarbrook Dr.	
Mr.	Councillor	Riccardo	Dursi Jr.	6th Ward Councillor	City of Rome	Common Council, Ward 6	Oneida	1834 N. James St.	
Mr.	Councillor	Robert	Tracy	7th Ward Councillor	City of Rome	Common Council, Ward 7	Oneida	213 W. Oak St.	
Mr.	Mr.	Mark	Domenico	Chief Code Enforceme	City of Rome	Office of Code Enforcement	Oneida	198 W. Washington S	St.
Mr.	Mr.	Matthew	Andrews	Deputy Director of Co	r City of Rome	Office of Community and Economic Development	Oneida	198 W. Washington S	St.
Mr.	Chief	Thomas	Lacovissi	Fire Chief	City of Rome	Fire Department	Oneida	158 Black River Blvd	
Mr.	Chief	David	Collins	Chief of Police	City of Rome	Police Department	Oneida	301 N. James St.	
Mr.	Mr.	Butch	Conover	Commissioner of Publ	i City of Rome	Public Works Department	Oneida	198 W. Washington S	St.
Mr.	Mr.	Joe	Surace	Appointed Assessor, R	RICity of Rome	Assessor's Office	Oneida	198 W. Washington S	St.
Mr.	Mr.	Anthony	Picente Jr.	County Executive	Oneida County	Office of the County Executive	Oneida	800 Park Ave	
Mr.	Mr.	Norman	Leach	County Legislator	Oneida County	Board of Legislators, District 3 (Republican	Oneida	1842 Littlefield Rd	
Ms.	Ms.	Cynthia	Rogers-Witt	County Legislator	Oneida County	Board of Legislators, District 4 Republican	Oneida	401 E. Garden St	
Mr.	Mr.	Gerald	Fiorini	County Legislator, Cha	i Oneida County	Board of Legislators, District 7 (Republican	Oneida	1800 Bedford St	
Mr.	Mr.	George	Joseph	County Legislator, Ma	j Oneida County	Board of Legislators, District 10 Republican	Oneida	7315 Merriman Rd	
Ms.	Ms.	Brenda	McMonagle	County Legislator	Oneida County	Board of Legislators, District 12 Republican	Oneida	1001 Union St	
Mr.	Mr.	Stephen	DiMaggio	County Legislator	Oneida County	Board of Legislators, District 17 Republican	Oneida	7065 Stokes Western	ville Rd
Mr.	Mr.	Mikale	Billard	County Legislator Boa	r Oneida County	Board of Legislators	Oneida	800 Park Ave	
Ms.	Ms.	Mary	Finegan	County Clerk	Oneida County	Office of the County Clerk	Oneida	800 Park Ave	
Mr.	Mr.	Anthony	Carvelli	Commissioner of Fina	n Oneida County	County Finance Department	Oneida	800 Park Ave	5th Floor
Mr.	Mr.	Edward	Stevens	Director of Oneida Co	u Oneida County	Department of Emergency Services	Oneida	120 Base Rd	
Mr.	Mr.	James	Genovese II	Planning Commissione	e Oneida County	Department of Planning	Oneida	321 Main St	
Mr.	Mr.	James	Laramie	Public Works Commis	s Oneida County	Department of Public Works	Oneida	5999 Judd Rd	
Mr.	Mr.	Karl	Schrantz	Water Quality and Wa	1Oneida County	Department of Water Quality and Water Pollution	n Oneida	51 Leland Ave	PO Box 442
Mr.	Sheriff	Robert	Maciol	County Sheriff	Oneida County	Oneida County Sheriff's Office	Oneida	6065 Judd Rd	
Ms.	Ms.	Kristin	Campbell	Environment and Wat	€Oneida County	Onieda County Environment and Water Resource	Oneida	321 Main St	
Ms.	Ms.	Jessica	McLaughlin	District Manager	Onieda County	Onieda County Soil & Water Conservation District	Oneida	121 2nd St	

Local Officials

City	Zipcode State	Phone	Phone 2	Email 2	Term Length	Actions / Notes
Rome	13440 NY	315-336-6000	•			Email contact form: https://romenewyork.com/contact-us/?recip=mayor
Rome	13440 NY	315-339-7659		eseelig@romecitygov.com		
Rome	13440 NY	315-709-9308		stephviscelli@gmail.com	1/1/2020-12/31/	23
Rome	13440 NY	315-525-0777		sparace1975@hotmail.com		
Rome	13440 NY	315-527-4056		jmkw101904@yahoo.com		
Rome	13440 NY	315-404-5322		krogers66@gmail.com		
Rome	13440 NY	315-337-4327		ruggy100@aol.com		
Rome	13440 NY	315-337-0711		fanderson002@twcny.rr.co	<u>m</u>	
Rome	13440 NY	315-335-1417		rdursi28@gmail.com		
Rome	13440 NY	315-337-8970		rtracy1@twcny.rr.com		
Rome	13440 NY	315-339-7642				Email contact form: https://romenewyork.com/contact-us/?recip=mdomenico
Rome	13440 NY	315-339-7628				Email contact form: https://romenewyork.com/contact-us/?recip=mandrews
Rome	13440 NY	315-339-7784				Email contact form: https://romenewyork.com/contact-us/?recip=Tlacovissi&fd=true
Rome	13440 NY	315-339-7705		collinsd@romepd.com		
Rome	13440 NY	315-339-7635				Email contact form: https://romenewyork.com/contact-us/?recip=bconover
Rome	13440 NY	315-339-7616				Email contact from: https://romenewyork.com/contact-us/?recip=JSuraceJr
Utica	13501 NY	315-798-5800		ce@ocgov.net		
Camden	13316 NY	315-245-0256		nleach@ocgov.net		
Rome	13440 NY	315-225-4488		crogers-witt@ocgov.net		
Rome	13440 NY	315-337-9045		gfiorini@ocgov.net		
Clinton	13323 NY	315-853-3006		gjoseph@ocgov.net		
Rome	13440 NY	315-571-5819		bmcmonagle@ocgov.net		
Ava	13303 NY	315-404-1323		sdimaggio@ocgov.net		
Utica	13501 NY	315-798-5404				
Utica	13501 NY	315-798-5776		countyclerk@ocgov.net		
Utica	13501 NY	315-798-5750				
Oriskany	13424 NY	315-765-2527		911@ocgov.net		
Utica	13501 NY	315-798-5710		planning@ocgov.net		
Oriskany	13424 NY	315-793-6213		publicworks@ocgov.net		
Utica	13503 NY	315-798-5656		wpc@ocgov.net		
Oriskany	13424 NY	315-765-2200				Email contact form: http://oneidacountysheriff.us/contactus
Utica	13501 NY	315-798-5710		planning@ocgov.net		
Oriskany	13424 NY	315-736-3334		jessica.mclaughlin@oneidad	countyswcd.org	

State Officials

Prefix	Salutation	First Name	Last Name	Contact Title	Contact Organization	District/Department	Counties	Political Party	Address Line	Address Line 2
The Honorable	Governor	Kathy	Hochul	Governor	New York State			Democrat	NYS State Capitol Building	
The Honorable	Lt. Governor	Antonio	Delgado	Lieutenant Gove	New York State			Democrat	NYS State Capitol Building	
Mr.	Senator	Joseph	Griffo	State Senator, A	New York State Senate	District 53	Oneida, Madiso	Republican	172 State St, Capitol Buildin	Room 414 CAP
Mr.	Senator	Joseph	Griffo	State Senator, A	New York State Senate	District 53	Oneida, Madiso	Republican	207 Genesee St.	Room 408
Ms.	Assemblymer	n Marianne	Buttenschon	State Assemblyn	New York State Assemb	District 119	Oneida (partly)	Democrat	Legislative Office Building	Room 656
Ms.	Assemblymer	n Marianne	Buttenschon	State Assemblyn	New York State Assemb	District 119	Oneida (partly)	Democrat	207 Genesee St.	Room 401

State Officials

City	Zip	State	Phone	Phone 2	Email	Term Expiration	ion Notes
Albany	12224	NY	518-474-8390			1/1/2	/2027 Email form: https://www.governor.ny.gov/content/governor-contact-form
Albany	12224	NY	518-474-8390			1/1/2	/2027 Email form: https://www.governor.ny.gov/content/governor-contact-form
Albany	12224	NY	518-455-3334		griffo@nysenate.gov	1/1/2	/2025
Utica	13501	NY	315-793-9072				
Albany	12248	NY	518-455-5454		buttenschonm@nyassembly.gov	1/1/2	/2025
Utica	13501	NY	315-732-1055				

Federal Officials

Prefix	Salutation	First Name	Last Name	Contact Title	Contact Organization	District/Department	Counties	Political Party	Address Line	Address Line 2
Mr.	Representative	Brandon	Williams	U.S. Representativ	U.S. House of Representa	District 22		Republican	1022 Longworth HOE	3
Mr.	Representative	Brandon	Williams	U.S. Representativ	U.S. House of Representa	District 22		Republican	440 South Warren St	Suite 706
Mr.	Representative	Brandon	Williams	U.S. Representativ	U.S. House of Representa	District 22		Republican	421 Broad St	Suite 7
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	Lee O'Brien Building	Room 827
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	322 Hart SOB	
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	100 South Clinton St	Room 841
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	145 Pinelawn Rd	Room 300N
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	One Park Place	Suite 100
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	15 Henry St	Room 100 A-F
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	780 Third Ave	Suite 2301
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	100 State St	Room 3040
Mr.	Senator	Charles	Schumer	U.S. Senator, Majo	o U.S. Senate			Democrat	130 South Elmwood	Room 660
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	478 Russell	
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	11A Clinton Ave	Room 821
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	726 Exchange St	Suite 511
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	155 Pinelawn Rd	Suite 250N
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	PO Box 749	
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	PO Box 273	
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	780 Third Ave	Suite 2601
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	100 State St	Room 4195
Ms.	Senator	Kirsten	Gillibrand	U.S. Senator	U.S. Senate			Democrat	100 South Clinton St	Room 1470

Federal Officials

City	Zip State	Phone	Phone 2 Email	Term Expiration Notes
Washington	20515 DC	202-225-3701		1/3/2025 Email contact form: https://brandonwilliams.house.gov/forms/writeyourrep/?zip5=13440&zip4=
Syracuse	13202 NY	315-233-4333		1/3/2025
Utica	13501 NY	315-732-0713		1/3/2025
Albany	12207 NY	518-431-4070		1/3/2029 Email contact form: https://www.schumer.senate.gov/contact/message-chuck
Washington	20510 DC	202-224-6542		1/3/2029
Syracuse	13261 NY	315-423-5471		1/3/2029
Melville	11747 NY	631-753-0978		1/3/2029
Peekskill	10566 NY	914-734-1532		1/3/2029
Binghampton	13901 NY	607-772-6792		1/3/2029
New York	11017 NY	212-486-4430		1/3/2029
Rochester	14614 NY	585-263-5866		1/3/2029
Buffalo	14202 NY	716-846-4111		1/3/2029
Washington	20510 DC	202-224-4451		1/3/2025 Email contact form: https://www.gillibrand.senate.gov/contact/email-me/
Albany	12207 NY	518-431-0120		1/3/2025
Buffalo	14210 NY	716-854-9725		1/3/2025
Melville	11747 NY	631-249-2825		1/3/2025
Yonkers	10710 NY	845-875-4585		1/3/2025
Lowville	13367 NY	315-376-6118		1/3/2025
New York	10017 NY	212-688-6262		1/3/2025
Rochester	14614 NY	585-263-6250		1/3/2025
Syracuse	13261 NY	315-448-0470		1/3/2025

Local Organizations

Prefix	First Name	Last Name	Primary Title	Primary Organization Primary Division	Street Address
Mr.	John	Calabrese	Chairman of Board of Directors	Rome Area Chamber of Commerce	139 W Dominick St
Ms.	Kristen	Skobla	President	Rome Area Chamber of Commerce	139 W Dominick St
Ms.	Sandra	Soroka	Executive Director	Neighborhood Center Inc.	199 W Dominick St
Mr.	Victor	Fariello Jr.	Executive Director	Rome Community Foundation	301 N Washington St
Ms.	Darci	Byrne	Chief Operating Officer	Kenmax Foundation	337 Mohawk St
Mr.	Matt	Miller	Executive Director	Rome Rescue Mission	413 E Dominick St
Ms.	Amy	Turner	Executive Director	Mohawk Valley Community Action Agen Rome Community Action Access Point	203 W Liberty St
Mr.	Timothy	Birnie	President	Rome & Clean	415 N Madison St
Ms.	Kelly	Blazosky	President	Onieda County Tourism	PO Box 551
Ms.	Mary Beth	McEwen	Executive Director	Cornell Cooperative Extension Oneida County	121 Second St
Mr.	John	Wagner	County Farm Bureau Relations & Development	Onieda County Farm Bureau	159 Wolf Rd
Mr.	Steven	Bulger	CEO/ Executive Director	Integrated Community Alternatives Network (ICAN)	310 Main St
Ms.	Alicia	Fernandez Dicks	President/ CEO	The Community Foundation of Herkimer and Oneida Counties	2608 Genesee St
Ms.	Amanda	Larson	President/ Trustee	The Gorman Foundation	1081 Northside Shoppi
				Copper City Community Connection	305 E Locust St
Dr.	Andrew	Drozd	Executive Director/ Chairman of the Board	Project Fibonacci Foundation Inc	PO Box 424
Mr.	Jason	Tockey	Executive Director	Rome Art and Community Center	308 W Bloomfield St
Mr.	Victor	Pearlman	Executive Director	Jewish Community Federation	2310 Oneida St
Mr.	Raymond	Durso Jr.	Chairman	The Gensis Group of Mohawk Valley Reg Chamber Alliance of Mohawk Valley	100 Seymour Rd
Mr.	Steve	Dimeo	President	Mohawk Valley EDGE	584 Phoenix Dr
Ms.	Suzanne	Carvelli	President/ Community Volunteer	Rome College Foundation	139 W Dominick St
				Rome Historical Society	200 Church St
Mr.	Bryce	Baldwin	Executive Director	Rome Community Job Fairs	
Mr.	Chester	DiBari III	Executive Director	Rome Health Foundation	107 E Chestnut St
Mr.	Matthew	Caracas	CEO/ Executive Director	United Way of Mohawk Valley	258 Genesee St

Local Organizations

Street Address 2	City	State	Zip Phone	Phone 2	Email Notes
Suite 2	Rome	NY	13440 315-337-1700		jcalabrese@fsource.org
Suite 2	Rome	NY	13440 315-337-1700		kristen@romechamber.com
Suite 2	Rome	NY	13440 315-272-2600		sandys@neighborhoodctr.org
PO Box 609	Rome	NY	13442 315-356-4739	315-723-7285	VFariello@romecommunityfoundation.org
	Rome	NY	13440 520-780-7141		darci@kenmaxfoundation.com
PO Box 337	Rome	NY	13440 315-337-2516		mmiller@romemission.org
	Rome	NY	13440 315-624-9930		Email contact form: https://www.mvcaa.com/contact
	Rome	NY	13440 315-796-7663		Webpage with email contact form currently down
	Utica	NY	13503 315-724-7221	315-939-9561	Kelly@oneidacountytourism.com
	Oriskany	NY	13424 315-736-3394	ext. 101	mm822@cornell.edu
Suite 300	Albany	NY	12205 315-761-9770		jwagner@nyfb.org
	Utica	NY	13501 315-731-2603	315-792-9039	sbulger@ican.family
	Utica	NY	13502 315-735-8212		adicks@foundationhoc.org
ng Center	Oneida	NY	13421 315-363-0170		Email contact form: http://gormanfoundation.org/contact/
	Rome	NY	13440 315-337-8230		Email contact form: https://coppercitycommunityconnection.com/contact-us/
	Rome	NY	13442 315-334-1163		info@projectfibonacci.org
	Rome	NY	13440 315-336-1040		executivedirector@romeart.org
	Utica	NY	13501 315-733-2343		victor@jccutica.net
	Utica	NY	13502 315-792-7187		Email contact form: https://thegenesisgroup.org/contact-us/
	Rome	NY	13441 315-338-0393		sjdimeo@mvedge.org
	Rome	NY	13440 315-337-1700		info@RomeCollegeFoundation.com
	Rome	NY	13440 315-336-5870		info@romehistoricalsociety.org
	Rome	NY	13440 315-240-1262		bryce@romejobsfairs.org
Suite 100	Rome	NY	13440 315-338-7181		foundation@romehealth.org
	Utica	NY	13502 315-733-4691	ext. 231	matthewc@unitedwaymv.org

Religious Organizations

Primary Organization	Prefix	First Name	Last Name	Primary Title	Street Address	City	State	Zip
River of Life Christian Church					705 Hickory St	Rome	NY	13440
Life Church					1110 Black River Blvd	Rome	NY	13440
Resurrection Life Church					628 Floyd Ave	Rome	NY	13440
Transfiguration of Our Lord Parish	Mr.	Tom	Carinci	Parish Facilities	111 Ridge St	Rome	NY	13440
Church of Christ					734 Hickory St	Rome	NY	13440
Rome Wesleyan Church	Pastor	James	Swanson	Pastor	317 W Embargo St	Rome	NY	13440
New Testament Church					6772 Lamphear Rd	Rome	NY	13440
Redeemer Church Rome Campus	Pastor	Mark	Schilling	Pastor	129 N Washington St	Rome	NY	13440
Rome Alliance Church					920 Turin St	Rome	NY	13440
All Saints Parish Polish National	Very Reverend	Marian	Pociecha	Pastor	801 Hickory St	Rome	NY	13440
Trinity Church					215 W Court St	Rome	NY	13440
Catholic Church of St. John the Baptist	Pastor	Paul	Angelicchio	Pastor	210 E Dominick St	Rome	NY	13440
Zion Episcopal Church	Ms.	Jane	Padrón	Warden	140 W Liberty St	Rome	NY	13440
Mt Calvary Baptist Church	Reverend	Tommy	Jackson Sr.	Pastor	203 Erie Blvd E	Rome	NY	13440
St. Mary of the Assumption Oratory	Very Reverend	Sean	O'Brien	Pastor	210 W Liberty St	Rome	NY	13440
Friendship Baptist Church					4964 Rome-New Lond	l Rome	NY	13440
Grace Baptist Church	Pastor	Trent	Williams	Pastor	8553 Turin Rd	Rome	NY	13440
God's Missionary Church	Pastor	Matthew	Kilgore	Pastor	207 N Madison St	Rome	NY	13440
St. Paul's Roman Catholic Church					1807 Bedford St	Rome	NY	13440
Rome First United Methodist Church	Pastor	Sherry	Mahar	Pastor	400 N George St	Rome	NY	13440
First Presbyterian Church	Reverend	Edwina	Landry	Pastor	108 W Court St	Rome	NY	13440
New Hope Baptist Church	Pastor	Cindy	Makarchuk	Pastor	321 W Bloomfield St	Rome	NY	13440
Floyd United Methodist Church					8398 New Floyd Rd	Rome	NY	13440
Christ Church	Pastor	Aaron	Goerner	Pastor	8470 New Floyd Rd	Rome	NY	13440
Delta United Methodist Church	Pastor	Sherry	Mahar	Pastor	6285 Hawkins Corner	s Rome	NY	13440
Bartlett Baptist Church					5639 Bartlett Rd	Rome	NY	13440
House of God					6852 Lowell Rd	Rome	NY	13440

Note: No other temples, mosques, synagogues, etc. exist within the bounds of Rome; these other religious buildings can be found closest in Utica, NY

Religious Organizations

Phone	Phone 2	Email	Notes								
315-271-4260		webmaster@riverofliferome.org									
315-339-0242		info@lifechurchny.com									
315-339-6318			Email con	tact form: h	nttp://www.i	ezlifeny.o	rg/contact				
315-337-0990											
315-337-2160											
315-980-0020	315-337-9976	PastorJames@romewes.org									
315-339-6542			Email con	tact form: h	nttp://www.i	newtestan	nentchurch	n.tv/contac	t.asp		
315-792-4748			Email con	tact form: h	nttps://www	.myredeer	merchurch	.com/conta	act-us/		
315-336-3483											
315-337-2382			Email con	tact form: h	nttps://www	.allsaintsn	y.org/cont	act-us/			
315-336-2833											
315-337-0990			Pastor for	Transfigura	ation of Our	Lord Paris	h as well, s	taff memb	ers are alig	gned with b	oth churches
315-336-5170		secretary@zionrome.org									
315-337-0674		mtcalvaryrome1@gmail.com									
315-336-5072		smsprectory@twcny.rr.com									
315-336-2963		office@fbcromeny.org									
315-336-3341		twilliams@gbcromeny.com									
315-281-4681			Email con	tact form: h	nttps://godsr	nissionary	church.org	contact-u	s/		
315-336-3082		StPaulsRome@syrdio.org									
315-336-1740	315-338-4463	pastorsherrym@gmail.com									
315-336-1389		firstpresrome@gmail.com									
315-337-5608			Email con	tact form: h	nttps://floyd	umc.org/c	ontact-us				
315-865-4027								_	_		
315-734-0568					nttps://christ						
315-336-1940		delta_umc@yahoo.com	Same Pas	tor as Rome	e First United	l Methodis	st Church,	no church a	affiliation t	to eachothe	r
315-334-5551											
315-337-5635											

Media Contacts

Primary Organization	Prefix	First Name	Last Name	Primary Title	Street Address	Street Address 2	City
The Oneida Daily Dispatch		Karen	Alvord	General Manager	PO Box 4470		Kingston
Rome Daily Sentinel		Bradley	Waters	Publisher	111 Langley Rd		Rome
The Syncopated Times	Mr.	Joe	Bebco	Publisher	1809 Whitesboro St		Utica
Utica Observer Dispatch		Edward	Harris	Reporter	70 Genesee St		Utica
Utica Phoenix					1113 Linwood Pl		Utica
In Good Health - Mohawk Valley's Healthcare Newspaper		Wagner	Dotto	Publisher	4 Riverside Dr	Suite 251	Utica
WKAL TalkRadio 1450					1721 Black River Blvd		Rome
Townsquare Media		Karen	Carey	Market President	9418 River Rd		Marcy
MIX 102.5					520 Seneca St	Suite 101	Utica
The Answer Broadcasting	Ms.	Julie	Tanner	Station Manager	PO Box 337		Oriskany
WKTV News Channel 2					5936 Smith Hill Rd		Utica
Eyewitness News Channel 20					5956 Smith Hill Rd		Utica

Media Contacts

State	Zip Phone	Phone 2	Email	Notes							
NY	12401 315-231-513	6 315-363-5100	kalvord@adtaxi.com								
NY	13441 315-337-400	0 ext. 234	BWaters@RNYmedia.com								
NY	13502 315-507-549	0	Joe.SyncopatedTimes@gmail.com								
NY	13501		eharris@uticaod.com								
NY	13501 315-797-241	7	uticaphoenix@gmail.com								
NY	13502 315-749-707	0	wdotto@twcny.rr.com								
NY	13440 315-533-279	5	traffic@wkal1450.com	Part of Moh	awk Valle	y Radio Gr	oup				
NY	13502 315-768-950	0	karen.carey@townsquaremedia.com	Media Com	pany own	s: WODZ O	ldiez 96.1,	Lite 98.7, E	Big Frog 104	4, WIBX 106	5.9
NY	13502 315-797-133	0	mixpd@galaxymediapartners.com								
NY	13424		theanswerbroadcasting@gmail.com								
NY	13501 315-768-226	4 315-733-0404	programming@wktv.com								
NY	13502 315-272-133	1									

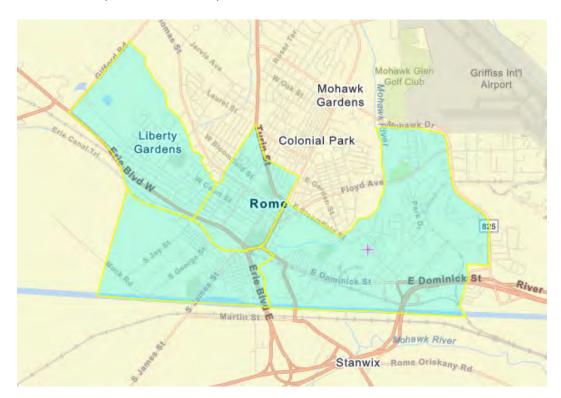
APPENDIX B EJ/DAC DATA

EJ/DAC Data for Revere Copper Products Public Participation Plan

Client Name: Revere Copper Products, inc.

Address: One Revere Park

Rome, New York 13440


County: Oneida County

New York State is undertaking the most ambitious effort in the U.S. to meet the challenge of climate change. New York's Climate Act recognizes that climate change doesn't affect all communities equally. The Climate Act charged the Climate Justice Working Group (CJWG) with the development of criteria to identify disadvantaged communities to ensure that frontline and otherwise underserved communities benefit from the state's historic transition to cleaner, greener sources of energy, reduced pollution and cleaner air, and economic opportunities.

The CJWG finalized the disadvantaged communities criteria on March 27, 2023. The criteria contain 45 indicators related to "Environmental and Climate Change Burdens and Risks" and "Population Characteristics and Health Vulnerabilities".

Communities (Census Tracts) near the project site that meet the disadvantaged communities criteria include:

- 36065021900 (southwestern tract)
- 36065022000 (northwestern tract)
- 36065022500 (eastern tract contains project site)
- 36065026300 (north central tract)

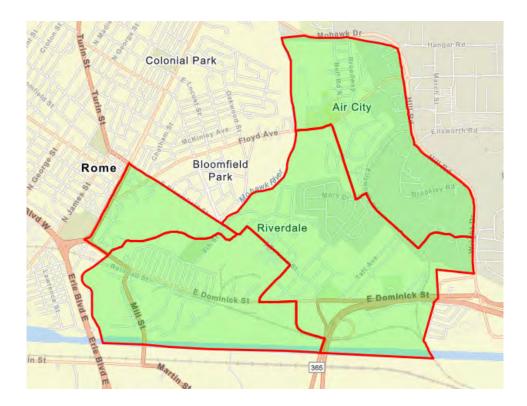
The CJWG identifies Census Tract 36065022500, which contains the project site, as a disadvantaged community. Listed below are statistics for minority status, low-income status, English language proficiency and other dominant languages spoken within the Census Tract.

Notes on data provided: Population by Language Spoken at Home is available at the census tract summary level and up. Data may not sum to totals due to rounding. Hispanic population can be of any race.

People of Color and Low-Income Population by Census Tract

Area	Population	Low-income	People of color	Hispanic population	Population by race (%)	
		population (%)	population	(%)	Tace (%)	
		(70)	(%)	(70)		
*Census Tract	4,542	44	18	6	White:	85
36065022500					Black:	4
					American Indian:	0
					Asian:	1
					Pacific Islander:	0
					Other:	0
					Two or More:	9

Source: U.S. Census Bureau, American Community Survey (ACS) 2016-2020


English Proficiency and Language Spoken at Home by Census Tract

, , , , , , , , , , , , , , , , , , , ,						
Population Age 5+ Years by Ab	ility	Population by Language				
to Speak English (%)		Spoken at Home (%)				
Speak only English	96	English:	96			
Speak English "very well"	3	Spanish:	1			
Speak English "well"	1	French, Haitian, Cajun:	0			
Speak English "not well"	0	German, West Germanic:	0			
Speak English "not at all"	1	Russian, Polish, Slavic:	1			
		Other Indo-European:	0			
		Korean:	0			
		Chinese, Mandarin, Cantonese:	1			
		Vietnamese:	0			
		Tagalog, Filipino:	0			
		Other Asian and Pacific Island:	0			
		Arabic:	0			
		Other, Unspecified:	1			
	to Speak English (%) Speak only English Speak English "very well" Speak English "well" Speak English "not well"	Speak only English Speak English "very well" Speak English "well" Speak English "not well" 0	to Speak English (%) Speak only English Speak English "very well" Speak English "not well" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not at all" Speak English "not well" Speak English "Nell" Speak English "Spanish: Speak English "Restriction, Haitian, Cajun: German, West Germanic: Other Indo-European: Korean: Chinese, Mandarin, Cantonese: Vietnamese: Tagalog, Filipino: Other Asian and Pacific Island: Arabic:			

Source: U.S. Census Bureau, American Community Survey (ACS) 2016-2020

^{*}Indicates area contains project site

^{*}Indicates area contains project site

Within Census Tract 36065022500, there are four Census Block Groups (CBGs). Listed below are statistics for minority status, low-income status and English language proficiency for each CBG within Census Tract 36065022500.

- 360650225001 (southwestern CBG contains project site)
- 360650225002 (northwestern CBG)
- 360650225003 (northeastern CBG)
- 360650225004 (southeastern CBG)

People of Color and Low-Income Population by CBG

Area	Population	Low-income population (%)	People of color population (%)	Hispanic population (%)	Population by race ((%)
*CBG	758	46	21	14	White:	92
360650225001					Black:	4
					American Indian:	0
					Asian:	0
					Pacific Islander:	0
					Other:	0
					Two or More:	4

Area	Population	Low-income population (%)	People of color population (%)	Hispanic population (%)	Population by race ((%)
CBG 360650225002	835	45	12	4	White: Black: American Indian: Asian: Pacific Islander: Other: Two or More:	92 3 0 0 0 0 6
CBG 360650225003	1,691	45	22	3	White: Black: American Indian: Asian: Pacific Islander: Other: Two or More:	78 6 0 1 0 1 14
CBG 360650225004	1,258	41	14	4	White: Black: American Indian: Asian: Pacific Islander: Other: Two or More:	87 2 0 4 0 0 7

Source: U.S. Census Bureau, American Community Survey (ACS) 2016-2020

English Proficiency and Language Spoken at Home by CBG

٠)	and Language Spoken at Home by CBG					
	Area	Population Age 5+ Years by A	Ability			
		to Speak English (%)				
	*CBG 360650225001	Speak only English	96			
		Speak English "very well" 4				
		Speak English "well" 0				
		Speak English "not well" 0				
		Speak English "not at all" 0				
	CBG 360650225002	Speak only English 10				
		Speak English "very well"	0			
		Speak English "well"	0			
		Speak English "not well"	0			
		Speak English "not at all"	0			
	CBG 360650225003	Speak only English	91			
		Speak English "very well"	3			
		Speak English "well"	3			
		Speak English "not well"	0			
		Speak English "not at all"	3			

^{*}Indicates area contains project site

Area	Population Age 5+ Years by Ability		
	to Speak English (%)		
CBG 360650225004	Speak only English 97		
	Speak English "very well" 3		
	Speak English "well"	3	
	Speak English "not well"	0	
	Speak English "not at all"	0	

Source: U.S. Census Bureau, American Community Survey (ACS) 2016-2020

Sources:

New York State Energy Research and Development Authority, Disadvantaged Communities website https://www.nyserda.ny.gov/ny/Disadvantaged-Communities

USEPA's EJScreen website

https://www.epa.gov/ejscreen

^{*}Indicates area contains project site

APPENDIX C PUBLIC MEETING NOTICE

Revere Copper Products, Inc. invites you to a public meeting regarding an air permit modification application for its Rome facility. In addition to seeking to renew its existing air permit, Revere proposes to modify the permit by replacing an existing casting furnace with a new, similar, but more efficient induction furnace. The equipment upgrade will result in greater production at the facility and an increase in regulated air contaminants ranging from a nominal 1 - 2% up to approximately 16%, dependent upon the individual air contaminant and the changes in fuel type burned.

The public meeting will be held on Monday, November 6, 2023 from 6:00 - 7:00 PM

At: The YMCA of the Greater Tri-Valley 301 W Bloomfield Street Rome, NY 13440

Additional information about the meeting can be found on our Website at:

https://reverecopper.com/public-information/

U.S. Mail Permit No. XX

One Revere Park Rome, New York 13440

> Addressee Street Address City, State, Zip code

APPENDIX D FACT SHEET

Revere Copper Products, Inc. Air Permit Renewal Fact Sheet

About Revere Copper Products' Air Permit Renewal

In New York, owners and/or operators of many air emissions sources are required to obtain an air permit or registration authorizing the construction and operation of the sources. Revere Copper Products, Inc. (Revere) operates air emissions sources at its Rome facility, These air emissions sources include such equipment as furnaces, boilers, rolling mills and other metal processing equipment. Currently, Revere operates these sources under an existing Air State Facility (ASF) Permit No. 6-3013-00091/00039 issued on November 1, 2013 by the New York State Department of Environmental Conservation (NYSDEC). The ASF Permit is valid for 10 years and has an expiration date of October 31, 2023, but in accordance with NYSDEC regulations (6 NYCRR 201), on February 8, 2023 Revere Copper products submitted a timely application to the NYSDEC to renew its ASF Permit. The application also proposed to modify the ASF Permit to include the replacement of an existing casting furnace with a new, energy- and fuelefficient furnace that will allow Revere to increase the facility's product throughput capacity by approximately 23.3% while increasing natural gas consumption by only approximately 22%. The equipment upgrade will result in greater production at the facility and an increase in regulated air contaminants ranging from a nominal 1 - 2% up to approximately 16%, dependent upon the individual air contaminant and the changes in fuel type combusted. In addition, Revere will be replacing the No. 6 Fuel Oil that it uses as a backup fuel in its boilers with No. 2 Fuel Oil - a fuel that burns cleaner with lower emissions.

Project Benefits

The replacement furnace project (the "Project") will create approximately 40 new, local, high-paying permanent jobs, and up to 41 indirect jobs during construction and operations.

Approximately 63.8% of Revere's copper production is used in electric vehicles, charging stations, grid upgrades and electric transmission facilities, helping New York State and the US ensure a successful green transition.

The increased production capacity will benefit the local communities with increased revenue paid through product sales and income tax payments provided by Revere and its employees. Mohawk Valley Economic Development expects that this additional employment growth at Revere will produce approximately \$23 Million in additional economic activity in the local community.

Safety

The safety of the public, Revere's employees, and impacts on the environment are all top priorities for Revere. The facility will comply with the applicable local, state and federal standards and requirements. Revere's facility is designed and equipped with state-of-the science safety and security systems to ensure that employees and visitors to the plant, and the local community are protected.

Environment and Community

A greener, healthier and more sustainable future relies on the use of copper.

It's role in renewable energy is growing as we look toward more affordable and cleaner ways to produce electricity. It's recyclable properties and minimal impact on the environment make copper instrumental in developing sustainable cities and communities. Copper's inherent high efficiency in conductive applications can help reduce greenhouse gas emissions and significantly reduce the world's carbon footprint.

Revere and its employees are active participants and contributors in many community campaigns and events. Bringing positive changes to the communities in which we live and work, as well as national and global communities, is important to us. We believe it fosters a deeper sense of unity and purpose and reflects our long-standing values as a company.

ERM Project No. 0692098 7 September 2023

Revere Copper Products, Inc. Air Permit Renewal Fact Sheet

Project Timeline

The ASF Permit renewal and modification application was submitted to the NYSDEC in February 2023 and is currently under review by the NYSDEC Division of Air Resources, and the Division of Environmental Permits.

Revere Copper is hosting a public to give the public the opportunity to learn more about the expansion project and air permit renewal schedule. The public meeting will be on meeting on **Monday**, **November 6, 2023 from 6:00 – 7:00 PM at:**

The YMCA of the Greater Tri-Valley 301 W Bloomfield Street Rome, New York 13440 Phone: (315) 336-3500

For More Information

Copies of the Public Participation Plan (PPP), the Draft Modified ASF Permit and supporting documentation can be viewed at the following locations:

Jervis Public Library 613 N Washington Street Rome, New York 13440 Phone: (315) 336-4570 Hours of Operation:

> Monday through Thursday: 8:30 AM - 8:30 PMFriday: 8:30 AM - 5:30 PMSaturday: 10:00 AM - 3:00 PM

Sunday: Closed

New York State Department of Environmental Conservation Region 6 Utica Sub-Office 207 Genesee Street Utica, NY 13501 (315) 793-2554 Hours of Operation:

Monday through Friday: 8:30 AM-4:45 PM

Saturday & Sunday: Closed

To learn more about Revere Copper Products, Inc. visit our website at:

https://reverecopper.com/public-information/

You can learn more about the New York State Air Permit Renewal process and Revere's expansion project on the NYSDEC's website by following these links:

https://www.dec.ny.gov/chemical/8569.html#Permits

https://www.dec.ny.gov/dardata/boss/afs/permits/630130009100039_r1_1.pdf

https://www.dec.ny.gov/enb/enb.html

ERM Project No. 0692098 03 October 2023

APPENDIX E SAMPLE WINDOW POSTER

Revere Copper Products, Inc. Permit Modification/Renewal

Revere Copper Products, Inc. is hosting a Public Meeting for our neighbors to learn more about the proposed modification and renewal of its existing air permit for its Rome facility.

The Public Meeting will be held on:

Monday, November 6, 2023 from 6:00 - 7:00 PM

Location:

The YMCA of the Greater Tri-Valley
301 W Bloomfield Street
Rome, New York 13440

Additional information about the meeting can be found on our Website at:

https://reverecopper.com/public-information/

ERM has over 160 offices across more 40 countries and territories worldwide

ERM's Rochester, New York Office

345 Woodcliff Drive 2nd Floor Fairport, New York 14450

T: +1 585 387 0510

www.erm.com

EXHIBIT 3 ALLIANCE SOURCE TESTING PROGRAM AND RESULTS

July 18, 2023

David Ozog Environmental Manager Revere Copper Products Inc. One Revere Park Rome, NY 13440 315-338-2160 (direct) DOzog@reverecopper.com

RE: Investigative Testing
Five (5) Process Exhausts
Alliance Project No. 2023-2747

Dear Mr. Ozog,

Alliance Technical Group, LLC (Alliance) conducted investigative testing at the Revere Copper Products facility located in Rome, New York. Testing concluded of determining the emission rates of filterable and condensable particulate matter (PM) for five (5) process exhausts, with additional copper (Cu) testing at the exhaust of the 1515 Overhauler, at the facility.

Please find attached summaries of the testing results along with a copy of the field data collected during the testing. Please contact me at (315) 289-9433 or via email at jeff.gorman@alliancetg.com if you have any questions or need additional information.

Sincerely,

Alliance Technical Group, LLC

Jeff Gorman, QSTI

Operations Manager- New York

Enclosure

Table 1
Summary of Results – 2056 Melting Furnace

Run Number	Run 1	Run 2	Run 3	Average
Date	6/1/23	6/2/23	6/2/23	-
Volumetric Flow Rate				
Stack Conditions, acfm	37,889	37,403	37,572	37,621
Stack Conditions dscfm	34,603	34,469	34,238	34,437
Filterable Particulate Matter Data				
Concentration, grain/dscf	0.0022	0.0039	0.0030	0.0030
Emission Rate, lb/hr	0.64	1.2	0.88	0.89
Condensable Particulate Matter Data				
Concentration, grain/dscf	2.7E-04	5.3E-04	3.2E-04	3.7E-04
Emission Rate, lb/hr	0.079	0.16	0.095	0.11

Table 2
Summary of Results – 2443 Melting Furnace

Run Number	Run 1	Run 2	Run 3	Average
Date	6/2/23	6/2/23	6/2/23	
Volumetric Flow Rate				
Stack Conditions, acfm	36,188	36,524	36,786	36,499
Stack Conditions dscfm	33,277	33,054	33,130	33,154
Filterable Particulate Matter Data				
Concentration, grain/dscf	8.8E-04	7.6E-04	4.8E-04	7.1E-04
Emission Rate, lb/hr	0.25	0.22	0.14	0.20
Condensable Particulate Matter Data				
Concentration, grain/dscf	4.8E-04	4.3E-04	4.8E-04	4.7E-04
Emission Rate, lb/hr	0.14	0.12	0.14	0.13

Table 3
Summary of Results – 1715 Overhauler

Run Number	Run 1	Run 2	Run 3	Average
Date	5/30/23	5/31/23	5/31/23	
Volumetric Flow Rate				
Stack Conditions, acfm	39,813	39,971	36,697	38,827
Stack Conditions dscfm	39,075	38,880	35,533	37,829
Filterable Particulate Matter Data				
Concentration, grain/dscf	0.0035	0.013	0.0064	0.0075
Emission Rate, lb/hr	1.2	4.2	1.9	2.4
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0022	0.0017	7.9E-04	0.0016
Emission Rate, lb/hr	0.75	0.55	0.24	0.52
Copper Data				
Concentration, ug/dscm	2,538			2,538
Emission Rate, lb/hr	0.37			0.37

Table 4
Summary of Results – 1723 Reversing Mill

Run Number	Run 1	Run 2	Run 3	Average
Date	5/31/23	6/1/23	6/1/23	
Volumetric Flow Rate				
Stack Conditions, acfm	25,441	23,155	22,064	23,554
Stack Conditions dscfm	24,404	21,982	20,736	22,374
Filterable Particulate Matter Data				
Concentration, grain/dscf	8.7E-04	9.5E-04	6.4E-04	8.2E-04
Emission Rate, lb/hr	0.18	0.18	0.11	0.16
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0011	0.0012	9.0E-04	0.0011
Emission Rate, lb/hr	0.23	0.22	0.16	0.20

Table 5
Summary of Results – 1721 First Run Down Mill

Run Number	Run 1	Run 2	Run 3	Average
Date	5/31/23	6/1/23	6/1/23	
Volumetric Flow Rate				
Stack Conditions, acfm	60,905	61,226	61,870	61,334
Stack Conditions dscfm	57,917	58,539	58,671	58,376
Filterable Particulate Matter Data				
Concentration, grain/dscf	6.6E-04	5.4E-04	3.7E-04	5.2E-04
Emission Rate, lb/hr	0.33	0.27	0.19	0.26
Condensable Particulate Matter Data				
Concentration, grain/dscf	0.0018	0.0010	6.5E-04	0.0011
Emission Rate, lb/hr	0.88	0.51	0.33	0.57

Location Revere Copper - Rome, NY

Source 2443 Metling Furnace
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/2/23	6/2/23	6/2/23	
Start Time		7:50	9:42	11:39	
Stop Time		8:20	11:12	13:09	
Run Time, min	(θ)	90.0	90.0	90.0	90.0
	INPUT DATA	١			
Barometric Pressure, in. Hg	(Pb)	30.01	29.99	30.00	30.00
Meter Correction Factor	(Y)	1.003	1.003	1.003	1.003
Orifice Calibration Value	(ΔH @)	1.850	1.850	1.850	1.850
Meter Volume, ft ³	(Vm)	57.339	57.472	59.538	58.116
Meter Temperature, °F	(Tm)	69.2	78.5	92.1	79.9
Meter Temperature, °R	(Tm)	528.9	538.2	551.8	539.6
Meter Orifice Pressure, in. WC	(ΔΗ)	1.333	1.350	1.400	1.361
Volume H ₂ O Collected, mL	(Vlc)	19.1	20.4	24.7	21.4
Nozzle Diameter, in	(Dn)	0.212	0.212	0.212	0.212
Area of Nozzle, ft ²	(An)	0.0002	0.0002	0.0002	0.0002
Filterable PM Mass, mg	(Mn)	3.3	<u>2.8</u>	<u>1.8</u>	2.6
Condensable PM Mass, mg	(M_{CPM})	1.8	1.6	1.8	1.7
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	57.740	56.839	57.459	57.346
Standard Water Volume, ft ³	(Vwstd)	0.901	0.962	1.165	1.009
Moisture Fraction Measured	(BWSmsd)	0.015	0.017	0.020	0.017
Moisture Fraction @ Saturation	(BWSsat)	0.080	0.100	0.103	0.094
Moisture Fraction	(BWS)	0.015	0.017	0.020	0.017
Meter Pressure, in Hg	(Pm)	30.11	30.09	30.10	30.10
Volume at Nozzle, ft ³	(Vn)	62.789	62.805	63.797	63.13
sokinetic Sampling Rate, (%)	(I)	98.8	97.9	98.8	98.5
OGM Calibration Check Value, (+/- 5%)	(Y_{qa})	0.8	-0.4	0.0	0.1
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	8.8E-04	7.6E-04	4.8E-04	7.1E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.25	0.22	0.14	0.20
Condensable PM Concentration, grain/dscf	(C_{CPM})	4.8E-04	4.3E-04	4.8E-04	4.7E-04
Condensable PM Emission Rate, lb/hr	(ER _{CPM})	0.14	0.12	0.14	0.13
Total PM Concentration, grain/dscf	(C _{TPM})	0.0014	0.0012	9.7E-04	0.0012
Total PM Emission Rate, lb/hr	(ER _{TPM})	0.39	0.34	0.27	0.33

Underlined values contain one or more fractions below MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY

Source 2443 Metling Furnace

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/2/23	6/2/23	6/2/23	
Start Time		7:50	9:42	11:39	
Stop Time		8:20	11:12	13:09	
Run Time, min		90.0	90.0	90.0	90.0
,	VELOCITY	HEAD, in.	WC		
Point 1		0.70	0.58	0.64	0.64
Point 2		0.69	0.66	0.66	0.67
Point 3		0.68	0.69	0.69	0.69
Point 4		0.68	0.72	0.72	0.71
Point 5		0.68	0.78	0.78	0.75
Point 6		0.68	0.84	0.84	0.79
Point 7		0.68	0.78	0.78	0.75
Point 8		0.68	0.70	0.70	0.69
Point 9		0.68	0.54	0.54	0.59
Point 10		0.54	0.54	0.54	0.54
Point 11		0.70	0.70	0.70	0.70
Point 12		0.76	0.70	0.70	0.72
Point 13		0.62	0.62	0.62	0.62
Point 14		0.64	0.64	0.64	0.64
Point 15		0.72	0.72	0.72	0.72
Point 16		0.76	0.76	0.76	0.76
Point 17		0.80	0.80	0.80	0.80
Point 18		0.80	0.80	0.80	0.80
Point 19		0.76	0.76	0.76	0.76
Point 20		0.68	0.68	0.68	0.68
Point 21		0.56	0.56	0.68	0.60
Point 22		0.58	0.58	0.58	0.58
Point 23		0.66	0.68	0.68	0.67
Point 24		0.70	0.68	0.68	0.69
	CALCUL	ATED DAT			
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.826	0.828	0.833	0.829
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.01	29.99	30.00	30.00
Static Pressure, in. WC	(Pg)	0.21	0.21	0.21	0.21
Stack Pressure, in. Hg	(Ps)	30.03	30.01	30.02	30.02
Stack Cross-sectional Area, ft ²	(As)	12.57	12.57	12.57	12.57
Temperature, °F	(Ts)	107.3	115.3	116.4	113.0
Temperature, °R	(Ts)	567.0	575.0	576.1	572.698
Moisture Fraction Measured	(BWSmsd)	0.015	0.017	0.020	0.017
Moisture Fraction @ Saturation	(BWSsat)	0.080	0.100	0.103	0.094
Moisture Fraction	(BWS)	0.015	0.017	0.020	0.017
O ₂ Concentration, %	(O_2)	18.1	18.1	18.1	18.1
CO ₂ Concentration, %	(CO_2)	2.0	2.0	2.0	2.0
Molecular Weight, lb/lb-mole (dry)	(Md)	29.04	29.04	29.04	29.04
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.87	28.86	28.82	28.85
Velocity, ft/sec	(Vs)	48.0	48.4	48.8	48.4
•	VOLUMETR				
At Stack Conditions, acfm	(Qa)	36,188	36,524	36,786	36,499
At Standard Conditions, dscfm	(Qs)	33,277	33,054	33,130	33,154

Condensable PM Emission Rate, lb/hr

Total PM Concentration, grain/dscf

Total PM Emission Rate, lb/hr

Emission Calculations

Location Revere Copper - Rome, NY
Source 2056 Metling Furnace

Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		6/1/23	6/2/23	6/2/23	
Start Time		13:54	8:10	13:35	
Stop Time		18:04	13:12	17:46	
Run Time, min	(θ)	240.0	240.0	240.0	240.0
	INPUT DATA	A			
Barometric Pressure, in. Hg	(Pb)	30.11	29.93	29.93	29.99
Meter Correction Factor	(Y)	0.983	0.983	0.983	0.983
Orifice Calibration Value	(ΔH @)	1.866	1.866	1.866	1.866
Meter Volume, ft ³	(Vm)	184.136	181.174	183.960	183.090
Meter Temperature, °F	(Tm)	96.5	87.1	97.7	93.8
Meter Temperature, °R	(Tm)	556.2	546.8	557.3	553.4
Meter Orifice Pressure, in. WC	(ΔH)	1.794	1.773	1.782	1.783
Volume H ₂ O Collected, mL	(Vlc)	34.6	46.6	51.5	44.2
Nozzle Diameter, in	(Dn)	0.220	0.220	0.220	0.220
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	24.2	44.0	33.6	33.9
Condensable PM Mass, mg	(M_{CPM})	3.0	5.9	3.6	4.2
	ISOKINETIC D.	ATA			
Standard Meter Volume, ft ³	(Vmstd)	173.571	172.671	172.014	172.752
Standard Water Volume, ft ³	(Vwstd)	1.632	2.198	2.429	2.086
Moisture Fraction Measured	(BWSmsd)	0.009	0.013	0.014	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.105	0.078	0.092	0.092
Moisture Fraction	(BWS)	0.009	0.013	0.014	0.012
Meter Pressure, in Hg	(Pm)	30.24	30.06	30.06	30.12
Volume at Nozzle, ft ³	(Vn)	190.051	187.363	188.760	188.72
Isokinetic Sampling Rate, (%)	(I)	97.4	97.3	97.6	97.4
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	0.6	0.2	0.4	0.4
	EMISSION CALCUI	LATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	0.0022	0.0039	0.0030	0.0030
Filterable PM Emission Rate, lb/hr	(PMR)	0.64	1.2	0.88	0.89
Condensable PM Concentration, grain/dscf	(C_{CPM})	2.7E-04	5.3E-04	3.2E-04	3.7E-04

 (ER_{CPM})

 (C_{TPM})

 (ER_{TPM})

0.079

0.0024

0.72

0.16

0.0045

1.3

0.095

0.0033

1.0

0.11

0.0034

1.0

Location Revere Copper - Rome, NY

Source 2056 Metling Furnace

Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average						
Date		6/1/23	6/2/23	6/2/23							
Start Time		13:54	8:10	13:35							
Stop Time		18:04	13:12	17:46							
Run Time, min		240.0	240.0	240.0	240.0						
VELOCITY HEAD, in. WC											
Point 1		0.72	0.70	0.73	0.72						
Point 2		0.72	0.70	0.73	0.72						
Point 3		0.71	0.69	0.74	0.71						
Point 4		0.71	0.70	0.74	0.72						
Point 5		0.75	0.69	0.73	0.72						
Point 6		0.69	0.67	0.73	0.70						
Point 7		0.70	0.69	0.71	0.70						
Point 8		0.72	0.65	0.73	0.70						
Point 9		0.76	0.70	0.74	0.73						
Point 10		0.76	0.70	0.73	0.73						
Point 11		0.78	0.75	0.75	0.76						
Point 12		0.79	0.77	0.74	0.77						
Point 13		0.85	0.78	0.72	0.78						
Point 14		0.83	0.78	0.71	0.77						
Point 15		0.88	0.82	0.78	0.83						
Point 16		0.85	0.80	0.79	0.81						
Point 17		0.85	0.83	0.80	0.83						
Point 18		0.85	0.85	0.83	0.84						
Point 19		0.85	0.85	0.85	0.85						
Point 20		0.88	0.85	0.87	0.87						
Point 21		0.86	0.85	0.88	0.86						
Point 22		0.86	0.84	0.84	0.85						
Point 23		0.83	0.85	0.85	0.84						
Point 24		0.84	0.86	0.85	0.85						
1 0 m 2 i	CALCUL	ATED DATA		0.00	3.32						
Square Root of ΔP, (in. WC) ^{1/2}	(ΔΡ)	0.879	0.873	0.872	0.875						
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840						
Barometric Pressure, in. Hg	(Pb)	30.11	29.93	29.93	29.99						
Static Pressure, in. WC	(Pg)	0.60	0.55	0.60	0.58						
Stack Pressure, in. Hg	(Ps)	30.15	29.97	29.97	30.03						
Stack Cross-sectional Area, ft ²	(As)	12.31	12.31	12.31	12.31						
Temperature, °F	(Ts)	117.2	106.7	112.4	112.1						
Temperature, °R	(Ts)	576.9	566.3	572.0	571.746						
Moisture Fraction Measured	(BWSmsd)	0.009	0.013	0.014	0.012						
Moisture Fraction @ Saturation	(BWSsat)	0.105	0.078	0.092	0.092						
Moisture Fraction	(BWS)	0.009	0.013	0.014	0.012						
O ₂ Concentration, %	(O_2)	18.7	18.7	18.8	18.7						
CO ₂ Concentration, %	(CO_2)	2.0	2.0	2.0	2.0						
Molecular Weight, lb/lb-mole (dry)	(Md)	29.07	29.07	29.07	29.07						
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.97	28.93	28.92	28.94						
Velocity, ft/sec	(Vs)	51.3	50.7	50.9	51.0						
	VOLUMETR			20.7	21.0						
At Stack Conditions, acfm	(Qa)	37,889	37,403	37,572	37,621						
At Standard Conditions, dscfm	(Qs)	34,603	34,469	34,238	34,437						

Location Revere Copper - Rome, NY
Source 1721 First Run Down Mill
Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		14:35	7:50	9:50	
Stop Time		16:03	9:15	11:15	
Run Time, min	(θ)	80.0	80.0	80.0	80.0
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.15	30.10	30.10	30.12
Meter Correction Factor	(Y)	1.003	1.003	1.003	1.003
Orifice Calibration Value	(ΔH @)	1.850	1.850	1.850	1.850
Meter Volume, ft ³	(Vm)	55.620	53.918	55.245	54.928
Meter Temperature, °F	(Tm)	91.7	70.4	82.0	81.4
Meter Temperature, °R	(Tm)	551.4	530.0	541.7	541.0
Meter Orifice Pressure, in. WC	(ΔH)	1.503	1.503	1.541	1.516
Volume H ₂ O Collected, mL	(Vlc)	7.4	18.1	17.5	14.3
Nozzle Diameter, in	(Dn)	0.247	0.247	0.247	0.247
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	<u>2.3</u>	<u>1.9</u>	<u>1.3</u>	1.8
Condensable PM Mass, mg	(M_{CPM})	6.2	3.6	2.3	4.0
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	53.998	54.360	54.508	54.288
Standard Water Volume, ft ³	(Vwstd)	0.349	0.854	0.825	0.676
Moisture Fraction Measured	(BWSmsd)	0.006	0.015	0.015	0.012
Moisture Fraction @ Saturation	(BWSsat)	0.056	0.042	0.049	0.049
Moisture Fraction	(BWS)	0.006	0.015	0.015	0.012
Meter Pressure, in Hg	(Pm)	30.26	30.21	30.21	30.23
Volume at Nozzle, ft ³	(Vn)	56.783	56.853	57.478	57.04
Isokinetic Sampling Rate, (%)	(I)	99.0	98.6	98.7	98.8
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	1.2	0.1	0.2	0.5
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	6.6E-04	5.4E-04	3.7E-04	5.2E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.33	0.27	0.19	0.26
Condensable PM Concentration, grain/dscf	(C_{CPM})	0.0018	0.0010	6.5E-04	0.0011
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.88	0.51	0.33	0.57
Total PM Concentration, grain/dscf	(C_{TPM})	0.0024	0.0016	0.0010	0.0017
Total PM Emission Rate, lb/hr	(ER_{TPM})	1.2	0.78	0.51	0.83

Location Revere Copper - Rome, NY
Source 1721 First Run Down Mill

Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average						
Date		5/31/23	6/1/23	6/1/23							
Start Time		14:35	7:50	9:50							
Stop Time		16:03	9:15	11:15							
Run Time, min		80.0	80.0	80.0	80.0						
VELOCITY HEAD, in. WC											
Point 1		0.39	0.47	0.48	0.45						
Point 2		0.40	0.47	0.48	0.45						
Point 3		0.38	0.49	0.48	0.45						
Point 4		0.39	0.45	0.45	0.43						
Point 5		0.39	0.43	0.44	0.42						
Point 6		0.38	0.39	0.41	0.39						
Point 7		0.38	0.36	0.37	0.37						
Point 8		0.36	0.36	0.34	0.35						
Point 9		0.44	0.35	0.38	0.39						
Point 10		0.45	0.38	0.39	0.41						
Point 11		0.42	0.39	0.39	0.40						
Point 12		0.40	0.40	0.39	0.40						
Point 13		0.39	0.38	0.40	0.39						
Point 14		0.37	0.38	0.39	0.38						
Point 15		0.36	0.36	0.35	0.36						
Point 16		0.35	0.34	0.34	0.34						
	CALCUL	ATED DAT									
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.625	0.631	0.635	0.630						
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840						
Barometric Pressure, in. Hg	(Pb)	30.15	30.10	30.10	30.12						
Static Pressure, in. WC	(Pg)	-0.20	-0.20	-0.20	-0.20						
Stack Pressure, in. Hg	(Ps)	30.14	30.09	30.09	30.10						
Stack Cross-sectional Area, ft ²	(As)	28.27	28.27	28.27	28.27						
Temperature, °F	(Ts)	95.6	86.7	91.5	91.3						
Temperature, °R	(Ts)	555.3	546.4	551.2	550.941						
Moisture Fraction Measured	(BWSmsd)	0.006	0.015	0.015	0.012						
Moisture Fraction @ Saturation	(BWSsat)	0.056	0.042	0.049	0.049						
Moisture Fraction	(BWS)	0.006	0.015	0.015	0.012						
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9						
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0						
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84						
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.77	28.67	28.67	28.70						
Velocity, ft/sec	(Vs)	35.9	36.1	36.5	36.2						
	VOLUMETR										
At Stack Conditions, acfm	(Qa)	60,905	61,226	61,870	61,334						
At Standard Conditions, dscfm	(Qs)	57,917	58,539	58,671	58,376						

Location Revere Copper - Rome, NY
Source 1723 Reversing Mill
Project No. AST-2023-2747 Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		10:40	12:55	15:58	
Stop Time		12:17	14:05	17:05	
Run Time, min	(θ)	60.0	60.0	57.5	59.2
	INPUT DATA	١			
Barometric Pressure, in. Hg	(Pb)	30.20	30.12	30.05	30.12
Meter Correction Factor	(Y)	0.997	0.997	0.997	0.997
Orifice Calibration Value	(ΔH @)	1.568	1.568	1.568	1.568
Meter Volume, ft ³	(Vm)	51.374	47.447	43.281	47.367
Meter Temperature, °F	(Tm)	89.5	94.9	96.9	93.8
Meter Temperature, °R	(Tm)	549.1	554.6	556.6	553.4
Meter Orifice Pressure, in. WC	(ΔH)	2.046	1.683	1.504	1.745
Volume H ₂ O Collected, mL	(Vlc)	18.5	14.4	13.3	15.4
Nozzle Diameter, in	(Dn)	0.215	0.215	0.215	0.215
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	<u>2.8</u>	<u>2.8</u>	<u>1.7</u>	2.4
Condensable PM Mass, mg	(M_{CPM})	3.5	3.5	2.4	3.1
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	49.926	45.496	41.238	45.554
Standard Water Volume, ft ³	(Vwstd)	0.872	0.679	0.627	0.726
Moisture Fraction Measured	(BWSmsd)	0.017	0.015	0.015	0.016
Moisture Fraction @ Saturation	(BWSsat)	0.041	0.050	0.057	0.049
Moisture Fraction	(BWS)	0.017	0.015	0.015	0.016
Meter Pressure, in Hg	(Pm)	30.35	30.24	30.16	30.25
Volume at Nozzle, ft ³	(Vn)	52.047	47.924	43.878	47.95
Isokinetic Sampling Rate, (%)	(I)	95.6	96.7	97.0	96.4
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	-1.8	-0.5	0.1	-0.7
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	8.7E-04	9.5E-04	6.4E-04	8.2E-04
Filterable PM Emission Rate, lb/hr	(PMR)	0.18	0.18	0.11	0.16
Condensable PM Concentration, grain/dscf	(C _{CPM})	0.0011	0.0012	9.0E-04	0.0011
Condensable PM Emission Rate, lb/hr	(ER _{CPM})	0.23	0.22	0.16	0.20
Total PM Concentration, grain/dscf	(C _{TPM})	0.0019	0.0021	0.0015	0.0019
Total PM Emission Rate, lb/hr	(ER _{TPM})	0.41	0.40	0.27	0.36

Underlined values contain one or more fractions below MDL; MDL used for calculation purposes.

Location Revere Copper - Rome, NY

Source 1723 Reversing Mill

Project No. <u>AST-2023-2747</u>

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/31/23	6/1/23	6/1/23	
Start Time		10:40	12:55	15:58	
Stop Time		12:17	14:05	17:05	
Run Time, min		60.0	60.0	57.5	59.2
,	VELOCITY		WC		
Point 1		1.30	1.10	1.10	1.17
Point 2		1.30	1.10	1.10	1.17
Point 3		1.30	1.10	1.10	1.17
Point 4		1.30	1.10	1.10	1.17
Point 5		1.10	1.10	1.10	1.10
Point 6		1.10	1.10	1.10	1.10
Point 7		1.10	1.10	0.86	1.02
Point 8		1.10	1.10	0.87	1.02
Point 9		1.10	1.10	0.87	1.02
Point 10		0.85	0.79	0.87	0.84
Point 11		0.85	0.79	0.74	0.79
Point 12		0.85	0.80	0.71	0.79
Point 13		1.20	0.80	0.74	0.91
Point 14		1.20	0.81	0.72	0.91
Point 15		1.20	0.80	0.68	0.89
Point 16		1.20	0.80	0.66	0.89
Point 17		1.10	0.80	0.67	0.86
Point 18		1.20	0.80	0.67	0.89
Point 19		1.10	0.80	0.67	0.86
Point 20		1.10	0.80	0.67	0.86
Point 21		1.05	0.78	0.67	0.83
Point 22		1.05	0.80	0.61	0.82
Point 23		1.00	0.80	0.66	0.82
Point 24		1.00	0.80		0.90
	CALCUL	ATED DAT			0.50
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	1.052	0.952	0.902	0.969
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.20	30.12	30.05	30.12
Static Pressure, in. WC	(Pg)	0.16	0.16	0.16	0.16
Stack Pressure, in. Hg	(Ps)	30.21	30.13	30.06	30.14
Stack Cross-sectional Area, ft ²	(As)	7.07	7.07	7.07	7.07
Temperature, °F	(Ts)	86.3	91.9	96.0	91.4
Temperature, °R	(Ts)	545.9	551.5	555.7	551.045
Moisture Fraction Measured	(BWSmsd)	0.017	0.015	0.015	0.016
Moisture Fraction @ Saturation	(BWSsat)	0.041	0.050	0.057	0.049
Moisture Fraction	(BWS)	0.017	0.015	0.015	0.016
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.65	28.68	28.67	28.67
Velocity, ft/sec	(Vs)	60.0	54.6	52.0	55.5
, , , , , , , , , , , , , , , , , , ,	VOLUMETR				
At Stack Conditions, acfm	(Qa)	25,441	23,155	22,064	23,554
At Standard Conditions, dscfm	(Qs)	24,404	21,982	20,736	22,374

Location Revere Copper - Rome, NY
Source 1715 Overhauler
Project No. AST-2023-2747
Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/30/23	5/31/23	5/31/23	
Start Time		14:41	10:21	12:19	
Stop Time		9:55	11:36	13:24	
Run Time, min	(θ)	60.0	60.0	60.0	60.0
	INPUT DATA	1			
Barometric Pressure, in. Hg	(Pb)	30.16	30.15	30.15	30.15
Meter Correction Factor	(Y)	0.983	0.983	0.983	0.983
Orifice Calibration Value	(ΔH @)	1.866	1.866	1.866	1.866
Meter Volume, ft ³	(Vm)	62.536	64.137	59.104	61.926
Meter Temperature, °F	(Tm)	79.0	84.1	88.7	84.0
Meter Temperature, °R	(Tm)	538.7	543.8	548.4	543.6
Meter Orifice Pressure, in. WC	(ΔH)	3.613	3.612	3.133	3.453
Volume H ₂ O Collected, mL	(Vlc)	35.5	35.2	36.1	35.6
Nozzle Diameter, in	(Dn)	0.250	0.250	0.250	0.250
Area of Nozzle, ft ²	(An)	0.0003	0.0003	0.0003	0.0003
Filterable PM Mass, mg	(Mn)	14.0	50.8	23.5	29.4
Condensable PM Mass, mg	(M_{CPM})	8.9	6.7	2.9	6.2
Copper Mass, ug	(M_{Cu})	4,400.0			4,400.0
	ISOKINETIC DA	ATA			
Standard Meter Volume, ft ³	(Vmstd)	61.230	62.190	56.765	60.062
Standard Water Volume, ft ³	(Vwstd)	1.676	1.660	1.702	1.680
Moisture Fraction Measured	(BWSmsd)	0.027	0.026	0.029	0.027
Moisture Fraction @ Saturation	(BWSsat)	0.023	0.026	0.027	0.026
Moisture Fraction	(BWS)	0.023	0.026	0.027	0.026
Meter Pressure, in Hg	(Pm)	30.43	30.42	30.38	30.41
Volume at Nozzle, ft ³	(Vn)	62.592	63.934	58.726	61.75
Isokinetic Sampling Rate, (%)	(I)	96.3	98.3	98.1	97.6
DGM Calibration Check Value, (+/- 5%)	(Y_{qa})	-1.6	-0.1	-0.1	-0.6
	EMISSION CALCUL	ATIONS			
Filterable PM Concentration, grain/dscf	(C_s)	0.0035	0.013	0.0064	0.0075
Filterable PM Emission Rate, lb/hr	(PMR)	1.2	4.2	1.9	2.4
Condensable PM Concentration, grain/dscf	(C_{CPM})	0.0022	0.0017	7.9E-04	0.0016
Condensable PM Emission Rate, lb/hr	(ER_{CPM})	0.75	0.55	0.24	0.52
Total PM Concentration, grain/dscf	(C_{TPM})	0.0058	0.014	0.0072	0.0091
Total PM Emission Rate, lb/hr	(ER_{TPM})	1.9	4.8	2.2	3.0
Copper Concentration, ug/dscm	(C _{Cu})	2,538			2,538
Copper Emission Rate, lb/hr	(ER_{Cu})	0.37			0.37

Location Revere Copper - Rome, NY

Source 1715 Overhauler Project No. AST-2023-2747

Parameter PM/CPM

Run Number		Run 1	Run 2	Run 3	Average
Date		5/30/23	5/31/23	5/31/23	
Start Time		14:41	10:21	12:19	
Stop Time		9:55	11:36	13:24	
Run Time, min		60.0	60.0	60.0	60.0
,	VELOCITY	HEAD, in. '			
Point 1		0.94	0.86	1.10	0.97
Point 2		0.96	0.79	1.10	0.95
Point 3		0.68	0.77	1.00	0.82
Point 4		0.83	0.77	1.00	0.87
Point 5		0.86	0.77	1.05	0.89
Point 6		0.78	0.80	1.05	0.88
Point 7		1.00	0.77	1.00	0.92
Point 8		1.00	0.75	0.55	0.77
Point 9		1.00	0.90	0.59	0.83
Point 10		0.95	0.88	0.50	0.83
Point 11		1.00	0.38	0.56	0.78
Point 12		1.05	0.78	0.50	0.78
Point 13		0.50	0.80	1.05	0.78
Point 14		0.56	0.30	1.05	0.78
Point 15		0.50	1.00	1.00	0.83
Point 16		0.30	1.05	1.00	
					0.84
Point 17		1.00	1.00	1.05	1.02
Point 18		1.10	1.10	0.52	0.91
Point 19		1.10	1.10	0.42	0.87
Point 20		1.00	0.95	0.46	0.80
Point 21		1.05	0.95	0.45	0.82
Point 22		1.00	0.90	0.46	0.79
Point 23		1.05	0.95	0.46	0.82
Point 24		1.05	1.00	0.46	0.84
a a a a a a a a a a a a a a a a a a a		ATED DAT		2.062	0.012
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP)	0.938	0.939	0.860	0.912
Pitot Tube Coefficient	(Cp)	0.840	0.840	0.840	0.840
Barometric Pressure, in. Hg	(Pb)	30.16	30.15	30.15	30.15
Static Pressure, in. WC	(Pg)	-0.50	-0.60	-0.65	-0.58
Stack Pressure, in. Hg	(Ps)	30.12	30.11	30.10	30.11
Stack Cross-sectional Area, ft ²	(As)	12.57	12.57	12.57	12.57
Temperature, °F	(Ts)	69.0	72.0	73.6	71.5
Temperature, °R	(Ts)	528.6	531.7	533.3	531.184
Moisture Fraction Measured	(BWSmsd)	0.027	0.026	0.029	0.027
Moisture Fraction @ Saturation	(BWSsat)	0.023	0.026	0.027	0.026
Moisture Fraction	(BWS)	0.023	0.026	0.027	0.026
O ₂ Concentration, %	(O_2)	20.9	20.9	20.9	20.9
CO ₂ Concentration, %	(CO_2)	0.0	0.0	0.0	0.0
Molecular Weight, lb/lb-mole (dry)	(Md)	28.84	28.84	28.84	28.84
Molecular Weight, lb/lb-mole (wet)	(Ms)	28.58	28.56	28.54	28.56
Velocity, ft/sec	(Vs)	52.8	53.0	48.7	51.5
	VOLUMETR				
At Stack Conditions, acfm	(Qa)	39,813	39,971	36,697	38,827
At Standard Conditions, dscfm	(Qs)	39,075	38,880	35,533	37,829

Alliance Technical Group, LLC
Analytical Services
214 Central Circle
Decatur, AL 35603
(256) 351-0121
www.stacktest.com

Analytical Laboratory Report

Revere Copper Products Inc.
One Revere Park
Rome, New York 13440

Project No. 2023-2747-A LS

Alliance Analytical Services, LLC (AAS) has completed the analysis as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and AAS is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer.

To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Any deviations or problems are detailed in the relevant sections on the test report.

This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document.

Validation Signature

The analytical data and all QC contained within this report was reviewed and validated by the following individual.

Digitally signed by John Lawrence DN: OU=Alliance Analytical Services, O=Alliance Technical Group, CN=John

Lawrence, E=John.Lawrence@AllianceTG.com Reason: I have reviewed this document

Location:

Date: 2023.06.14 10:16:02-05'00' Foxit PDF Editor Version: 12.1.2

Date

John Lawrence

Laboratory Manager

Project Narrative

Analytical Method(s): Method 5 - Determination of Particulate Matter Emissions From Stationary Sources

Filterable The filter(s) were oven dried and desiccated per the method until a final weight was

obtained. The liquid fractions were extracted if required, evaporated and cooled until a final weight was obtained. These fractions were summed together to provide the

total Filterable Particulate Matter collected.

MDL The Minimum Detection Level (MDL) is 0.5 mg per fraction. If the measured result for a

fraction is less than the MDL, the MDL was used in ensuing calculations.

Blank Correction If blank correction is performed, only blank values returned higher than the MDL are

used. If a blank returns a value less than the MDL, no correction is included.

Custody: The samples were received by John Lawrence on 06/12/23 in Decatur, AL. The

samples were received in good condition with proper Chain-of-Custody

documentation. No apparent container problems were noted upon receipt. Prior to analysis, the samples were kept secure with access limited to authorized personnel of

AAS.

Number of Samples: 31

Labeling: Acceptable

Analyst: Rebecca Pope-Laboratory Analyst

Equipment: Ohaus Balance PX224, S/N B919636400. This scale was used for analytical

determinations.

A&D Weighing AND EJ-1500, S/N 5A2845843. This scale was only used to measure

the total mass of rinse collected.

Analysis was performed on the same balance as the associated tare.

Quincy Lab Inc oven, 40CG, SN G4-007640.

Lab Reagents: Acetone Lot Number: 223196

QC Notes: The samples met the minimum criteria established by the relevant method.

Reporting Notes: This edition of the lab report only includes the method 5 samples. The method 202

samples will be reported in the "B" edition of the lab report. Overhauler rinse run 2 had

more PM present than runs 1 and 3.

Certifications: Primary Accreditation:

Louisiana Environmental Laboratory Accreditation Program (LELAP)

Agency Interest (AI) No. 194891 Certificate: 05054, Expiration Date: 6/30/23

Secondary Accreditation:

Texas Commission on Environmental Quality

Certificate: T104704540-23-8, Expiration Date: 2/29/24

Virginia Environmental Laboratory Accreditation Program (VELAP)

VA Laboratory ID: 460299, Certificate: 12183 Expiration Date: 9/14/2023

State Registrations: PADEP # 68-04598

Client Revere Copper Products Inc.

City, State Rome, NY

Project No. AST-2023-2747-A

Method EPA Method 5

Front Half Filter									
Lab ID	81	8100 8101 8102							
Field ID	Reversing	Mill-Run 1	Reversing	Mill-Run 2	Reversing	Mill-Run 3			
Filter ID	1934	46-A	207	60-A	207	62-A			
Filter Tare Weight, g	0.5	284	0.4	172	0.4	201			
Date - Oven	6/12	2/23	6/12	2/23	6/1:	2/23			
Time - Oven	9:	00	9:	00	9:	00			
Date of Weighing	6/12	2/23	6/12	2/23	6/1:	2/23			
Time of Weighing	12	:01	12	:02	12	:03			
Filter Weight, g	0.5	285	0.4	175	0.4	203			
Filter PM Mass, mg*	0	.5	0	0.5		.5			
		Front Half Ri	nse						
Lab ID	81	8115		8116		17			
Field ID	Reversing	Mill-Run 1	Reversing Mill-Run 2		Reversing Mill-Run 3				
Beaker ID	81	15	8116		8117				
Beaker tare, g	3.9	942	3.9872		4.0	036			
Field Vessel with Acetone, g	24	8.5	211.2		257.8				
Empty Field Vessel,g	17	9.1	178.0		178.0				
Acetone Mass, g	69	P.4	33	3.2	79	9.8			
Date - Dessicator	6/12	2/23	6/12/23		6/12/23				
Time - Dessicator	13	:00	13	13:00		:00			
Date of Weighing	6/13/23	6/14/23	6/13/23	6/14/23	6/13/23	6/14/23			
Time of Weighing	13:01	7:05	13:02	7:06	13:03	7:07			
Weight, g	3.9963	3.9966	3.9896	3.9895	4.0047	4.0049			
Rinse PM Mass, mg*	2	.3	2	.3	1	.2			
Blank Corrected			N	lo					
Total Filterable PM Mass, mg	2	2.8 2.8 1.7							

^{*}The total results have been calculated based on MDL values for any sample fractions which were below the MDL.

Client Revere Copper Products Inc.

City, State Rome, NY

Project No. AST-2023-2747-A

Method EPA Method 5

Front Half Filter									
Lab ID	81	03	8104 8105						
Field ID	FR Down	Mill-Run 1	FR Down	Mill-Run 2	FR Down	Mill-Run 3			
Filter ID	207	67-A	207	66-A	197:	29-A			
Filter Tare Weight, g	0.4	248	0.4	247	0.5	226			
Date - Oven	6/1:	2/23	6/12	2/23	6/12	2/23			
Time - Oven	9:	00	9:	00	9:	00			
Date of Weighing	6/1:	2/23	6/12	2/23	6/12	2/23			
Time of Weighing	12	:04	12	:05	12	:06			
Filter Weight, g	0.4	249	0.4	247	0.5	227			
Filter PM Mass, mg*	0	.5	0.5		0.5				
		Front Half Ri	nse						
Lab ID	81	18	8119		8120				
Field ID	FR Down	Mill-Run 1	FR Down Mill-Run 2		FR Down Mill-Run 3				
Beaker ID	81	18	8119		8120				
Beaker tare, g	3.9	825	4.0036		3.9920				
Field Vessel with Acetone, g	23	4.9	246.1		245.3				
Empty Field Vessel,g	17	9.6	179.3		179.3				
Acetone Mass, g	55	5.3	66	5.8	66	5.0			
Date - Dessicator	5/1	7/18	5/17/18		5/17/18				
Time - Dessicator	13	:00	13:00		13:00				
Date of Weighing	6/13/23	6/14/23	6/13/23	6/14/23	6/13/23	6/14/23			
Time of Weighing	13:04	7:08	13:05	7:09	13:06	7:10			
Weight, g	3.9841	3.9844	4.0049	4.0050	3.9929	3.9928			
Rinse PM Mass, mg*	1	.8	1	.4	0	.8			
Blank Corrected			N	lo					
Total Filterable PM Mass, mg	2	.3	1.9 1.3						

^{*}The total results have been calculated based on MDL values for any sample fractions which were below the MDL.

Client Revere Copper Products Inc.

City, State Rome, NY

Project No. AST-2023-2747-A

Method EPA Method 5

		Front Half Fi	lter			
Lab ID	81	06	81	07	81	08
Field ID	Furnace	39-Run 1	Furnace	39-Run 2	Furnace	39-Run 3
Filter ID	207	65-A	207	70-A	207	73-A
Filter Tare Weight, g	0.4	182	0.4	309	0.4	153
Date - Oven	6/1:	2/23	6/1:	2/23	6/1:	2/23
Time - Oven	9:	00	9:	00	9:	00
Date of Weighing	6/1:	2/23	6/1:	2/23	6/1:	2/23
Time of Weighing	12	:07	12	:08	12	:09
Filter Weight, g	0.4	184	0.4	312	0.4	155
Filter PM Mass, mg*	0	.5	0	.5	0	.5
		Front Half Ri	nse			
Lab ID	81	21	81	22	81	23
Field ID	Furnace	39-Run 1	Furnace	39-Run 2	Furnace	39-Run 3
Beaker ID	81	21	81	22	81	23
Beaker tare, g	3.9	684	4.2	562	4.2	570
Field Vessel with Acetone, g	26	1.9	24	9.9	25	3.3
Empty Field Vessel,g	17	8.4	17	8.6	17	9.0
Acetone Mass, g	83	3.5	71	1.3	74	1.3
Date - Dessicator	6/12	2/23	6/1:	2/23	6/1	2/23
Time - Dessicator	13	:00	13	:00	13	:00
Date of Weighing	6/13/23	6/14/23	6/13/23	6/14/23	6/13/23	6/14/23
Time of Weighing	13:07	7:11	13:08	7:12	13:09	7:13
Weight, g	3.9711	3.9713	4.2584	4.2585	4.2583	4.2582
Rinse PM Mass, mg*	2	.8	2	.3	1	.3
Blank Corrected			٨	lo		
Total Filterable PM Mass, mg	3	.3	2	.8	1	.8

^{*}The total results have been calculated based on MDL values for any sample fractions which were below the MDL.

 Client
 Revere Copper Products Inc.

 City, State
 Rome, NY

 Project No.
 AST-2023-2747-A

 Method
 EPA Method 5

		Front Half Fi	ter			
Lab ID	81	09	81	10	81	11
Field ID	Furnace	40-Run 1	Furnace	40-Run 2	Furnace	40-Run 3
Filter ID	207	64-A	207	69-A	207	71-A
Filter Tare Weight, g	0.45	219	0.4	324	0.4	262
Date - Oven	6/12	2/23	6/12	2/23	6/1:	2/23
Time - Oven	9:0	00	9:	00	9:	00
Date of Weighing	6/12	2/23	6/12	2/23	6/1:	2/23
Time of Weighing	12:	:10	12	:11	12	:12
Filter Weight, g	0.43	341	0.4	604	0.4	435
Filter PM Mass, mg*	12	2.2	28	3.0	17	7.3
		Front Half Ri	nse			
Lab ID	81	24	81	25	81	26
Field ID	Furnace	40-Run 1	Furnace	40-Run 2	Furnace	40-Run 3
Beaker ID	81	24	81	25	81	26
Beaker tare, g	4.10	017	4.0	949	4.1	063
Field Vessel with Acetone, g	258	8.8	23	5.1	24	5.2
Empty Field Vessel,g	17'	9.0	17	9.0	17	8.8
Acetone Mass, g	79	9.8	56	5.1	66	5.4
Date - Dessicator	6/12	2/23	6/12	2/23	6/1:	2/23
Time - Dessicator	13:	:00	13	:00	13	:00
Date of Weighing	6/13/23	6/14/23	6/13/23	6/14/23	6/13/23	6/14/23
Time of Weighing	13:10	7:14	13:11	7:15	13:12	7:16
Weight, g	4.1136	4.1139	4.1109	4.1110	4.1226	4.1225
Rinse PM Mass, mg*	12	2.0	16	5.0	16	3.3
Blank Corrected			N	0		
Total Filterable PM Mass, mg	24	1.2	44	1.0	33	3.6

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

Client Revere Copper Products Inc.

City, State Rome, NY

Project No. AST-2023-2747-A

Method EPA Method 5

		Front Half Fi	lter			
Lab ID	81	12	81	13	81	14
Field ID	Overhau	iler-Run 1	Overhau	ıler-Run 2	Overhau	ıler-Run 3
Filter ID	1972	28-A	207	63-A	207	61-A
Filter Tare Weight, g	0.5	189	0.4	226	0.4	170
Date - Oven	6/12	2/23	6/1:	2/23	6/1:	2/23
Time - Oven	9:	00	9:	00	9:	00
Date of Weighing	6/12	2/23	6/1:	2/23	6/1	2/23
Time of Weighing	12	:13	12	:14	12	:15
Filter Weight, g	0.5	249	0.4	316	0.4	230
Filter PM Mass, mg*	6	.0	9	.0	6	.0
•		Front Half Ri	nse			
Lab ID	81	27	81	28	81	29
Field ID	Overhau	ıler-Run 1	Overhau	ıler-Run 2	Overhau	ıler-Run 3
Beaker ID	81	27	81	28	81	29
Beaker tare, g	4.1	201	4.1	474	4.1	063
Field Vessel with Acetone, g	25	4.1	26	4.8	25	3.3
Empty Field Vessel,g	17	8.4	17	8.2	17	8.7
Acetone Mass, g	75	5.7	86	5.6	74	4.6
Date - Dessicator	6/12	2/23	6/1:	2/23	6/1	2/23
Time - Dessicator	13	:00	13	:00	13	:00
Date of Weighing	6/13/23	6/14/23	6/13/23	6/14/23	6/13/23	6/14/23
Time of Weighing	13:13	7:17	13:14	7:18	13:15	7:19
Weight, g	4.1280	4.1282	4.1893	4.1892	4.1236	4.1240
Rinse PM Mass, mg*	8	.0	41	1.8	17	7.5
Blank Corrected				lo		
Total Filterable PM Mass, mg	14	1.0	50	0.8	23	3.5

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

Client Revere Copper Products Inc.

City, State Rome, NY

Project No. AST-2023-2747-A

Method EPA Method 5

Blank Rinse		
Lab ID	81	30
Field ID	Aceton	e Blank
Beaker ID	81	30
Beaker tare, g	4.0	745
Field Vessel with Acetone, g	30	8.1
Empty Field Vessel, g	17	8.6
Acetone Mass, g	12'	9.5
Date - Dessicator	6/12	2/23
Time - Dessicator	13	:00
Date of Weighing	6/13/23	6/14/23
Time of Weighing	13:16	7:20
Weight, g	4.0747	4.0751
Measured Blank Mass, mg	0	.4
Blank Mass, mg*	0	.4
Blank Mass, mg/g	0.0	031

185	days				202	Solvent Rinse - Acetone/Hexane	,	,	`		>	5	>	5	,	,	3	>	>	
AL 356 351-012					Method	FUIT = Aste Defense Catch	>	,	,	8	>	>	3	>	,	>	>	>	>	4
ax (255)	per				_	CPM Filter - 83mm Teflon	3	,	>		,	>	>	,	,	>	>	>	5	of PSD a M29
e SW D	Expedited					PM 10 Rinse - Acetone														In lieu
Aliance Source Pstring, LLC - Lab Services 214 Central Circle SW Decatur, AL 35603 Phone (256) 351-0121 Fax (256) 351-0121					± 201A	Streu Dimm74-19dmuN 19117 Of Mq														analysis
Allance 214 Cer Phone			63		Method	9not95A - 9sni8 2.5 M9														for PSD
	Standard	# tol	.01 # 218363	Method/Media		streup mm74 -redmuM reitiet 2.5 M9														Notes er to MVA
	>	Acetone Lot	Hexane Lot	Methoc	d 17	Aozta Acetone														send filte
	Time	/Lot #	/Lot #		Method 17	Filter Number - 47mm Quartz														Notes AST Office. SVR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis, one filter from the Overlander will be analyzed for copper via M29 procedures.
	Turn Around Time	Blank Manut/Lot	Blank Manuf,/Lot			Probe Nozzle Rinse - 1-bromopropane														ice. SYR avimetri , one filt
	Tun	Blan	Blan		Ю	enoteck – eknik elszoM edot9	>	,	,		>	,	,	,	>	,	,	,	,	AST Office. SYR After gravimetr analysis, one filt
					Method	Filter Number – 83mm Teflon														1
stody						Filter Mumber - 83mm Quartz	19346-A	20760-A	20762-A		20767-A	20765-A	19729-A	20765-A	20770-A	20773-A	20764-A	20769-A	20771-A	
F-Cu			1			НОГД														52 8
Chain-Of-Custody						Collector	SW	MS	WS		SW	WS	SW	SW	SW	SW	SW	WS.	SW	12.
ڻ [^]						Time Recovered	15:15	16.30	18-15		17.30	12.30	14.15	11:00	12:45	14:45	-1700	-1200	-1800	Date 6
						Date	5/31/23	6/1/23	6/1/23		5/31/23	6/1/23	6/1/23	6/2/23	6/2/23	6/2/23	6/1/23	6/2/23	6/2/23	
			40	-	_		18	0	0		1/5	6	69	64	19	9	10	9	19	
			Furnace 39 & 40			Number of Containers	Ċί	C)	174		(%)	2	52	nj	2	2	n	2	RV	demec
	22		Down Mill.				*													Nib Or Recieved Te
0:	Clent Name Revere Copper Products	ome, NY	Source, Reversing Mill, First Run Down Mill, Furnace.	74.2		e 10	g Mill - Run 1	g Mill - Run 2	g Mill - Run 3		own Mill - Run 1	own Mill - Run 2	own Mill - Run 3	39 - Run I	39 - Run 2	35 - Run 3	40 - Run 1	40 - Run 2	40 - Run 3	Starger Mile Same
Allance	Client Name Re	City, State Rome, NY	Source Reversing			Sample ID	MS - Reversing Mill - Run 1	MS - Reversing Mill - Run 2	MS - Reversing Mill - Run 3		MS - First Run Down Mill - Run 1	M5 - First Run Down Mill - Run 2	M5 - First Run Down Mill - Run 3	- M5 - Furnace 39 - Run I	MS - Furnace 39 - Run 2	M5 - Fumace 39	M5 - Furnace 40 - Run 1	MS - Furnace 40 - Run 2	M5 - Furnace 40 - Run 3	Reimquished By

Control from Secretary Control from Secret	Aliance				Chain-Of-Custody	f-Cu	ustody 01_17.0						Z14 Cer Phone	Anidate Source Testing, Lt Lab Services 21d Central Circle SW Decatur, AL 35603 Phone (256) 351-0121 Fax (256) 351-0121	SW Der	catur, Al x (256) 31	51-0121
Particle Particle	Client Name Revere Copper Products					1			Turn	Around Time	,				Expedite	90	da
Part Part	City, State Rome, NY					1			Blank	Manuf,/Lot #		ne Lot #					
There is no section to the section of the section o	Source Cast Shop Vacuum & Overhaul Project No. 23-2747	uler				1			Blank	Manuf/Lot #		e lot # 216	363				
Memory 2014 Memory 2014						F					Meth	0					
Provide Rain Prov								Method 5		Me			Method	3 201A		Me	thod 202
Figure Fluid Flu		Number of Containers	Date Collected	Time	Collector	010H	Fifter Mumber - 83mm Quartz	Filter Mumber - 83mm Teflon			9no193A - 9kinse - Acetone	S.S. Filter Number-47mm Quartz	9 - Acetone	strieu O mm 74 - nedmu Maite	9nof93A - 9zniЯ Qf Mq	CPM Filter - 83mm Teflon	
Figure Flunt Flu	M5 Overhauler - Run 1	2	5/31/23	11:30	SW		19728-A									,	
House Bank 1 5/31/23 1500 SW 2016-14 • </td <td>M5 - Overhauler - Run 2</td> <td>-62</td> <td>5/31/23</td> <td>13:00</td> <td>SW</td> <td></td> <td>20763-A</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>-</td>	M5 - Overhauler - Run 2	-62	5/31/23	13:00	SW		20763-A		,							,	-
Photo Bank	M5 - Overhauler - Run 3	O.	5/31/23	15:00	SW		20761-A		,							>	
Proc Blank																	
Proof Bank																	
Finor Blank																	
Proof Bank 2 6/5/23 -1800 JS Proof Bank 3 6/5/23 -1800 JS Proof Bank	- MS Acetrone Blank	-	E 15 193	, words	is in the second				1	-					T	+	+
Reagent Blank 3 6/5/23 1900 15	M202 - FT Proof Blank	2	6/5/23	1800	δ. ⊼				,							+	+
Staven Mile Date 6/6/03 AST Office: SYR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis on filter from the Overlander will be analyzed for copper via M29	M202 -FT Reagent Blank	(6)	6/5/23	-1800	SI						-				T	,	+
Stayen Mile Date 6/6/23 AST Office: SYR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis, one filter from the Overlander will be analyzed for copper via M29																	
Staven Mile Date 6/6/23 AST Office: SYR AST OFFICE: SYR AST OFFICE: SYR AST OFFICE: SYR AST Office: SYR AST OFFICE: SYR AST O					-												+
Date 6/6/23 AST Office: SYR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis.																	
	Sample Container	il Merce d Temperature (*F)	750	Date		2000		A A A	ST Office fer gravi ralysis, or	SYR metric analys	is, send fill the Overl	Note Iter to MVA ander will t	for PSD oe analyze	analysis. I	n lieu of	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Weigh-Tec

4615 Marsha Ave Decatur, Al. 35603

Weigh-Tec Scale Test / Calibration Report

Rev: 8/1/19 Cal. Rep. 4 Accreditation# 74114

	,	ISO	/IEC 17025:2017 Accred	lited	Report Number	: AST-0622-001
	Customer		Location		Cal. Date	Expiration Date
Allian	ce Source Testing	214 (Central Circle SW Decatu	ır, AL 35603	6/29/2022	6/23
ID	Manufactuer	Model	Serial	Description	Capacity	Min. Grad.
	Ohaus	PA214	B919636400	Balance Room	210 g	0.0001g
			REPEATABILITY T	EST		
	As Ea	und		^	s Loft	

		As Found				As Left	
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
0	0.0000	0.0000	0.0000	0	0.0000	0.0000	0.0000
5	0.0001	5.0000	0.0000	5	0.0001	5.0000	0.0000
0	0.0000	0.0000	0.0000	0	0.0000	0.0000	0.0000

			SHII	T TEST			
		As Found				As Left	
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000

			STR	AIN TEST			
		As Found				As Left	
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
0.2	0.0001	0.2000	0.0000	0.2	0.0001	0.2000	0.0000
1	0.0001	1.0000	0.0000	1	0.0001	1.0000	0.0000
5	0.0001	5.0004	0.0004	5	0.0001	5.0000	0.0000
50	0.0003	50.0006	0.0006	50	0.0003	50.0001	0.0001
150	0.0003	150.0008	0.0008	150	0.0003	150.0001	0.0001

TOLERANCE			·
Tolerance: NIST HB44		Class: I	
	AS FOUND	A	S LEFT
In Tolerance	Out of Tolerance	In Tolerance	Out of Tolerance
	YES	YES	

nviromental Conditions Have Been Met?	YES	Exceptions and Conditions Needing Attention:
		-

CALIBRAT	TION STANDARDS USED	*Expanded uncertainty (U) expressed at approximatley 95% with K=2 factor				
Unit # (s)	Kits: 202002 LB / 2288 KG	N.I.S.T. Traceability (Exp 2/2023)	Measurement Uncertainty			
50's (3-1 Thru 3-10), 1k's and 2k'sCast		05142102, GA24327, 02172206, 05142101, LA21-635	0.00011g			
INVOLVED PARTIES						

Technician(s)	License Number(s)	Customer Representative	
Chad Sain	502908	John Lawrence	
Test Method: Customer Stated Weight Increments	Authorized by: Dawn Freeman 2A Manager on 7-5-22		

This report shall not be reproduced, except in full, without the written approval of Weigh-Tec

P.O. Box 266 Decatur, Al. Phone 1-800-461-4153

Weigh-Tec

4615 Marsha Ave Decatur, Al. 35603

Weigh-Tec Scale Test / Calibration Report

Rev: 8/1/19 Cal. Rep. 4 Accreditation# 74114

ISO/IEC 17025:2017 Accredited Report Number: AST-0622-003

					l l	
	Customer	Location			Cal. Date	Expiration Date
Alliar	Alliance Source Testing		214 Central Circle SW Decatur, AL 35603			6/23
ID	Manufactuer	Model	Serial	Description	Capacity	Min. Grad.
	A&D	EJ-1500	5A2845843	LAB	1500 g	0.1g

REPEATABILITY TEST

As Found			As Left				
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
0	0.0	0.0	0.0	0	0.0	0.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0

SHIFT TEST

As Found			As Left				
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
20	0.1	20.0	0.0	20	0.1	20.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0

STRAIN TEST

As Found			As Left				
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
20	0.1	20.0	0.0	20	0.1	20.0	0.0
100	0.1	100.0	0.0	100	0.1	100.0	0.0
200	0.1	200.0	0.0	200	0.1	200.0	0.0
500	0.1	500.0	0.0	500	0.1	500.0	0.0
1000	0.1	1000.0	0.0	1000	0.1	1000.0	0.0

TOLERANCE

Tolerance: NIST HB-44		Class: I			
	AS FOUND	AS LEFT			
In Tolerance	Out of Tolerance	In Tolerance	Out of Tolerance		
YES		YES			

ENVIROMENT							
Enviromental Conditions Have Been Met?	YES	Exceptions and Conditions Needing Attention:					
	•						

CALIBRAT	TION STANDARDS USED	*Expanded uncertainty (U) expressed at approximatley 95% with K=2 factor				
Unit # (s)	Kits: 202002 LB / 2288 KG	N.I.S.T. Traceability (Exp 2/2023)	Measurement Uncertainty			
50's (3-1 Thru 3-10), 1k's and 2k'sCast		05142102, GA24327, 02172206, 05142101, LA21-635	0.11g			

INVOLVED PARTIES

Technician(s)	License Number(s)	Customer Representative	
	502908	John Lawrence	
Test Method: Customer Stated Weight Increments	Authorized by: Dawn Freeman 2A Manager on 7-5-22		

This report shall not be reproduced, except in full, without the written approval of Weigh-Tec

P.O. Box 266 Decatur, Al. Phone 1-800-461-4153

Filter ID	Weight 1 (g)	Date	Initials	Oven ID	Oven Temp	Thermometer
19320-A	0.5157	09/16/22	JRL	S/N G4-007640	105° C	379437
19321-A	0.5229	09/16/22	JRL	S/N G4-007640	105° C	379437
19322-A	0.5274	09/16/22	JRL	S/N G4-007640	105° C	379437
19323-A	0.5235	09/16/22	JRL	S/N G4-007640	105° C	379437
19324-A	0.5233	09/16/22	JRL	S/N G4-007640	105° C	379437
19325-A	0.5136	09/16/22	JRL	S/N G4-007640	105° C	379437
19326-A	0.5200	09/16/22	JRL	S/N G4-007640	105° C	379437
19327-A	0.5164	09/16/22	JRL	S/N G4-007640	105° C	379437
19328-A	0.5168	09/16/22	JRL	S/N G4-007640	105° C	379437
19329-A	0.5154	09/16/22	JRL	S/N G4-007640	105° C	379437
19330-A	0.5108	09/16/22	JRL	S/N G4-007640	105° C	379437
19331-A	0.5114	09/16/22	JRL	S/N G4-007640	105° C	379437
19332-A	0.5112	09/16/22	JRL	S/N G4-007640	105° C	379437
19333-A	0.5286	09/16/22	JRL	S/N G4-007640	105° C	379437
19334-A	0.5166	09/16/22	JRL	S/N G4-007640	105° C	379437
19335-A	0.5179	09/16/22	JRL	S/N G4-007640	105° C	379437
19336-A	0.5205	09/16/22	JRL	S/N G4-007640	105° C	379437
19337-A	0.5159	09/16/22	JRL	S/N G4-007640	105° C	379437
19338-A	0.5189	09/16/22	JRL	S/N G4-007640	105° C	379437
19339-A	0.5186	09/16/22	JRL	S/N G4-007640	105° C	379437
19340-A	0.5135	09/16/22	JRL	S/N G4-007640	105° C	379437
19341-A	0.5156	09/16/22	JRL	S/N G4-007640	105° C	379437
19342-A	0.5201	09/16/22	JRL	S/N G4-007640	105° C	379437
19343-A	0.5232	09/16/22	JRL	S/N G4-007640	105° C	379437
19344-A	0.5269	09/16/22	JRL	S/N G4-007640	105° C	379437
19345-A	0.5206	09/16/22	JRL	S/N G4-007640	105° C	379437
19346-A	0.5284	09/16/22	JRL	S/N G4-007640	105° C	379437
19347-A	0.5217	09/16/22	JRL	S/N G4-007640	105° C	379437
19348-A	0.5199	09/16/22	JRL	S/N G4-007640	105° C	379437
19349-A	0.5184	09/16/22	JRL	S/N G4-007640	105° C	379437
19350-A	0.5177	09/16/22	JRL	S/N G4-007640	105° C	379437
19351-A	0.5218	09/16/22	JRL	S/N G4-007640	105° C	379437
19352-A	0.5229	09/16/22	JRL	S/N G4-007640	105° C	379437
19353-A	0.5159	09/16/22	JRL	S/N G4-007640	105° C	379437
19354-A	0.5228	09/16/22	JRL	S/N G4-007640	105° C	379437
19355-A	0.5204	09/16/22	JRL	S/N G4-007640	105° C	379437
19356-A	0.5150	09/16/22	JRL	S/N G4-007640	105° C	379437
19357-A	0.5190	09/16/22	JRL	S/N G4-007640	105° C	379437
19358-A	0.5285	09/16/22	JRL	S/N G4-007640	105° C	379437
19359-A	0.5238	09/16/22	JRL	S/N G4-007640	105° C	379437

Filter ID	Weight 1 (g)	Date	Initials	Oven ID	Oven Temp	Thermometer
20760-A	0.4172	04/19/23	JRL	S/N G4-007640	105° C	379437
20761-A	0.4170	04/19/23	JRL	S/N G4-007640	105° C	379437
20762-A	0.4201	04/19/23	JRL	S/N G4-007640	105° C	379437
20763-A	0.4226	04/19/23	JRL	S/N G4-007640	105° C	379437
20764-A	0.4219	04/19/23	JRL	S/N G4-007640	105° C	379437
20765-A	0.4182	04/19/23	JRL	S/N G4-007640	105° C	379437
20766-A	0.4247	04/19/23	JRL	S/N G4-007640	105° C	379437
20767-A	0.4248	04/19/23	JRL	S/N G4-007640	105° C	379437
20768-A	0.4258	04/19/23	JRL	S/N G4-007640	105° C	379437
20769-A	0.4324	04/19/23	JRL	S/N G4-007640	105° C	379437
20770-A	0.4309	04/19/23	JRL	S/N G4-007640	105° C	379437
20771-A	0.4262	04/19/23	JRL	S/N G4-007640	105° C	379437
20772-A	0.4226	04/19/23	JRL	S/N G4-007640	105° C	379437
20773-A	0.4153	04/19/23	JRL	S/N G4-007640	105° C	379437
20774-A	0.4172	04/19/23	JRL	S/N G4-007640	105° C	379437
20775-A	0.4156	04/19/23	JRL	S/N G4-007640	105° C	379437
20776-A	0.4156	04/19/23	JRL	S/N G4-007640	105° C	379437
20777-A	0.4157	04/19/23	JRL	S/N G4-007640	105° C	379437
20778-A	0.4144	04/19/23	JRL	S/N G4-007640	105° C	379437
20779-A	0.4105	04/19/23	JRL	S/N G4-007640	105° C	379437
20780-A	0.4155	04/19/23	JRL	S/N G4-007640	105° C	379437
20781-A	0.4082	04/19/23	JRL	S/N G4-007640	105° C	379437
20782-A	0.4089	04/19/23	JRL	S/N G4-007640	105° C	379437
20783-A	0.4117	04/19/23	JRL	S/N G4-007640	105° C	379437
20784-A	0.4089	04/19/23	JRL	S/N G4-007640	105° C	379437
20785-A	0.4113	04/19/23	JRL	S/N G4-007640	105° C	379437
20786-A	0.4091	04/19/23	JRL	S/N G4-007640	105° C	379437
20787-A	0.4092	04/19/23	JRL	S/N G4-007640	105° C	379437
20788-A	0.4281	04/19/23	JRL	S/N G4-007640	105° C	379437
20789-A	0.4294	04/19/23	JRL	S/N G4-007640	105° C	379437
20790-A	0.4254	04/19/23	JRL	S/N G4-007640	105° C	379437
20791-A	0.4237	04/19/23	JRL	S/N G4-007640	105° C	379437
20792-A	0.4162	04/19/23	JRL	S/N G4-007640	105° C	379437
20793-A	0.4130	04/19/23	JRL	S/N G4-007640	105° C	379437
20794-A	0.4149	04/19/23	JRL	S/N G4-007640	105° C	379437
20795-A	0.4140	04/19/23	JRL	S/N G4-007640	105° C	379437
20796-A	0.4161	04/19/23	JRL	S/N G4-007640	105° C	379437
20797-A	0.4171	04/19/23	JRL	S/N G4-007640	105° C	379437
20798-A	0.4106	04/19/23	JRL	S/N G4-007640	105° C	379437
20799-A	0.4127	04/19/23	JRL	S/N G4-007640	105° C	379437

Filter ID	Weight 1 (g)	Date	Initials	Oven ID	Oven Temp	Thermometer
19720-A	0.5184	11/10/22	JRL	S/N G4-007640	105° C	379437
19721-A	0.5125	11/10/22	JRL	S/N G4-007640	105° C	379437
19722-A	0.5185	11/10/22	JRL	S/N G4-007640	105° C	379437
19723-A	0.5113	11/10/22	JRL	S/N G4-007640	105° C	379437
19724-A	0.5178	11/10/22	JRL	S/N G4-007640	105° C	379437
19725-A	0.5182	11/10/22	JRL	S/N G4-007640	105° C	379437
19726-A	0.5212	11/10/22	JRL	S/N G4-007640	105° C	379437
19727-A	0.5187	11/10/22	JRL	S/N G4-007640	105° C	379437
19728-A	0.5189	11/10/22	JRL	S/N G4-007640	105° C	379437
19729-A	0.5226	11/10/22	JRL	S/N G4-007640	105° C	379437
19730-A	0.5199	11/10/22	JRL	S/N G4-007640	105° C	379437
19731-A	0.5147	11/10/22	JRL	S/N G4-007640	105° C	379437
19732-A	0.5149	11/10/22	JRL	S/N G4-007640	105° C	379437
19733-A	0.5214	11/10/22	JRL	S/N G4-007640	105° C	379437
19734-A	0.5117	11/10/22	JRL	S/N G4-007640	105° C	379437
19735-A	0.5195	11/10/22	JRL	S/N G4-007640	105° C	379437
19736-A	0.5157	11/10/22	JRL	S/N G4-007640	105° C	379437
19737-A	0.5177	11/10/22	JRL	S/N G4-007640	105° C	379437
19738-A	0.5187	11/10/22	JRL	S/N G4-007640	105° C	379437
19739-A	0.5175	11/10/22	JRL	S/N G4-007640	105° C	379437
19740-A	0.5207	11/10/22	JRL	S/N G4-007640	105° C	379437
19741-A	0.5139	11/10/22	JRL	S/N G4-007640	105° C	379437
19742-A	0.5212	11/10/22	JRL	S/N G4-007640	105° C	379437
19743-A	0.5116	11/10/22	JRL	S/N G4-007640	105° C	379437
19744-A	0.5203	11/10/22	JRL	S/N G4-007640	105° C	379437
19745-A	0.5172	11/10/22	JRL	S/N G4-007640	105° C	379437
19746-A	0.5213	11/10/22	JRL	S/N G4-007640	105° C	379437
19747-A	0.5170	11/10/22	JRL	S/N G4-007640	105° C	379437
19748-A	0.5202	11/10/22	JRL	S/N G4-007640	105° C	379437
19749-A	0.5218	11/10/22	JRL	S/N G4-007640	105° C	379437
19750-A	0.5201	11/10/22	JRL	S/N G4-007640	105° C	379437
19751-A	0.5177	11/10/22	JRL	S/N G4-007640	105° C	379437
19752-A	0.5154	11/10/22	JRL	S/N G4-007640	105° C	379437
19753-A	0.5257	11/10/22	JRL	S/N G4-007640	105° C	379437
19754-A	0.5150	11/10/22	JRL	S/N G4-007640	105° C	379437
19755-A	0.5197	11/10/22	JRL	S/N G4-007640	105° C	379437
19756-A	0.5193	11/10/22	JRL	S/N G4-007640	105° C	379437
19757-A	0.5183	11/10/22	JRL	S/N G4-007640	105° C	379437
19758-A	0.5152	11/10/22	JRL	S/N G4-007640	105° C	379437
19759-A	0.5163	11/10/22	JRL	S/N G4-007640	105° C	379437

This is the last page of the report.

Alliance Technical Group, LLC
Analytical Services
214 Central Circle
Decatur, AL 35603
(256) 351-0121
www.stacktest.com

Analytical Laboratory Report

Revere Copper Products Inc.
One Revere Park
Rome, New York 13440

Project No. 2023-2747-B LS

Alliance Analytical Services, LLC (AAS) has completed the analysis as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and AAS is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer.

To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Any deviations or problems are detailed in the relevant sections on the test report.

This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document.

Validation Signature

The analytical data and all QC contained within this report was reviewed and validated by the following individual.

Digitally signed by John Lawrence DN: OU=Alliance Analytical Services, O=Alliance Technical Group, CN=John Lawrence, E =John.Lawrence@AllianceTG.com

Reason: I have reviewed this document

Date: 2023.06.19 14:15:51-05'00'

Foxit PDF Editor Version: 12.1.2

John Lawrence Laboratory Manager Date

Project Narrative

Analytical Method(s):

Method 202 - Dry Impinger Method for Determining Condensable Particulate Matter

Emissions From Stationary Sources

Condensable The filter(s) were cut up and extracted per the method. The organic extract was added

to the organic rinse, and the inorganic extract was added to the inorganic rinse. The inorganic fraction was extracted with solvent per the method. Extracts were combined with the organic rinse. The organic and inorganic fractions were evaporated and

desiccated until a final weight was obtained.

MDL The Minimum Detection Level (MDL) is 0.5 mg per fraction. If the measured result for a

fraction is less than the MDL, the MDL was used in ensuing calculations.

Blank Correction If blank correction is performed, only blank values returned higher than the MDL are

used. If a blank returns a value less than the MDL, no correction is included.

Custody: The samples were received by John Lawrence on 06/12/23 in Decatur, AL. The samples

were received in good condition with proper Chain-of-Custody documentation. No apparent container problems were noted upon receipt. Prior to analysis, the samples

were kept secure with access limited to authorized personnel of AAS.

Number of Samples: 50

Labeling: Acceptable

Analyst: Rebecca Pope- Laboratory Analyst

Equipment: Ohaus Balance PX224, S/N B919636400. This scale was used for analytical

determinations.

A&D Weighing AND EJ-1500, S/N 5A2845843. This scale was only used to measure

the total mass of rinse collected.

Analysis was performed on the same balance as the associated tare.

Quincy Lab Inc oven, 40CG, SN G4-007640.

Lab Reagents: Acetone Lot Number: 223196

Hexane Lot Number: 223251

QC Notes: The samples met the minimum criteria established by the relevant method.

Reporting Notes: This edition of the lab report only includes the method 202 samples. The method 5

samples were reported in the "A" edition of the lab report.

Certifications: Primary Accreditation:

Louisiana Environmental Laboratory Accreditation Program (LELAP)

Agency Interest (AI) No. 194891 Certificate: 05054, Expiration Date: 6/30/23

Secondary Accreditation:

Texas Commission on Environmental Quality

Certificate: T104704540-23-8, Expiration Date: 2/29/24

Virginia Environmental Laboratory Accreditation Program (VELAP) VA Laboratory ID: 460299, Certificate: 12183 Expiration Date: 9/14/2023

State Registrations: PADEP # 68-04598

	Te	eflon Filter	Teflon Filter										
Lab ID	81	31	81	32	81	33							
Field ID	Reversing	Mill-Run 1	Reversing	Mill-Run 2	Reversing	Mill-Run 3							
	Orgo	anic Fraction											
Lab ID	81	46	81	47	81	48							
Field ID	Reversing	Mill-Run 1	Reversing	Mill-Run 2	Reversing	Mill-Run 3							
Beaker ID	81	46	81	47	81	48							
Beaker tare, g	4.0	858	4.0	367	4.0	810							
Field Vessel w/ Solvent, g	43	6.6	44	7.6	49:	2.6							
Empty Field Vessel, g	28	4.4	28	6.9	28	4.5							
Solvent Mass, g	15	2.2	160	0.7	20	8.1							
Date - Dessicator	6/13	3/23	6/13	3/23	6/13	3/23							
Time - Dessicator	12	:00	12	:00	12	:00							
Date of Weighing	6/14/23	6/15/23	6/14/23	6/15/23	6/14/23	6/15/23							
Time of Weighing	12:01	7:21	12:02	7:22	12:03	7:23							
Weight, g	4.0894	4.0892	4.0900	4.0902	4.0835	4.0832							
Organic Condensable Mass, mg*	3	.5	3.	4	2	.3							
	Inorg	anic Fraction	1										
Lab ID	81	4 1	0.1	40	0.1								
		01	81	02	81	63							
Field ID	Reversing	Mill-Run 1	Reversing			63 Mill-Run 3							
Field ID Beaker ID		-		Mill-Run 2	Reversing								
	G2	Mill-Run 1	Reversing	Mill-Run 2 843	Reversing G2	Mill-Run 3							
Beaker ID	G2 42.2	Mill-Run 1	Reversing G2	Mill-Run 2 843 205	Reversing G2 40.3	Mill-Run 3							
Beaker ID Beaker tare, g	G2 42.2 60	Mill-Run 1 842 2759	Reversing G2:	Mill-Run 2 843 1205 4.9	Reversing G2 40.3	Mill-Run 3 844 3001 8.0							
Beaker ID Beaker tare, g Field Vessel w/ Water, g	G2 42.2 60 28	Mill-Run 1 842 2759 2.1	Reversing G2 41.0	Mill-Run 2 843 205 4.9	Reversing G2 40.3	Mill-Run 3 844 8001 8.0 5.9							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g	G2 42.2 60 28	Mill-Run 1 842 2759 2.1	Reversing G2: 41.0 62: 28:	Mill-Run 2 843 1205 4.9 4.0	Reversing	Mill-Run 3 844 8001 8.0 5.9							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g	G2 42.2 60 28 31	Mill-Run 1 842 2759 2.1 8.3 3.8	Reversing	Mill-Run 2 8443 1205 4.9 4.0 0.9	Reversing G2 40.3 57/ 28 29:	Mill-Run 3 844 6001 8.0 5.9							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator	G2 42.2 60 28 31	Mill-Run 1 842 2759 2.1 8.3 3.8	Reversing G2: 41.0 62: 28: 344	Mill-Run 2 8443 1205 4.9 4.0 0.9	Reversing G2 40.3 57/ 28 29:	Mill-Run 3 8844 8001 8.0 5.9 2.1							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator	G2 42.2 60 28 31 6/10	Mill-Run 1 842 2759 2.1 8.3 3.8 6/23 :00	Reversing G2: 41.0 62- 28 344 6/10	Mill-Run 2 843 205 4.9 4.0 0.9 5/23	Reversing G2 40.3 57 28 29 6/10	Mill-Run 3 844 9001 8.0 5.9 2.1 6/23							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator Date of Weighing	G2 42.2 60 28 31 6/10 10	Mill-Run 1 842 2759 2.1 8.3 3.8 6/23 :00 6/19/23	Reversing G2: 41.0 62: 28: 344 6/10 10	Mill-Run 2 8443 2005 4.9 4.0 0.9 6/19/23	Reversing G2 40.3 57/ 28 29: 6/10 10	Mill-Run 3 844 8001 8.0 55.9 2.1 5/23 00 6/19/23							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator Date of Weighing	G2 42.2 60 28 31 6/10 10 6/19/23 7:00 42.2780	Mill-Run 1 842 2759 2.1 8.3 3.8 6/23 :00 6/19/23 13:01	Reversing G2: 41.0 62- 28 344 6/10 10 6/19/23 7:01	Mill-Run 2 843 2005 4.9 4.0 0.9 6/19/23 13:02 41.0227	Reversing G2 40.3 57: 28: 29: 6/16 10 6/19/23 7:02 40.3021	Mill-Run 3 844 9001 8.0 5.9 2.1 6/19/23 13:03							
Beaker ID Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator Date of Weighing Time of Weighing Weight, g	G2 42.2 60 28 31 6/10 10 6/19/23 7:00 42.2780	Mill-Run 1 842 2759 2.1 8.3 3.8 6/23 :00 6/19/23 13:01 42.2777	Reversing G2: 41.0 62: 28: 34: 6/10 10 6/19/23 7:01 41.0225	Mill-Run 2 8443 1205 4.9 4.0 0.9 6/19/23 13:02 41.0227	Reversing G2 40.3 57: 28: 29: 6/10 10 6/19/23 7:02 40.3021	Mill-Run 3 844 6001 8.0 5.9 2.1 6/19/23 13:03 40:3022							

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

Client Revere Copper Products Inc.

City, State Rome, NY

Project No.

AST-2023-2747-B

Wethod US EPA Method 202

	Te	eflon Filter					
Lab ID	81	34	81	35	81	36	
Field ID	FR Down	Mill-Run 1	FR Down	Mill-Run 2	FR Down	Mill-Run 3	
	Orgo	anic Fraction					
Lab ID	81	49	81	50	81	51	
Field ID	FR Down	Mill-Run 1	FR Down	Mill-Run 2	FR Down	Mill-Run 3	
Beaker ID	81	49	81	50	81	51	
Beaker tare, g	4.0	796	4.0	925	4.0	775	
Field Vessel w/ Solvent, g	40	4.1	40	0.7	45	0.0	
Empty Field Vessel, g	28	5.4	28	9.5	28	6.6	
Solvent Mass, g	11	8.7	11	1.2	16	3.4	
Date - Dessicator	6/13	3/23	6/13	3/23	6/13	3/23	
Time - Dessicator	12	:00	12	:00	12	:00	
Date of Weighing	6/14/23	6/15/23	6/14/23	6/15/23	6/14/23	6/15/23	
Time of Weighing	12:04	7:24	12:05	7:25	12:06	7:26	
Weight, g	4.0830	4.0831	4.0963	4.0962	4.0805	4.0809	
Organic Condensable Mass, mg*	3	.4	3	.7	3.	.2	
	Inorg	anic Fraction	ì				
Lab ID	81	64	81	65	81	66	
Field ID	FR Down	Mill-Run 1	FR Down	Mill-Run 2	FR Down	Mill-Run 3	
Beaker ID	G2	845	G2	846	G2847		
Beaker tare, g	40.3	3669	40.8	3900	38.6463		
Field Vessel w/ Water, g	56	5.1	50	3.7	580.5		
Empty Field Vessel, g	28	9.2	28	7.2	29	0.3	
Water Mass, g	27	5.9	21	6.5	29	0.2	
Date - Dessicator	6/1	6/23	6/10	5/23	6/16	3/23	
Time - Dessicator	10	:00	10	:00	10	:00	
Time - Dessieuloi				6/19/23 6/19/23		//10/02	
Date of Weighing	6/19/23	6/19/23	6/19/23	6/19/23	6/19/23	6/19/23	
	6/19/23 7:03	6/19/23 13:04	6/19/23 7:04	6/19/23 13:05	7:05	13:06	
Date of Weighing							
Date of Weighing Time of Weighing	7:03 40.3716	13:04	7:04	13:05 40.8918	7:05 38.6472	13:06	
Date of Weighing Time of Weighing Weight, g	7:03 40.3716	13:04	7:04 40.8919	13:05 40.8918	7:05 38.6472	13:06 38.6476	

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

Client Revere Copper Products Inc.

City, State Rome, NY

Project No. AST-2023-2747-B

Method US EPA Method 202

Teflon Filter									
Lab ID	81	37	81	38	81	39			
Field ID	Furnace	39-Run 1	Furnace	39-Run 2	Furnace	39-Run 3			
	Orgo	anic Fraction							
Lab ID	81	52	81	53	81	54			
Field ID	Furnace	39-Run 1	Furnace	39-Run 2	Furnace	39-Run 3			
Beaker ID	81	52	81	53	81	54			
Beaker tare, g	4.0	899	4.0	880	4.4	540			
Field Vessel w/ Solvent, g	46.	5.0	473	3.7	41	7.3			
Empty Field Vessel, g	28	4.6	28	7.0	28	6.2			
Solvent Mass, g	180	0.4	18	6.7	13	1.1			
Date - Dessicator	6/13	3/23	6/13	3/23	6/13	3/23			
Time - Dessicator	12	:00	12	:00	12	:00			
Date of Weighing	6/14/23	6/15/23	6/14/23	6/15/23	6/14/23	6/15/23			
Time of Weighing	12:07	7:27	12:08	7:28	12:09	7:29			
Weight, g	4.0927	4.0928	4.0906	4.0904	4.4562	4.4565			
Organic Condensable Mass, mg*	2	.9	2	.5	2	.4			
	Inorg	anic Fraction	l						
Lab ID	81	67	81	68	81	69			
Field ID	Furnace	39-Run 1	Furnace	39-Run 2	Furnace	39-Run 3			
			G2849						
Beaker ID	G2.	848	G2	849	G2	850			
Beaker tare, g		848 8075	G2 38.4			850 3784			
	40.8		38.4		42.8				
Beaker tare, g	40.8	3075	38.4	1875	42.8	3784			
Beaker tare, g Field Vessel w/ Water, g	40.8	7.6	38.4 58	1875 8.9	42.8 56 28	7.5			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g	40.8 61 28	7.6 7.0	38.4 58i 28- 30	1875 8.9 4.9	42.8 56 28	7.5 7.0			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g	40.8 617 28 33 6/16	7.6 7.0 0.6	38.4 58 28 30 6/16	1875 8.9 4.9 4.0	42.8 56 28 28 6/16	7.5 7.0 0.5			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator	40.8 617 28 33 6/16	7.6 7.0 0.6 6/23	38.4 58 28 30 6/16	8.9 4.9 4.0 6/23	42.8 56 28 28 6/16	7.5 7.0 0.5 6/23			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator	40.8 61 28 33 6/16	7.6 7.0 0.6 6/23	38.4 58i 28 30. 6/10	8875 8.9 4.9 4.0 5/23	42.8 56 28 28 6/16	3784 7.5 7.0 0.5 5/23			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator Date of Weighing	40.8 61: 28 33: 6/10 10	7.6 7.0 0.6 6/19/23	38.4 58i 28 30: 6/10 10	8875 3.9 4.9 4.0 6/19/23	42.8 56 28 28 6/10 10	7.5 7.0 0.5 6/19/23			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator Date of Weighing	40.8 61. 28 33: 6/10 10 6/19/23 7:06 40.8082	7.6 7.0 0.6 6/23 :00 6/19/23 13:07	38.4 58i 28 30. 6/10 10 6/19/23 7:07	8875 8.9 4.9 4.0 6/23 100 6/19/23 13:08 38.4888	42.8 56 28 28 6/10 10 6/19/23 7:08	6784 7.5 7.0 0.5 6/23 :00 6/19/23 13:09 42.8800			
Beaker tare, g Field Vessel w/ Water, g Empty Field Vessel, g Water Mass, g Date - Dessicator Time - Dessicator Date of Weighing Time of Weighing Weight, g	40.8 61. 28 33: 6/10 10 6/19/23 7:06 40.8082	7.6 7.0 0.6 6/19/23 13:07 40.8086	38.4 58i 28i 30i 6/16 10 6/19/23 7:07 38.4884	8875 8.9 4.9 4.0 6/23 100 6/19/23 13:08 38.4888	42.8 56 28 28 6/10 10 6/19/23 7:08 42.8796	6784 7.5 7.0 0.5 6/23 :00 6/19/23 13:09 42.8800			

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

 Client
 Revere Copper Products Inc.

 City, State
 Rome, NY

 Project No.
 AST-2023-2747-B

 Method
 US EPA Method 202

	Te	eflon Filter					
Lab ID	81	40	81	41	81	42	
Field ID	Furnace	40-Run 1	Furnace	40-Run 2	Furnace	40-Run 3	
	Orgo	anic Fraction					
Lab ID	81	55	81	56	81	57	
Field ID	Furnace	40-Run 1	Furnace	40-Run 2	Furnace	40-Run 3	
Beaker ID	81	55	81	56	81	57	
Beaker tare, g	4.3	865	4.3	918	3.9	984	
Field Vessel w/ Solvent, g	48	6.2	45	1.3	38	1.6	
Empty Field Vessel, g	29	0.2	28	9.2	28	8.2	
Solvent Mass, g	19	6.0	16	2.1	93	3.4	
Date - Dessicator	6/13	3/23	6/13	3/23	6/13	3/23	
Time - Dessicator	12	:00	12	:00	12	:00	
Date of Weighing	6/14/23	6/15/23	6/14/23	6/15/23	6/14/23	6/15/23	
Time of Weighing	12:10	7:30	12:11	7:31	12:12	7:32	
Weight, g	4.3898	4.3897	4.3988	4.3984	4.0020	4.0018	
Organic Condensable Mass, mg*	3	.3	6	.8	3	.5	
	Inorg	anic Fractior	1				
Lab ID	81	70	81	71	81	72	
Field ID	Furnace	40-Run 1	Furnace 40-Run 2 G2852		Furnace 40-Run 3 G2853		
Beaker ID	G2	851					
Beaker tare, g	40.8	3312	41.9	7771	40.3893 426.1		
Field Vessel w/ Water, g	62	8.3	54	5.2			
Empty Field Vessel, g	29	0.1	28	6.4	28	9.2	
Water Mass, g	33	8.2	25	8.8	13	6.9	
Date - Dessicator	6/1	6/23	6/1	6/23	6/10	6/23	
Time - Dessicator	10	:00	10	:00	10	:00	
Date of Weighing	6/19/23	6/19/23	6/19/23	6/19/23	6/19/23	6/19/23	
Time of Weighing	7:09	13:10	7:10	13:11	7:11	13:12	
Weight, g	40.8327	40.8331	41.9780	41.9784	40.3912	40.3916	
Inorganic Condensable Mass, mg*	1	.7	1	.1	2	.1	
Blank Corrected			Y	es	Ī		
Total Condensable PM Mass, mg	•	.0		.9	3.6		

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

Client Revere Copper Products Inc.
City, State Rome, NY
Project No. AST-2023-2747-B
Method US EPA Method 202

	Te	eflon Filter					
Lab ID	81	43	81	44	81	45	
Field ID	Overhau	ıler-Run 1	Overhau	ıler-Run 2	Overhau	ıler-Run 3	
	Orgo	anic Fraction					
Lab ID	81	58	81	59	81	60	
Field ID	Overhau	ıler-Run 1	Overhau	ıler-Run 2	Overhau	ıler-Run 3	
Beaker ID	81	58	81	59	81	60	
Beaker tare, g	3.8	880	3.8	495	3.8	363	
Field Vessel w/ Solvent, g	43	1.6	48	2.1	48	0.5	
Empty Field Vessel, g	28	7.8	28	5.0	28	5.1	
Solvent Mass, g	14	3.8	19	7.1	19	5.4	
Date - Dessicator	6/13	3/23	6/13	3/23	6/13	3/23	
Time - Dessicator	12	:00	12	:00	12	:00	
Date of Weighing	6/14/23	6/15/23	6/14/23	6/15/23	6/14/23	6/15/23	
Time of Weighing	12:13	7:33	12:14	7:34	12:15	7:35	
Weight, g	3.8975	3.8974	3.8566	3.8567	3.8406	3.8403	
Organic Condensable Mass, mg*	9	.5	7	.2	4	.1	
	Inorg	anic Fractior	1				
Lab ID	81	73	81	74	81	75	
Field ID	Overhau	ıler-Run 1	Overhau	iler-Run 2	Overhau	iler-Run 3	
Beaker ID	G2	854	G2	855	G2856		
Beaker tare, g	42.6	6684	39.0	0073	40.6435		
Field Vessel w/ Water, g	62	0.1	67	4.6	631.1		
Empty Field Vessel, g	28	6.6	28	6.4	28	8.0	
Water Mass, g	33	3.5	38	8.2	34	3.1	
Date - Dessicator	6/1	6/23	6/10	5/23	6/10	5/23	
Time - Dessicator	10	:00	10	:00	10	:00	
Date of Weighing	6/19/23	6/19/23	6/19/23	6/19/23	6/19/23	6/19/23	
Time of Weighing	7:12	13:13	7:13	13:14	7:14	13:15	
Weight, g	42.6696	42.6701	39.0086	39.0090	40.6441	40.6445	
Inorgania Condonaghia Mass ma*	* 1.4		1	.5	0.8		
Inorganic Condensable Mass, mg*							
Blank Corrected	1		Y	es			

^{*}All fractions were analyzed and returned values greater than the MDL of 0.5 mg.

Tefi	on Filter Blan	ks			
	Field Tro	in Blank	Proof	Blank	
Lab ID	81	76	N	/A	
Field ID	Field Tro	iin Blank	N	/A	
Organ	ic Fraction B	lanks			
	Field Tro	in Blank	Proof	Blank	
Lab ID	81	77	81	79	
Field ID	Field Tro	iin Blank	Proof	Blank	
Beaker ID	81	77	81	79	
Beaker tare, g	3.8	391	3.9	007	
Field Vessel w/ Solvent, g	32	2.8	32	0.6	
Empty Field Vessel, g	17	7.8	17	8.6	
Solvent Mass, g	14	5.0	14	2.0	
Date - Dessicator	6/1:	3/23	6/1:	3/23	
Time - Dessicator	12	:00	12	:00	
Date of Weighing	6/14/23	6/15/23	6/14/23	6/15/23	
Time of Weighing	12:16	7:36	12:17	7:37	
Weight, g	3.8410	3.8407	3.9021	3.9024	
Measured Organic Mass, mg	1	.7	1	.5	
Organic Mass, mg*	1	.7	1	.5	
Inorga	nic Fraction	Blanks	Proof Blank 8180 Proof Blank G2858		
	Field Tro	in Blank			
Lab ID	81	78			
Field ID	Field Tro	iin Blank			
Beaker ID	G2	857			
Beaker tare, g	40.1	622	41.4	1997	
Field Vessel w/ Water, g	52	8.0	48	3.5	
Empty Field Vessel, g	28	2.9	28	7.6	
Water Mass, g	24	5.1	19	5.9	
Date - Dessicator	6/1	5/23	6/1	6/23	
Time - Dessicator	10	:00	10	:00	
Date of Weighing	6/19/23	6/19/23	6/19/23	6/19/23	
Time of Weighing	7:15	13:16	7:16	13:17	
Weight, g	40.1628	40.1632	41.5004	41.5008	
Measured Inorganic Mass, mg	0	.8	0	.9	
Inorganic Mass, mg*	0	.8	0	.9	

185	days				202	Solvent Rinse - Acetone/Hexane	,	,	`		>	5	>	5	,	,	3	>	>	
AL 356 351-012					Method	FUIT = Aste Defense Catch	>	,	,	8	>	>	3	>	,	>	>	>	>	4
ax (255)	per				_	CPM Filter - 83mm Teflon	3	,	>		,	>	>	,	,	>	>	>	5	of PSD a M29
e SW D	Expedited					PM 10 Rinse - Acetone														In lieu
Aliance Source Pstring, LLC - Lab Services 214 Central Circle SW Decatur, AL 35603 Phone (256) 351-0121 Fax (256) 351-0121					± 201A	Streu Dimm74-19dmuN 19117 Of Mq														analysis
Allance 214 Cer Phone			63		Method	9not95A - 9sni8 2.5 M9														for PSD
	Standard	# tol	.01 # 218363	Method/Media		streup mm74 -redmuM reitiet 2.5 M9														Notes er to MVA
	>	Acetone Lot	Hexane Lot	Methoc	d 17	Aozta Acetone														send filte
	Time	/Lot #	/Lot #		Method 17	Filter Number - 47mm Quartz														Notes AST Office. SVR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis, one filter from the Overlander will be analyzed for copper via M29 procedures.
	Turn Around Time	Blank Manut/Lot	Blank Manuf,/Lot			Probe Nozzle Rinse - 1-bromopropane														ice. SYR avimetri , one filt
	Tun	Blan	Blan		Ю	enoteck – eknik elszoM edot9	>	,	,		>	,	,	,	>	,	,	,	,	AST Office. SYR After gravimetr analysis, one filt
					Method	Filter Number – 83mm Teflon														1
stody						Filter Mumber - 83mm Quartz	19346-A	20760-A	20762-A		20767-A	20765-A	19729-A	20765-A	20770-A	20773-A	20764-A	20769-A	20771-A	
F-Cu			1			НОГД														52 8
Chain-Of-Custody						Collector	SW	MS	WS		SW	WS	SW	SW	SW	SW	SW	WS.	SW	12.
ڻ [^]						Time Recovered	15:15	16.30	18-15		17.30	12.30	14.15	11:00	12:45	14:45	-1700	-1200	-1800	Date 6
						Date	5/31/23	6/1/23	6/1/23		5/31/23	6/1/23	6/1/23	6/2/23	6/2/23	6/2/23	6/1/23	6/2/23	6/2/23	
			40	-	_		18	0	0		1/5	6	69	64	19	9	10	9	19	
			Furnace 39 & 40			Number of Containers	Ċί	C)	174		(%)	2	52	nj	2	2	n	2	RV	demec
	22		Down Mill.				*													Nib Or Recieved Te
0:	Clent Name Revere Copper Products	ome, NY	Source, Reversing Mill, First Run Down Mill, Furnace.	74.2		e 10	g Mill - Run 1	g Mill - Run 2	g Mill - Run 3		own Mill - Run 1	own Mill - Run 2	own Mill - Run 3	39 - Run I	39 - Run 2	35 - Run 3	40 - Run 1	40 - Run 2	40 - Run 3	Starger Mile Same
Allance	Client Name Re	City, State Rome, NY	Source Reversing			Sample ID	MS - Reversing Mill - Run 1	MS - Reversing Mill - Run 2	MS - Reversing Mill - Run 3		MS - First Run Down Mill - Run 1	M5 - First Run Down Mill - Run 2	M5 - First Run Down Mill - Run 3	- M5 - Furnace 39 - Run I	MS - Furnace 39 - Run 2	M5 - Fumace 39	M5 - Furnace 40 - Run 1	MS - Furnace 40 - Run 2	M5 - Furnace 40 - Run 3	Reimquished By

Control from Secretary Control from Secret	Aliance				Chain-Of-Custody	f-Cu	ustody 01_17.0						Z14 Cer Phone	Anidate Source Testing, Lt Lab Services 21d Central Circle SW Decatur, AL 35603 Phone (256) 351-0121 Fax (256) 351-0121	SW Der	catur, Al x (256) 31	51-0121
Particle Particle	Client Name Revere Copper Products					1			Turn	Around Time	,				Expedite	90	da
Part Part	City, State Rome, NY					1			Blank	Manuf,/Lot #		ne Lot #					
There is no section to the section of the section o	Source Cast Shop Vacuum & Overhaul Project No. 23-2747	uler				1			Blank	Manuf/Lot #		e lot # 216	363				
Memory 2014 Memory 2014						F					Meth	0					
Provide Rain Prov								Method 5		Me			Method	3 201A		Me	thod 202
Figure Fluid Flu		Number of Containers	Date Collected	Time	Collector	010H	Fifter Mumber - 83mm Quartz	Filter Mumber - 83mm Teflon			9no193A - 9kinse - Acetone	S.S. Filter Number-47mm Quartz	9 - Acetone	strieu O mm 74 - nedmu Maite	9nof93A - 9zniЯ Qf Mq	CPM Filter - 83mm Teflon	
Figure Flunt Flu	M5 Overhauler - Run 1	2	5/31/23	11:30	SW		19728-A									,	
House Bank 1 5/31/23 1500 SW 2016-14 • </td <td>M5 - Overhauler - Run 2</td> <td>-62</td> <td>5/31/23</td> <td>13:00</td> <td>SW</td> <td></td> <td>20763-A</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>-</td>	M5 - Overhauler - Run 2	-62	5/31/23	13:00	SW		20763-A		,							,	-
Photo Bank	M5 - Overhauler - Run 3	O.	5/31/23	15:00	SW		20761-A		,							>	
Proc Blank																	
Proof Bank																	
Finor Blank																	
Proof Bank 2 6/5/23 -1800 JS Proof Bank 3 6/5/23 -1800 JS Proof Bank	- MS Acetrone Blank	-	E 15 193	, words	is in the second				1	-					T	+	+
Reagent Blank 3 6/5/23 1900 15	M202 - FT Proof Blank	2	6/5/23	1800	δ. ⊼				,							+	+
Staven Mile Date 6/6/03 AST Office: SYR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis on filter from the Overlander will be analyzed for copper via M29	M202 -FT Reagent Blank	(6)	6/5/23	-1800	SI						-				T	,	+
Stayen Mile Date 6/6/23 AST Office: SYR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis, one filter from the Overlander will be analyzed for copper via M29																	
Staven Mile Date 6/6/23 AST Office: SYR AST OFFICE: SYR AST OFFICE: SYR AST OFFICE: SYR AST Office: SYR AST OFFICE: SYR AST O					-												+
Date 6/6/23 AST Office: SYR After gravimetric analysis, send filter to MVA for PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis. In lieu of PSD analysis.																	
	Sample Container	il Merce d Temperature (*F)	750	Date		2000		A A A	ST Office fer gravi ralysis, or	SYR metric analys	is, send fill the Overl	Note Iter to MVA ander will t	for PSD oe analyze	analysis. I	n lieu of	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Weigh-Tec

4615 Marsha Ave Decatur, Al. 35603

Weigh-Tec Scale Test / Calibration Report

Rev: 8/1/19 Cal. Rep. 4 Accreditation# 74114

ISO/IEC 17025:2017 Accredited

		ISO	/IEC 17025:2017 Accredi	ted	Report Number:	AST-0622-001
	Customer		Location		Cal. Date	Expiration Date
Alliar	nce Source Testing	214 (Central Circle SW Decatur	r, AL 35603	6/29/2022	6/23
ID	Manufactuer	Model	Serial	Description	Capacity	Min. Grad.
	Ohaus	PA214	B919636400	Balance Room	210 g	0.0001g
		_	REPEATABILITY TE	ST	_	

		As Found				As Left	
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
0	0.0000	0.0000	0.0000	0	0.0000	0.0000	0.0000
5	0.0001	5.0000	0.0000	5	0.0001	5.0000	0.0000
0	0.0000	0.0000	0.0000	0	0.0000	0.0000	0.0000

SHIFT TEST

		As Found		As Left					
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error		
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000		
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000		
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000		
5	0.0001	5.0001	0.0001	5	0.0001	5.0000	0.0000		

STRAIN TEST

As Found			As Left				
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
0.2	0.0001	0.2000	0.0000	0.2	0.0001	0.2000	0.0000
1	0.0001	1.0000	0.0000	1	0.0001	1.0000	0.0000
5	0.0001	5.0004	0.0004	5	0.0001	5.0000	0.0000
50	0.0003	50.0006	0.0006	50	0.0003	50.0001	0.0001
150	0.0003	150.0008	0.0008	150	0.0003	150.0001	0.0001

TOLERANCE

Tolerance: NIST HB44		Class: I		
	AS FOUND	AS LEFT		
In Tolerance	Out of Tolerance	In Tolerance	Out of Tolerance	
	YES	YES		

ENVIROMENT					
nviromental Conditions Have Been Met?	YES	Exceptions and Conditions Needing Attention:			

CALIBRAT	TION STANDARDS USED	*Expanded uncertainty (U) expressed at approximatley 95% with K=2 factor			
Unit # (s)	Kits: 202002 LB / 2288 KG	N.I.S.T. Traceability (Exp 2/2023)	Measurement Uncertainty		
50's (3-1 Thru 3-10), 1k's and 2k'sCast		05142102, GA24327, 02172206, 05142101, LA21-635	0.00011g		

INVOLVED PARTIES

Technician(s)	License Number(s)	Customer Representative
Chad Sain	502908	John Lawrence
Test Method: Customer Stated Weight Increments	Authorized by: Dawn Freeman 2A Manager on 7-5-22	

This report shall not be reproduced, except in full, without the written approval of Weigh-Tec

P.O. Box 266 Decatur, Al. Phone 1-800-461-4153

Weigh-Tec

4615 Marsha Ave Decatur, Al. 35603

Weigh-Tec Scale Test / Calibration Report

Rev: 8/1/19 Cal. Rep. 4 Accreditation# 74114

ISO/IEC 17025:2017 Accredited Report Number: AST-0622-003

	Customer		Location	Cal. Date	Expiration Date	
Alliance Source Testing		214 Central Circle SW Decatur, AL 35603			6/29/2022	6/23
ID	Manufactuer	Model	Serial	Description	Capacity	Min. Grad.
	A&D	EJ-1500	5A2845843	LAB	1500 g	0.1g

REPEATABILITY TEST

As Found			As Left				
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
0	0.0	0.0	0.0	0	0.0	0.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0

SHIFT TEST

As Found			As Left				
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
20	0.1	20.0	0.0	20	0.1	20.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0
20	0.1	20.0	0.0	20	0.1	20.0	0.0

STRAIN TEST

As Found				As Left			
Test Wt.	Tolerance	Indication	Error	Test Wt.	Tolerance	Indication	Error
20	0.1	20.0	0.0	20	0.1	20.0	0.0
100	0.1	100.0	0.0	100	0.1	100.0	0.0
200	0.1	200.0	0.0	200	0.1	200.0	0.0
500	0.1	500.0	0.0	500	0.1	500.0	0.0
1000	0.1	1000.0	0.0	1000	0.1	1000.0	0.0

TOLERANCE

Tolerance: NIST HB-44		Class: I		
	AS FOUND	AS LEFT		
In Tolerance	Out of Tolerance	In Tolerance	Out of Tolerance	
YES		YES		

ENVIROMENT					
Enviromental Conditions Have Been Met?	YES	Exceptions and Conditions Needing Attention:			
	•				
	•				

CALIBRAT	TION STANDARDS USED	*Expanded uncertainty (U) expressed at approximatley 95% with K=2 factor			
Unit # (s)	Kits: 202002 LB / 2288 KG	N.I.S.T. Traceability (Exp 2/2023)	Measurement Uncertainty		
50's	(3-1 Thru 3-10), 1k's and 2k'sCast	05142102, GA24327, 02172206, 05142101, LA21-635	0.11g		

INVOLVED PARTIES

Technician(s)	License Number(s)	Customer Representative
	502908	John Lawrence
Test Method: Customer Stated Weight Increments	Authorized by: Dawn Freeman 2A Manager on 7-5-22	

This report shall not be reproduced, except in full, without the written approval of Weigh-Tec

P.O. Box 266 Decatur, Al. Phone 1-800-461-4153

This is the last page of the report.

Alliance Source Testing, LLC
Analytical Lab Services
4500 Ball Rd NE
Circle Pines, MN 55014
(763) 786-6020
www.stacktest.com

Analytical Laboratory Report

Revere

EPA Methods 29

Project No. AST-2023-2747

Certification Statement

Alliance Source Testing, LLC (AST) has completed the analysis as described in this report. Results apply only to the source(s) tested and operating condition(s) for the specific test date(s) and time(s) identified within this report. All results are intended to be considered in their entirety, and AST is not responsible for use of less than the complete test report without written consent. This report shall not be reproduced in full or in part without written approval from the customer.

To the best of my knowledge and abilities, all information, facts and test data are correct. Data presented in this report has been checked for completeness and is accurate, error-free and legible. Any deviations or problems are detailed in the relevant sections on the test report.

This document was prepared in portable document format (.pdf) and contains pages as identified in the bottom footer of this document.

Validation Sig	nature
The analytical data and all QC contained within the following individual.	this report was reviewed and validated by
Gregg Holman MSP Laboratory Manager	Date
Hailee Bonds	Date

MSP QC Officer

Project Narrative

Analytical Methods: Method 29 - Metals Emissions from Stationary Sources

MDL ICP Metals: The Method Detection Limit (MDL) is specified below per the analyte at the

instrument. If the measured concentration for a fraction is less than the MDL, the <MDL was used in ensuing calculations. If the concentration is >MDL but <RL the

value is flagged with a "J".

Reporting Limit Method Detection Limit

Analyte Units (ug/mL) Units (ug/mL)

Copper 0.020 0.010

Blank Correction: No blank correct was perform unless otherwise noted.

Custody: The samples were received by Blake Messer on 6/22/2023 at AAS, Circle Pines,

Minnesota. The samples were received in good condition with proper Chain-of-Custody documentation. No apparent container problems were noted upon receipt. Prior to analysis, the samples were kept secure with access limited to

authorized personnel of AAS.

Labeling: Acceptable

Approval by: Gregg Holman - Laboratory Manager

Equipment: Perkin Elmer Optima 8300 (ICP01), SN:78S1401226

QC Notes: The samples met the minimum criteria established by the relevant method.

Data Qualifiers None

Reporting Notes: Incorrect solution was added to the instrument spike so no copper was added.

ALLIANCE ANALYTICAL SERVICES

(763)786-6020

Copper by ICP Reporting Form

Client: Revere Due Date: 7/7/23 Sample Type: M29, Filter Analyst's Initials: TB Digestion Method: M-29

Analytical Method: EPA 6010D

												Reported Re	esult
								Total	Amount	Final			
				Instru.		Instru.		Volume	of 1A	Volume of	MDL	Reporting	Analytical
AST Log #			Analysis	Reading	Instru. RL	MDL		of part 1	Digested	Digestate	(Total	Limit	Results
232747	Run	Prep Date	Date	(ug/mL)	(ug/mL)	(ug/mL)	Dilution	(mL)	(mL)	(1A) (mL)	ug)	(Total ug)	(Total ug)
-01	1	7/3/23	7/3/23	21.99	0.020	0.010	2	100	100	100	2.0	4.0	4400
Method Blank		7/3/23	7/3/23	0.010 <	0.020	0.010	2	100	100	100	2.0	4.0	2.0 <

Comments:	

Full Service Analytical Microscopy Laboratory

CHAIN OF CUSTODY

Client Connell ID		,
Client Sample ID	MVA ID*	Comments / Analytical Requests
Filter # 19346-A	AJ0999	PSD Analysis
Fither H 20760-A	AT1000	
Filter # 20762-A	A51001	
Fi Her H 20767-A	AT1002	
Filter# 20766-A	AT 1003	
Filter # 19729-A	AJ1004	
Filter # 20765-A	AJ 1005	
Filter# 20770A	AJ1006	
Filter # 20773-A	AJ1007	
Filter # 20764-A	AJIDOS	
Filter # 20769-A	AJ1009	
Filter # 20771-A	A 51010	
Filter # 19728-A	A51011	* Copper via 429 * -01
filter H 20763-A	A01012	PSD Analysis
Filter H. 20761-A	AJI013	PSD Analysis
		1 4/3/2
* Sent to breg Hel	MAN 6/20/2023	Please send Pesults + GAP
VIA FEDEX	1 0	to: SYRReports @ stacktest.com
		(I STACKIES COP)
		2 .
Relinquished by (sign):		Relinquished by (sign):
Via: Fed Ex		Via:
Date: Printed	Name: . John Lawrence	Date: Printed Name:
Company: Himce Source		Company:

Received by (sign):

Printed Name:

Printed Name:

Printed Name:

MYT Suchtific Consultants

Received by (sign):

Porm

Porm

Printed Name:

O6/12/13

Printed Name:

Printed Name:

O6/12/13

Company:

All sance

³³⁰⁰ Breckinridge Boulevard, Suite 400, Duluth, GA 30096 * For MVA use only .

Last Page of Report

EXHIBIT 4 EMERGENCY GENERATOR CERTIFICATION

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2023 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Byron J. Bunker, Division Director

Compliance Division

Certificate Issued To: Generac Power Systems, Inc.

(U.S. Manufacturer or Importer)

Certificate Number: PGNXB14.22C1-025

Effective Date: 09/01/2022

Expiration Date: 12/31/2023

Issue Date: 09/01/2022

Revision Date: N/A

Manufacturer: Generac Power Systems, Inc.

Engine Family: PGNXB14.22C1

Mobile/Stationary Certification Type: Stationary

Fuel: Natural Gas (CNG/LNG)

Emission Standards:

Part 60 Subpart JJJJ Table 1 VOC (g/Hp-hr): 1.0 NOx (g/Hp-hr): 2.0 CO (g/Hp-hr): 4.0 Emergency Use Only: Y

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

EXHIBIT 5
DEGREASER SDS EXCERPTS

SAFETY DATA SHEET NYCRR Subpart 226-1 Compliant Solvent

Storage P403 + P405 + P235 Store locked up in a well-ventilated place. Keep cool.

Disposal P501 Dispose of contents/ container to an approved waste disposal plant.

SECTION 3 COMPOSITION/INFORMATION ON INGREDIENTS

ComponentsCAS-No.Weight percentDistillates, petroleum, hydrotreated light64742-47-8100

See Section 8 for Exposure Guidelines and Section 15 for Regulatory Classifications.

SECTION 4 FIRST AID MEASURES

Eye contact Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

Skin contact Wash off immediately with soap and plenty of water while removing all contaminated

clothes and shoes. When symptoms persist or in all cases of doubt seek medical advice.

Wash contaminated clothing before re-use.

Inhalation Remove to fresh air. If breathing is irregular or stopped, administer artificial respiration.

In case of shortness of breath, give oxygen. Call a physician immediately.

Ingestion If swallowed, call a poison control centre or doctor immediately. Do not induce vomiting

without medical advice. Never give anything by mouth to an unconscious person.

SECTION 5 FIREFIGHTING MEASURES

FLAMMABLE PROPERTIES

Fire/explosion NFPA Class IIIA combustible liquid.

Suitable Water spray or fog, foam, dry chemical, CO2

extinguishing media

Protective equipment Wear

Wear self-contained breathing apparatus and protective suit.

and precautions for

firefighters

Further information Keep containers and surroundings cool with water spray.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Methods and materials for containment and cleaning up Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13).

Date 06/01/2020 Version 1.0 Page 2 of 8

SAFETY DATA SHEET NYCRR Subpart 226-1 Compliant Solvent

Japan. Inventory of Existing and New Chemical Substances (ENCS)	Listed
Japan. Industrial Safety & Health Law (ISHL) Inventory	Listed
Canada. Domestic Substances List (DSL) Inventory	Listed
Canadian Non-Domestic Substance Listing (NDSL)	Not listed
European Inventory of Existing Commercial Chemical Substances (EINECS) Listing	Listed
Philippines. Inventory of Chemicals / Chemical Substances (PICCS)	Listed
Korea. Existing Chemicals Inventory (KECI)	Listed
China. Inventory of Existing Chemical Substances (IECSC)	Listed
Mexico. National Inventory of Chemical Substances (INSQ)	Listed
New Zealand. Inventory of Chemicals (NZIoC)	Listed
Switzerland. Inventory of Notified New Substances (CHINV)	Listed
Taiwan. National Existing Chemical Inventory (NECI)	Listed

Please note: The names and CAS numbers which are used for this product in the stated inventories may deviate from the information which is listed in Section 3.

STATE REGULATIONS

California Air Resources Board - Compliant

California Prop. 65

Components

None

CAS-No.

New York

Exempt under 6 NYCRR - Subpart 226-1, Contains less than 25 g/L of VOC.

SECTION 16

OTHER INFORMATION

HAZARD RATINGS

			Physical Hazard/
	<u>Health</u>	Flammability	Instability
HMIS®	1	2	0
NFPA	1	2	0

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Solvents and Petroleum Service, Inc. shall not be held liable for any damage resulting from handling or from contact with the above product.

Date 06/01/2020 Version 1.0 Page 8 of 8

EXHIBIT 6 ANNEALER FLUIDS SDS EXCERPTS

Revision Date: 7/17/2018

Safety Data Sheet

Prepared according to GHS

1. Identification

Product Name Navi-Guard Roll Oil 135

Product Code 7700 **Rolling Oil Recommended Use**

American Refining Group, Inc. Company 77 North Kendall Avenue

> Bradford, PA 16701 www.amref.com msds@amref.com

Emergency Telephone Chemtrec 1-800-424-9300 (24 HRS) Number(s) ARG: 814-368-1297 (24 HRS)

2. Hazards Identification

GHS Classification Aspiration Hazard Category 1

Signal Word DANGER!

Hazard Statements May be fatal if swallowed and enters airways

Other Hazard Information Not applicable **GHS Pictogram**

Precautionary Statements If swallowed: immediately call a poison center or doctor.

Do NOT induce vomiting.

Store Locked up

Dispose of contents in accordance with local/regional/national/

international regulations

Composition / Information on Ingredients

CAS No.	Component	Common Name	Percent
64742-56-9	Distillates (petroleum), solvent-dewaxed	Light Lube Neutral	65-75
	light paraffinic		

4. First Aid Measures

Eyes

Check for and remove any contact lenses. Flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Get medical attention if irritation develops.

See Section 11 for additional toxicological information.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Hazardous Component(s)	CAS Number	Percentage*
Polyethylene glycol MW 200	25322-68-3	30 - 60
Azole Derivative	Proprietary	30 - 60
Diethylene Glycol	111-46-6	1 - 5

^{*} Exact percentage is a trade secret. Concentration range is provided to assist users in providing appropriate protections.

4. FIRST AID MEASURES

Inhalation: If inhaled, immediately remove the affected person to fresh air. If symptoms

develop and persist, get medical attention.

Skin contact: Immediately wash skin thoroughly with soap and water. If symptoms develop

and persist, get medical attention.

Eye contact: In case of contact with the eyes, rinse immediately with plenty of water for 15

minutes, and seek immediate medical attention.

Ingestion: Get immediate medical attention. Do not induce vomiting. Never give anything

by mouth to a victim who is unconscious or is having convulsions.

Symptoms: See Section 11.

Notes to physician: Treat symptomatically and supportively.

5. FIRE FIGHTING MEASURES

Extinguishing media: Water spray (fog), foam, dry chemical or carbon dioxide.

Special firefighting procedures: Wear full protective clothing. Wear self-contained breathing apparatus.

Unusual fire or explosion hazards: May liberate large quantities of dense, foul-smelling smoke which may contain

unidentified toxic gasses.

Hazardous combustion products: Upon decomposition, this product emits carbon monoxide, carbon dioxide

and/or low molecular weight hydrocarbons.

6. ACCIDENTAL RELEASE MEASURES

Use personal protection recommended in Section 8, isolate the hazard area and deny entry to unnecessary and unprotected personnel.

Environmental precautions: Prevent further leakage or spillage if safe to do so. Wear appropriate

protective equipment and clothing during clean-up. Do not allow product to

enter sewer or waterways.

Clean-up methods: Absorb spill with inert material. Shovel material into appropriate container for

disposal. Dispose of according to Federal, State and local governmental

regulations.

IDH number: 596961 Product name: BONDERITE S-FN 860 FUNCTIONAL PREVENTIVE COATING ACHESON known as COPPER SHIELD 860

Keep cool. Store locked up.

Disposal: Dispose of contents and/or container according to Federal, State/Provincial and local

governmental regulations.

Classification complies with OSHA Hazard Communication Standard (29 CFR 1910.1200) and is consistent with the provisions of the United Nations Globally Harmonized System of Classification and Labeling of Chemicals (GHS).

See Section 11 for additional toxicological information.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Hazardous Component(s)	CAS Number	Percentage*
Petroleum Distillates	Proprietary	60 - 100
2-Butoxyethanol	111-76-2	1 - 5

^{*} Exact percentage is a trade secret. Concentration range is provided to assist users in providing appropriate protections

4. FIRST AID MEASURES

Inhalation: If symptoms are experienced, remove source of contamination or move victim

to fresh air. If symptoms develop and persist, get medical attention.

Skin contact: For skin contact flush with large amounts of water. If adverse health effects

develop seek medical attention.

Eye contact: Immediately flush eyes with plenty of water for at least 15 minutes. If

symptoms develop and persist, get medical attention.

Ingestion: Drink 1-2 glasses of water, seek medical advice. DO NOT induce vomiting

unless directed to do so by medical personnel. Give one to two glasses of

water or milk.

Symptoms: See Section 11.

Notes to physician: This material, if aspirated into the lungs, may cause chemical pneumonitis;

treat the affected person appropriately.

5. FIRE FIGHTING MEASURES

Extinguishing media: Water spray (fog), foam, dry chemical or carbon dioxide.

Special firefighting procedures: Wear full protective clothing. Wear self-contained breathing apparatus.

Unusual fire or explosion hazards: Vapors are heavier than air and may travel to ignition sources and flash back.

Do not cut, weld, solder, drill, grind, or expose containers to heat, flame,

sparks, or other sources of ignition.

Hazardous combustion products: Upon decomposition, this product emits oxides of sulfur, carbon monoxide,

carbon dioxide and/or low molecular weight hydrocarbons.

6. ACCIDENTAL RELEASE MEASURES

Use personal protection recommended in Section 8, isolate the hazard area and deny entry to unnecessary and unprotected personnel.

Environmental precautions: Prevent further leakage or spillage if safe to do so. Eliminate ignition sources

including sources of electrical, static or frictional sparks. Ventilated area.

IDH number: 596826 Product name: BONDERITE S-FN 870 FUNCTIONAL PREVENTIVE COATING ACHESON known as COPPER SHIELD 870

Material Safe	ty Data Sheet		WOCO PREMIUM 40				
		Identity (Trade Name As Used On Label) HYPR40 MSDS Number *					
Wallover Oil Company Manufacturer							
21845 Drake Rd.		MSDS Null	iber				
Address		CAS Numb	er*				
Strongsville, Ohio 4414	9		04/07/09				
		Date Prepared					
(440) 238-9250			Frank Fraze	ee			
Phone Number (For Information	on)	Prepared B	y*				
(330) 385-9336 Emergency Phone Number		Note: Blank st	naces are not ne	mitted If any its	em is not applicab	le or	
Emergency I done I miner					marked to indicate		
SECTION 1 - MATERIAL	IDENTIFICATION AND IN	IFORMATION					
COMPONENTS - Cha	mical Name & Common Names		OSHA	ACGIH	OTHER LIN	MTS	
	or greater; Carcinogens 0.1% or greate	r) %*	PEL	TLV	RECOMMEN		
Petroleum distillates	(Mineral Oil)	100	5 mg/m3	5 mg/m3	STEL 10 m	g/m3	
			-		-		
	-						
					Marie Control		
Non-Hazardous Ingredients							
TOTAL		100					
SECTION 2 - PHYSICAL	/ CHEMICAL CHARACTE	DISTICS					
SECTION 2-FITTSICAL	TOTILIMICAL CHARACTE	Niorios					
Boiling Pt N	I.D.	Specific Gravity (H2	2O = 1)	0.83			
Vapor Pressure (mm)	Nil	Melting Pt		N.A.			
Vapor Density (Air=1)	I.A.	Evaporation Rate (v	vater =1)	Nil			
Solubility in Water Neg	ligible	Water Reactive		No			
Appearance and Odor Tran	sparent light yellow oily liquid.						
SECTION 3 - FIRE AND E	EXPLOSION HAZARD DAT	ТА					
	The Theorem Inc. American Supplier			Flammability Limits in Air, % by Volume			
Extinguisher Media Foar	n, dry chemical or CO2 preferre	ed	LEL	N.D.	UEL	N.D.	
Special Fire Fighting Procedures	Wear self contained brea	athing apparatus.	Avoid use of s	olid water str	eams.		
Unusual Fire and Explosion Hazards	None known.						
And Explosion Hazalus	Hone Known.						